research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide

crossmark logo

aXi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an 710061, People's Republic of China, and bSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, People's Republic of China
*Correspondence e-mail: yafu-zhou@xab.ac.cn

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 20 November 2023; accepted 18 February 2024; online 6 March 2024)

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino­naphthalene through two-step reactions of acetyl­ation and nitration. The mol­ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl­amino group (C-6). In the crystal, the mol­ecules are assembled into two-dimensional sheet-like structures by inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.

1. Chemical context

Organic small mol­ecules with naphthalene ring systems are attractive photonic materials due to their high photoluminescence quantum efficiency, color tunability, and size-dependent optical properties (Wang et al., 2012[Wang, Y., Liu, J., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C. & Kaner, R. B. (2012). J. Am. Chem. Soc. 134, 9251-9262.]; Yao et al., 2013[Yao, W., Yan, Y. L., Xue, L., Zhang, C., Li, G. P., Zheng, Q. D., Zhao, Y. S., Jiang, H. & Yao, J. N. (2013). Angew. Chem. Int. Ed. 52, 8713-8717.]). Modifying the organic mol­ecular structure can tune the inter­molecular hydrogen-bonding and ππ stacking inter­actions, which influence their packing mode during self-assembly and determine the final aggregated structures. The mol­ecular stacking patterns in crystals can affect asymmetric light propagation (Yagai et al., 2012[Yagai, S., Goto, Y., Lin, X., Karatsu, T., Kitamura, A., Kuzuhara, D., Yamada, H., Kikkawa, Y., Saeki, A. & Seki, S. (2012). Angew. Chem. 124, 6747-6751.]; Zou et al., 2018[Zou, T., Wang, X., Ju, H., Zhao, L., Guo, T., Wu, W. & Wang, H. (2018). Crystals, 8, 22.]; Zhang et al., 2018[Zhang, C., Dong, H. & Zhao, Y. (2018). Adv. Opt. Mater. 6, 1701193.]).

[Scheme 1]

The title compound (I), N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide, obtained from 2-acetyl-6-aminona­phthalene through two-step reactions of acetyl­ation and nitration, is a Prodane fluorescent dye with red fluorescence and a large Stoke shift (Xu et al., 2017[Xu, Z., Zheng, S. & Liu, Y. (2017). China patent, CN106866437 A.]). The stacking of naphthalene compounds into crystals depends on inter­molecular hydrogen bonds and ππ stacking inter­actions. The nitro group and the acetyl­amino group of the naphthalene ring system will affect inter­molecular inter­actions, making it possible to change the one- or two-dimensional stacking arrangement, which in turn affects photo-ion conduction (Eya'ane Meva et al., 2012[Eya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460-o3461.]; Nguyen et al., 2004[Nguyen, T. Q., Martel, R., Avouris, P., Bushey, M. L., Brus, L. & Nuckolls, C. (2004). J. Am. Chem. Soc. 126, 5234-5242.]).

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. The mol­ecules are semi-rigid and almost fully coplanar, except for the nitro oxygen atoms and methyl hydrogen atoms. Notably, compound (I)[link] has a primary amine group on the naphthalene core, while the reactant has a secondary amine at the same position. It may have more steric repulsion with neighboring mol­ecules compared to the reactant when assembled into 2D structures. Self-assembly of naphthalene framework organic mol­ecules through ππ stacking forms 3D sheet-like structures with uniform dimensions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (I)[link] with the atomic numbering scheme. Displacement ellipsoids are depicted at the 50% probability level.

In compound (I)[link], the nitro group and acetyl­amino group are adjacent, located at positions C-5 and C-6, respectively, and the acetyl group is located at the 2-position of the naphthalene ring system. The angle between the two oxygen atoms on the nitro group located at positions C-5 is 123.93 (18)°, and the torsion angles C6—C5—N1—O3 and C10—C5—N1—O3 are −90.34 (15) and 89.66 (15)°, respectively. The angles of the acetyl group at the 2-position, O1—C11—C2 and O1—C11—C12, are 120.13 (18) and 120.52 (18)°, respectively. In addition, the dihedral angle between the nitro group and the plane through the naphthalene ring system is 89.66 (15)°.

3. Supra­molecular features

In the crystal, a unit cell contains four mol­ecules, which exhibit a centrosymmetric arrangement (Fig. 2[link]), and hydrogen bonding and ππ stacking inter­actions were responsible for the formation of the crystal structures with distinct morphologies.

[Figure 2]
Figure 2
The packing of mol­ecules in the title compound (I)[link], viewed along the b-axis direction (N2—H2⋯O1 hydrogen bonds are shown as orange dashed lines, C7—H7⋯O2 and C4—H4⋯O2 hydrogen bonds are shown as gray dashed lines).

The growth pattern for the title compound (I)[link] is a 1D wire-like structure and hydrogen bonding advances the growth along the a-axis direction. The mol­ecules are linked via N2—H2⋯O1 hydrogen bonds, generating 2D layers propagating along the [010] axis direction (Table 1[link]). Without hydrogen-bonding and other strong inter­actions between mol­ecules in adjacent layers, ππ stacking inter­actions, with centroid–centroid distcances of 3.67 Å, are the predominant driving force during self-assembly, which facilitates the crystal of the title compound growth along the [010] direction, forming a 3D structure (Meva et al., 2012[Eya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460-o3461.]; Nguyen et al., 2004[Nguyen, T. Q., Martel, R., Avouris, P., Bushey, M. L., Brus, L. & Nuckolls, C. (2004). J. Am. Chem. Soc. 126, 5234-5242.]). Weak C4—H4⋯O2 contacts are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.35 3.177 (2) 161
C7—H7⋯O2 0.93 2.18 2.792 (2) 123
C4—H4⋯O2ii 0.93 2.34 3.219 (2) 157
Symmetry codes: (i) [x, y, z+1]; (ii) [x+1, y, z].

4. Hirshfeld Surface analysis

A Hirshfeld surface analysis was performed and the associated fingerprint plots, which provide a 2D view of the inter­molecular inter­actions within mol­ecular crystals, were generated using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the 3D dnorm surfaces plotted over a fixed color scale of −0.1253 (red) to 1.4046 (blue) arbitrary units (Fig. 3[link]). The N2—H2⋯O1 hydrogen bond was identified to be a crucial structure-forming inter­action within the crystal packing. The intense red spots symbolizing short contacts and negative dnorm values on the surface are related to the presence of the N2—H2⋯O1 hydrogen bonds in the crystal structure. The weak C4—H4⋯O2 contacts are indicated by faint red spots (Fig. 4[link]).

[Figure 3]
Figure 3
Front view of the three-dimensional Hirshfeld surface of the title compound (I)[link] mapped over dnorm.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for the title compound (I)[link] showing: H⋯O/O⋯H (upside and downside) contacts.

The 2D fingerprint plots for the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, and H⋯N/N⋯H contacts are shown in Fig. 5[link]. The most significant inter­actions are H⋯O/O⋯H, which play a defining role in the overall crystal packing, contributing 43.7%, and are located in the tip and middle region of the fingerprint plot. H⋯H inter­actions contribute 31.0%, being located in the middle region of the fingerprint plot. The contributions of the weak H⋯C/C⋯H and H⋯N/N⋯H contacts to the Hirshfeld surface are 8.5 and 1.1%, respectively.

[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, and (e) N⋯H/H⋯N inter­actions [The de and di values represent the distances (in Å) from a point on the Hirshfeld surface to the nearest atoms inside and outside the surface, respectively.]

Shape-index and curvedness are the metrics that describe the local shape in terms of principal curvatures, representing the surface properties of the crystal mol­ecule to determine their arrangements. The Hirshfeld surface mapped over electrostatic potential, shape-index, curvedness and fragment patches is shown in Fig. 6[link]. The electrostatic potential map (Fig. 6[link]a) highlights the electronegative (red) and electropositive (blue) regions in the mol­ecule. The mol­ecule shows red colored regions near the oxygen atom (O1), indicating the electronegative spots (Akhileshwari et al., 2021[Akhileshwari, P., Kiran, K. R., Sridhar, M. A., Sadashiva, M. P. & Lokanath, N. K. (2021). J. Mol. Struct. 1242, 130747.]). The pattern of red and blue triangles on the shape-index map (Fig. 6[link]b) shows feature characteristic of ππ inter­actions. As the mol­ecule shows flat regions on the curvedness map (Fig. 6[link]c), it is evident that the title mol­ecule is arranged in planar stacking (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The fragment patches (Fig. 6[link]d) illustrates the coordination number of the corresponding atoms in the compound.

[Figure 6]
Figure 6
Hirshfeld surface of the title compound (I)[link] mapped over (a) electrostatic potential, (b) shape-index, (c) curvedness, and (d) fragment patches.

5. Synthesis and crystallization

1.0 g of 2-acetyl-6-aminona­phthalene were dissolved in 35 ml of Ac2O, stirred for 10 minutes, and 30 ml of CH3COOH were added, followed by the slow addition of 6.5 ml of concentrated HNO3 under ice-bath conditions for 3 h at room temperature. When the reaction was complete, it is extracted with CH2Cl2 three times, the organic phase was combined, the positive silica gel column was passed under normal pressure after spinning (eluent CH2Cl2:ethyl acetate, 10:1). The eluent containing the product components was collected and the light-yellow solid was concentrated. It was dissolved in methanol and placed in a refrigerator at 277 to cultivate light-yellow transparent square crystals (Xu et al., 2017[Xu, Z., Zheng, S. & Liu, Y. (2017). China patent, CN106866437 A.]). The MeOH was dissolved and red transparent square crystals suitable for X-ray diffraction were were obtained at 277 K in the refrigerator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93–0.95 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2 Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C14H12N2O4
Mr 272.26
Crystal system, space group Monoclinic, P21/m
Temperature (K) 293
a, b, c (Å) 8.7649 (14), 6.8899 (11), 10.6868 (18)
β (°) 104.676 (4)
V3) 624.31 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 4087, 1229, 1079
Rint 0.016
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.07
No. of reflections 1229
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.29
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

N-(6-Acetyl-1-nitronaphthalen-2-yl)acetamide top
Crystal data top
C14H12N2O4F(000) = 284
Mr = 272.26Dx = 1.448 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 8.7649 (14) ÅCell parameters from 1846 reflections
b = 6.8899 (11) Åθ = 2.4–25.0°
c = 10.6868 (18) ŵ = 0.11 mm1
β = 104.676 (4)°T = 293 K
V = 624.31 (18) Å3Block, red
Z = 20.22 × 0.20 × 0.18 mm
Data collection top
Bruker CCD
diffractometer
1079 reflections with I > 2σ(I)
phi and ω scansRint = 0.016
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.2°, θmin = 2.0°
h = 910
4087 measured reflectionsk = 87
1229 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.1248P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1229 reflectionsΔρmax = 0.21 e Å3
118 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0705 (2)0.75000.18378 (17)0.0351 (4)
H10.00970.75000.25980.042*
C20.2243 (2)0.75000.19094 (18)0.0376 (5)
C30.3449 (2)0.75000.07463 (19)0.0438 (5)
H30.44970.75000.07860.053*
C40.3117 (2)0.75000.04290 (19)0.0416 (5)
H40.39340.75000.11790.050*
C50.1084 (2)0.75000.16916 (16)0.0319 (4)
C60.0450 (2)0.75000.17851 (17)0.0323 (4)
C70.1648 (2)0.75000.06065 (18)0.0384 (5)
H70.27030.75000.06260.046*
C80.1267 (2)0.75000.05469 (18)0.0378 (5)
H80.20760.75000.13030.045*
C90.0307 (2)0.75000.06439 (17)0.0321 (4)
C100.1533 (2)0.75000.05139 (17)0.0320 (4)
C110.2589 (2)0.75000.32103 (19)0.0423 (5)
C120.4260 (3)0.75000.3295 (2)0.0620 (7)
H12A0.43210.75000.41540.074*
H12B0.47690.63620.28820.074*
C130.2245 (2)0.75000.3252 (2)0.0440 (5)
C140.2240 (3)0.75000.4642 (2)0.0561 (6)
H14A0.31520.75000.47750.067*
H14B0.16890.85610.50770.067*
N10.23711 (18)0.75000.28778 (14)0.0398 (4)
N20.07930 (18)0.75000.29967 (15)0.0389 (4)
H20.00050.75000.36590.047*
O10.15177 (18)0.75000.41834 (14)0.0603 (5)
O20.34453 (19)0.75000.24224 (16)0.0925 (8)
O30.28721 (15)0.5958 (2)0.33316 (11)0.0761 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (10)0.0390 (10)0.0289 (9)0.0000.0032 (7)0.000
C20.0365 (10)0.0409 (10)0.0359 (10)0.0000.0099 (8)0.000
C30.0297 (9)0.0613 (13)0.0407 (11)0.0000.0091 (8)0.000
C40.0291 (9)0.0583 (13)0.0340 (10)0.0000.0020 (7)0.000
C50.0314 (9)0.0328 (9)0.0292 (9)0.0000.0032 (7)0.000
C60.0333 (9)0.0313 (9)0.0321 (9)0.0000.0079 (7)0.000
C70.0284 (9)0.0498 (11)0.0363 (10)0.0000.0070 (8)0.000
C80.0296 (9)0.0474 (11)0.0324 (10)0.0000.0009 (7)0.000
C90.0318 (9)0.0313 (9)0.0316 (10)0.0000.0052 (7)0.000
C100.0309 (9)0.0319 (9)0.0315 (9)0.0000.0049 (7)0.000
C110.0427 (11)0.0474 (12)0.0386 (11)0.0000.0135 (9)0.000
C120.0453 (12)0.100 (2)0.0449 (12)0.0000.0190 (10)0.000
C130.0358 (10)0.0567 (13)0.0410 (11)0.0000.0124 (9)0.000
C140.0490 (12)0.0812 (17)0.0417 (12)0.0000.0182 (10)0.000
N10.0329 (8)0.0573 (11)0.0288 (8)0.0000.0068 (7)0.000
N20.0319 (8)0.0539 (10)0.0301 (8)0.0000.0062 (6)0.000
O10.0463 (9)0.1019 (14)0.0327 (8)0.0000.0100 (7)0.000
O20.0324 (8)0.201 (3)0.0432 (9)0.0000.0078 (7)0.000
O30.0803 (9)0.0778 (9)0.0545 (7)0.0232 (7)0.0123 (6)0.0131 (6)
Geometric parameters (Å, º) top
C1—C21.370 (3)C8—C91.410 (3)
C1—C91.405 (3)C8—H80.9300
C1—H10.9300C9—C101.418 (2)
C2—C31.413 (3)C11—O11.212 (2)
C2—C111.496 (3)C11—C121.490 (3)
C3—C41.359 (3)C12—H12A0.9328
C3—H30.9300C12—H12B0.9534
C4—C101.414 (3)C13—O21.192 (3)
C4—H40.9300C13—N21.367 (2)
C5—C61.374 (3)C13—C141.484 (3)
C5—C101.410 (3)C14—H14A0.8470
C5—N11.468 (2)C14—H14B0.9329
C6—N21.402 (2)N1—O31.2038 (14)
C6—C71.421 (3)N1—O3i1.2038 (14)
C7—C81.356 (3)N2—H20.8600
C7—H70.9300
C2—C1—C9121.65 (17)C1—C9—C8122.63 (17)
C2—C1—H1119.2C1—C9—C10119.02 (17)
C9—C1—H1119.2C8—C9—C10118.35 (17)
C1—C2—C3118.58 (17)C5—C10—C4123.87 (17)
C1—C2—C11119.07 (18)C5—C10—C9117.26 (16)
C3—C2—C11122.34 (17)C4—C10—C9118.87 (17)
C4—C3—C2121.69 (18)O1—C11—C12120.52 (18)
C4—C3—H3119.2O1—C11—C2120.13 (18)
C2—C3—H3119.2C12—C11—C2119.35 (18)
C3—C4—C10120.19 (17)C11—C12—H12A111.2
C3—C4—H4119.9C11—C12—H12B108.9
C10—C4—H4119.9H12A—C12—H12B108.6
C6—C5—C10124.35 (16)O2—C13—N2122.84 (19)
C6—C5—N1119.30 (16)O2—C13—C14121.53 (19)
C10—C5—N1116.35 (15)N2—C13—C14115.63 (17)
C5—C6—N2120.69 (16)C13—C14—H14A113.9
C5—C6—C7116.93 (16)C13—C14—H14B111.7
N2—C6—C7122.38 (16)H14A—C14—H14B107.9
C8—C7—C6120.58 (17)O3—N1—O3i123.93 (18)
C8—C7—H7119.7O3—N1—C5118.03 (9)
C6—C7—H7119.7O3i—N1—C5118.03 (9)
C7—C8—C9122.54 (17)C13—N2—C6127.79 (16)
C7—C8—H8118.7C13—N2—H2116.1
C9—C8—H8118.7C6—N2—H2116.1
C9—C1—C2—C30.000 (1)N1—C5—C10—C9180.000 (1)
C9—C1—C2—C11180.000 (1)C3—C4—C10—C5180.000 (1)
C1—C2—C3—C40.000 (1)C3—C4—C10—C90.0
C11—C2—C3—C4180.000 (1)C1—C9—C10—C5180.000 (1)
C2—C3—C4—C100.000 (1)C8—C9—C10—C50.0
C10—C5—C6—N2180.000 (1)C1—C9—C10—C40.000 (1)
N1—C5—C6—N20.000 (1)C8—C9—C10—C4180.0
C10—C5—C6—C70.000 (1)C1—C2—C11—O10.000 (1)
N1—C5—C6—C7180.000 (1)C3—C2—C11—O1180.000 (1)
C5—C6—C7—C80.000 (1)C1—C2—C11—C12180.000 (1)
N2—C6—C7—C8180.000 (1)C3—C2—C11—C120.000 (1)
C6—C7—C8—C90.000 (1)C6—C5—N1—O390.34 (15)
C2—C1—C9—C8180.000 (1)C10—C5—N1—O389.66 (15)
C2—C1—C9—C100.000 (1)C6—C5—N1—O3i90.34 (15)
C7—C8—C9—C1180.000 (1)C10—C5—N1—O3i89.66 (15)
C7—C8—C9—C100.000 (1)O2—C13—N2—C60.000 (1)
C6—C5—C10—C4180.000 (1)C14—C13—N2—C6180.000 (1)
N1—C5—C10—C40.000 (1)C5—C6—N2—C13180.000 (1)
C6—C5—C10—C90.000 (1)C7—C6—N2—C130.000 (1)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.862.353.177 (2)161
C7—H7···O20.932.182.792 (2)123
C4—H4···O2iii0.932.343.219 (2)157
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Hubei Normal University and Nian Zhao for recording the X-ray crystallographic data for the crystals.

Funding information

Funding for this research was provided by: the Xi'an Science and Technology Plan Project (grant No. 20NYYF0043); the Key Research and Development Program of Shaanxi (grant No. 2023-YBNY-248 and 2023-YBNY-100); the Key Research and Development Program of China (grant No. 2021YFD1600400); the National Natural Science Foundation of China (grant No. 42301053).

References

First citationAkhileshwari, P., Kiran, K. R., Sridhar, M. A., Sadashiva, M. P. & Lokanath, N. K. (2021). J. Mol. Struct. 1242, 130747.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEya'ane Meva, F., Schaarschmidt, D., Abdulmalic, M. A. & Rüffer, T. (2012). Acta Cryst. E68, o3460–o3461.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNguyen, T. Q., Martel, R., Avouris, P., Bushey, M. L., Brus, L. & Nuckolls, C. (2004). J. Am. Chem. Soc. 126, 5234–5242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Liu, J., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C. & Kaner, R. B. (2012). J. Am. Chem. Soc. 134, 9251–9262.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Zheng, S. & Liu, Y. (2017). China patent, CN106866437 A.  Google Scholar
First citationYagai, S., Goto, Y., Lin, X., Karatsu, T., Kitamura, A., Kuzuhara, D., Yamada, H., Kikkawa, Y., Saeki, A. & Seki, S. (2012). Angew. Chem. 124, 6747–6751.  CrossRef Google Scholar
First citationYao, W., Yan, Y. L., Xue, L., Zhang, C., Li, G. P., Zheng, Q. D., Zhao, Y. S., Jiang, H. & Yao, J. N. (2013). Angew. Chem. Int. Ed. 52, 8713–8717.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, C., Dong, H. & Zhao, Y. (2018). Adv. Opt. Mater. 6, 1701193.  Web of Science CrossRef Google Scholar
First citationZou, T., Wang, X., Ju, H., Zhao, L., Guo, T., Wu, W. & Wang, H. (2018). Crystals, 8, 22.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds