research communications
H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyldiazen-1-yl)phenyl]methylidene}amino)pentanoate-κ3O,N,O′]copper(II)
and Hirshfeld surface analysis of (1aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: akitsu2@rs.tus.ac.jp
The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from L-leucine and azobenzene-salicylaldehyde. One imidazole molecule is additionally coordinated to the copper(II) ion in the equatorial plane. The features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.
Keywords: Schiff base ligand; copper(II) complex; amino acid; Azobenzene; Hirshfeld analysis; crystal structure.
CCDC reference: 2347500
1. Chemical context
et al., 2008; Stappen et al., 2022). Furthermore, have shown a wide range of pharmacological and medicinal potentials and can be employed as antibacterial, antifungal, antitumor, and antioxidant agents (Andreini et al., 2008; Van Stappen et al., 2022). Active azo group-containing ligands have been shown to possess a strong coordination ability with various metal ions in different oxidation states and form compounds with improved pharmacological characteristics (Dabis & Ward, 2019); these compounds are used in a variety of biological processes, such as the suppression of RNA and DNA as well as several antimicrobial activities (Stappen et al., 2022; Dabis et al., 2019). Over the past few decades, it has become clear that azo Schiff base compounds have a broad range of uses, particularly in the fields of biological applications and chemical synthesis, as well as in a number of industrial applications (Andreini et al., 2008; Stappen et al., 2022; Dabis & Ward, 2019). Furthermore, azo Schiff base compounds can form stable complexes with various metal ions, and find several applications in the treatment of nuclear waste, corrosion control, metal recovery, medicine, etc (Andreini et al., 2008; Van Stappen et al., 2022; Gandin et al., 2013; Nishihara et al., 2005).
have been thoroughly explored due to their numerous uses in organic synthesis and high-tech fields such as liquid crystalline displays, lasers, leather, inkjet printers, dyeing textile fibers, optical data storage, optical switching technologies, and photo-refractive polymer industries (AndreiniOn the other hand, copper has various oxidation states, of which the divalent et al., 2015), photocatalytic reduction of hexavalent chromium (Nakagame et al., 2019), and antibacterial activity (Otani et al., 2022). The introduction of a hydroxyl group is effective in increasing solubility in aqueous solvents (Miyagawa et al., 2020). In addition, similar complexes have been reported (Nejati et al., 2019; Eren et al., 2015; Zhang et al., 2009). In this report, we describe the and intermolecular interactions of a leucine derivative copper(II) complex with an imidazole group.
is the most stable. Copper(II) ions readily form complexes and produce abundant coordination chemistry, while amino acid Schiff base–copper(II) complexes have been studied in terms of photoreaction with titanium dioxide (Takeshita2. Structural commentary
The molecular structure of the title compound consists of a tridentate ligand synthesized from L-leucine, azobenzene-salicylaldehyde and one imidazole molecule coordinating by the copper(II) ion (Fig. 1). The planarity of the π-electron system allows for the acquisition of large resonance energies due to the overlap of orbitals, resulting in a planar structure. The azo group is in a trans conformation.
Two independent molecules are contained in an et al., 2020).
molecule 1 (containing atom Cu1) and molecule 2 (including Cu2). In molecule 1, the C60=N61 double-bond distance is 1.315 (5) Å, close to a typical C=N double-bond length for an imine compounds. The Cu1—O51 and Cu1—O52 bonds lengths are 1.948 (3) and 1.896 (3) Å, respectively, close to a typical Cu—O bond length. The Cu1—N43 and Cu1—N61 bonds lengths of 1.936 (4) and 1.948 (4) Å corresponds to the typical Cu—N bond length (KatsuumiSimilarly, in molecule 2 the C57=N53 double-bond distance is 1.334 (5) Å, close to a typical C=N double-bond length for an imine compounds (Katsuumi et al., 2020). The Cu2—O26 and Cu2—O27 bonds lengths are 1.947 (3) and 1.904 (3) Å, respectively, close to a typical Cu—O bond length. The Cu2—N18 and Cu2—N53 bonds lengths of 1.928 (4) and 1.949 (4) Å corresponds to the typical Cu—N bond length.
3. Supramolecular features
There are only two intermolecular hydrogen bonds (O25⋯H59—N59 and O50⋯H56—N56) between the two molecules in the and Table 1). No other intermolecular hydrogen bonds are found in the crystal packing (Fig. 2).
(Fig. 1A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009; McKinnon et al., 2007) was performed to further investigate the intermolecular interactions and contacts. The intermolecular O⋯H—O hydrogen bonds are indicated by bright-red spots appearing near O25 and O50 on the Hirshfeld surfaces mapped over dnorm and by two sharp spikes of almost the same length in the region 1.6 Å < (de + di) < 2.0 Å in the 2D finger plots (Fig. 3). The contributions to the packing from H⋯H, C⋯C, C⋯H/H⋯C and H⋯O/O⋯H contacts are 52.0, 4.2, 17.9, and 10.1%, respectively. This structure is characterized by high proportions of H⋯H and C⋯H/H⋯C interactions, where H⋯H are van der Waals interactions. The high value of C⋯H/H⋯C is thought to arise from C—H⋯π interactions due to the presence of aromatic rings in the compound. The low value of C⋯C/C⋯C is the result of the low contribution of π–π stacking due to non-overlapping aromatic rings in the structure.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.41, update of January 2024; Groom et al., 2016) for similar structures returned three relevant entries: [Cu(L1)2] and [Cu(L2)2] {HL1 = 4-[(E)-phenyldiazenyl]-2-[(E)-(propylimino)methyl]phenol and HL2 = salicylidenepropylamine, the second structure was only calculated in the gas phase} (KODPOL; Nejati et al., 2019), 4-[(E)-phenyldiazenyl]-2-[(E)-{[4-(propan-2-yl)phenyl]imino}methyl]phenol (HL) and its copper(II) complex (ZUHFUF; Eren et al., 2015), (2,2′-bipyridine-κ2N,N′){N-[2-oxido-5-(phenyldiazenyl)benzylidene-κO]glycinato-κ2N,O}copper(II) (QUCFIE; Zhang et al., 2009).
5. Synthesis and crystallization
Azobenzene-salicylaldehyde (226 mg, 1.00 mmol) and L-leucine (131 mg, 1.00 mmol) were dissolved in methanol (100 mL) and stirred at 313 K for 3 h to give a red solution. Copper(II) acetate monohydrate (199 mg, 1.00 mmol) was added and stirred for 1 h, and imidazole (68 mg, 1.00 mmol) was added and stirred for 2 h to give a dark-green solution. The reaction solution was allowed to stand at 298 K for 4 d to give a green powder, yield: 0.3507 g (74.9%). Recrystallization was performed by vapor diffusion of diethyl ether into a DMF solution of the copper(II) complex.
Elementary analysis: found: C, 56.23; H, 5.01; N, 14.79%. Calculated C22H23CuN5O3, C, 56.34; H, 4.94; N, 14.93%.
IR (KBr, cm−1): 3450 br, 2921 m, 2748 br, 1631 s (C=N double bond), 1607 s (C=O double bond), 1529 w, 1468 m, 1420 m, 1381 s, 1324 w, 1191 w, 1156 w, 1112 m, 1106 m, 835 m, 764 m, 691 w, 653 w, 529 w (Fig. S1 in the supporting information).
UV–vis: 261 nm (ɛ = 19000 M−1 cm−1, π–π*); 391 nm (ɛ = 22000 M−1 cm−1, n–π*); 676 nm (ɛ = 135 M−1 cm−1, d–d) (Figs. S2, S3).
CD: 253 nm (6.72 dm3 M−1 cm−1), 334 nm (−0.57 dm3 M−1 cm−1), 383 nm (−4.04 dm3 M−1 cm−1) (Fig. S4).
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in geometrically calculated positions (C—H = 0.93–0.98 Å) and were constrained using a riding model with Uiso(H) = 1.2Ueq(C) for R2CH and R3CH H atoms and 1.5Ueq(C) for the methyl H atoms. The N-bound H atoms, H56 and H59, were located based on a difference-Fourier map. H56 was refined freely as an isotropic atom, and H59 atom was refined with a distance restraint of N—H = 0.86±0.02 Å. One outlier ( 13 12) was omitted from the refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2347500
https://doi.org/10.1107/S2056989024002986/ee2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002986/ee2005Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002986/ee2005sup3.tif
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002986/ee2005sup4.tif
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002986/ee2005sup5.tif
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002986/ee2005sup6.tif
[Cu(C18H19N3O3)(C3H4N2)] | F(000) = 972 |
Mr = 468.99 | Dx = 1.489 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 8.2816 (2) Å | Cell parameters from 21230 reflections |
b = 17.4856 (3) Å | θ = 3.9–77.0° |
c = 14.9186 (3) Å | µ = 1.77 mm−1 |
β = 104.478 (2)° | T = 100 K |
V = 2091.74 (8) Å3 | Block, green |
Z = 4 | 0.35 × 0.05 × 0.03 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 7772 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 7186 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.060 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.1°, θmin = 3.1° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −21→18 |
Tmin = 0.338, Tmax = 1.000 | l = −18→17 |
34288 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0594P)2 + 0.213P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.35 e Å−3 |
7772 reflections | Δρmin = −0.38 e Å−3 |
571 parameters | Absolute structure: Flack x determined using 3052 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.012 (17) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances H59-N59 0.86 with sigma of 0.02 3.a Ternary CH refined with riding coordinates: C44(H44), C46(H46), C19(H19), C21(H21) 3.b Secondary CH2 refined with riding coordinates: C45(H45A,H45B), C20(H20A,H20B) 3.c Aromatic/amide H refined with riding coordinates: C29(H29), C30(H30), C33(H33), C37(H37), C38(H38), C39(H39), C40(H40), C41(H41), C42(H42), C58(H58), C60(H60), C62(H62), C4(H4), C7(H7), C8(H8), C12(H12), C13(H13), C14(H14), C15(H15), C16(H16), C17(H17), C54(H54), C55(H55), C57(H57) 3.d Idealised Me refined as rotating group: C47(H47A,H47B,H47C), C48(H48A,H48B,H48C), C22(H22A,H22B,H22C), C23(H23A,H23B, H23C) |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.19509 (7) | 0.50887 (3) | 0.39555 (4) | 0.02421 (15) | |
C28 | −0.8701 (5) | 0.5618 (3) | 0.2550 (3) | 0.0270 (9) | |
C29 | −0.8112 (6) | 0.6217 (3) | 0.3190 (3) | 0.0301 (9) | |
H29 | −0.885387 | 0.660360 | 0.328895 | 0.036* | |
C30 | −0.6467 (5) | 0.6233 (3) | 0.3665 (3) | 0.0302 (9) | |
H30 | −0.608958 | 0.663525 | 0.409437 | 0.036* | |
C31 | −0.5302 (5) | 0.5670 (3) | 0.3540 (3) | 0.0256 (8) | |
C32 | −0.5918 (5) | 0.5059 (3) | 0.2914 (3) | 0.0248 (8) | |
C33 | −0.7612 (5) | 0.5059 (3) | 0.2436 (3) | 0.0265 (8) | |
H33 | −0.801844 | 0.465329 | 0.201644 | 0.032* | |
N34 | −1.0357 (4) | 0.5564 (2) | 0.2000 (2) | 0.0280 (8) | |
N35 | −1.1322 (4) | 0.6080 (2) | 0.2144 (2) | 0.0296 (8) | |
C36 | −1.2973 (5) | 0.6037 (3) | 0.1572 (3) | 0.0289 (9) | |
C37 | −1.3437 (6) | 0.5574 (3) | 0.0783 (3) | 0.0356 (10) | |
H37 | −1.263192 | 0.526977 | 0.059262 | 0.043* | |
C38 | −1.5093 (7) | 0.5566 (3) | 0.0285 (4) | 0.0456 (12) | |
H38 | −1.542498 | 0.524603 | −0.024422 | 0.055* | |
C39 | −1.6264 (6) | 0.6015 (3) | 0.0545 (4) | 0.0459 (13) | |
H39 | −1.739347 | 0.599988 | 0.019703 | 0.055* | |
C40 | −1.5807 (6) | 0.6489 (3) | 0.1309 (4) | 0.0407 (12) | |
H40 | −1.661227 | 0.680543 | 0.148084 | 0.049* | |
C41 | −1.4158 (6) | 0.6497 (3) | 0.1821 (3) | 0.0336 (10) | |
H41 | −1.383673 | 0.681968 | 0.234717 | 0.040* | |
C42 | −0.4887 (5) | 0.4450 (3) | 0.2737 (3) | 0.0256 (8) | |
H42 | −0.542002 | 0.405534 | 0.233279 | 0.031* | |
N43 | −0.3304 (4) | 0.4389 (2) | 0.3073 (2) | 0.0235 (7) | |
C44 | −0.2358 (5) | 0.3729 (2) | 0.2858 (3) | 0.0253 (8) | |
H44 | −0.285929 | 0.325257 | 0.304277 | 0.030* | |
C45 | −0.2385 (5) | 0.3665 (2) | 0.1821 (3) | 0.0268 (8) | |
H45A | −0.253417 | 0.418480 | 0.155125 | 0.032* | |
H45B | −0.127757 | 0.347960 | 0.177695 | 0.032* | |
C46 | −0.3704 (5) | 0.3149 (3) | 0.1227 (3) | 0.0299 (9) | |
H46 | −0.482471 | 0.333867 | 0.126253 | 0.036* | |
C47 | −0.3528 (6) | 0.2325 (3) | 0.1559 (3) | 0.0389 (11) | |
H47A | −0.238563 | 0.214892 | 0.160594 | 0.058* | |
H47B | −0.431190 | 0.200207 | 0.111696 | 0.058* | |
H47C | −0.377136 | 0.229136 | 0.216733 | 0.058* | |
C48 | −0.3602 (6) | 0.3200 (3) | 0.0221 (3) | 0.0375 (10) | |
H48A | −0.380558 | 0.372884 | 0.000368 | 0.056* | |
H48B | −0.444536 | 0.286450 | −0.016358 | 0.056* | |
H48C | −0.249088 | 0.304030 | 0.017603 | 0.056* | |
C49 | −0.0567 (5) | 0.3787 (3) | 0.3436 (3) | 0.0255 (8) | |
O50 | 0.0400 (4) | 0.32582 (18) | 0.3384 (2) | 0.0306 (7) | |
O51 | −0.0141 (3) | 0.43815 (18) | 0.39377 (18) | 0.0275 (6) | |
O52 | −0.3762 (4) | 0.57403 (18) | 0.3994 (2) | 0.0296 (6) | |
C58 | 0.0637 (5) | 0.6684 (3) | 0.5806 (3) | 0.0275 (9) | |
H58 | 0.077112 | 0.714775 | 0.614874 | 0.033* | |
N59 | 0.1840 (5) | 0.6146 (2) | 0.5812 (2) | 0.0269 (7) | |
H59 | 0.292 (4) | 0.613 (3) | 0.613 (3) | 0.033 (13)* | |
C60 | 0.1134 (5) | 0.5586 (3) | 0.5240 (3) | 0.0256 (9) | |
H60 | 0.170091 | 0.513940 | 0.512245 | 0.031* | |
N61 | −0.0447 (4) | 0.5731 (2) | 0.4861 (2) | 0.0254 (7) | |
C62 | −0.0784 (5) | 0.6427 (2) | 0.5217 (3) | 0.0268 (9) | |
H62 | −0.183019 | 0.668219 | 0.507303 | 0.032* | |
Cu2 | 0.75324 (7) | 0.44616 (3) | 0.60625 (4) | 0.02372 (15) | |
C3 | 1.4299 (5) | 0.3972 (2) | 0.7467 (3) | 0.0254 (8) | |
C4 | 1.3185 (5) | 0.4517 (3) | 0.7593 (3) | 0.0246 (8) | |
H4 | 1.357625 | 0.492203 | 0.801558 | 0.029* | |
C5 | 1.1485 (5) | 0.4500 (3) | 0.7123 (2) | 0.0248 (8) | |
C6 | 1.0894 (5) | 0.3893 (3) | 0.6476 (3) | 0.0251 (8) | |
C7 | 1.2091 (6) | 0.3346 (3) | 0.6350 (3) | 0.0309 (10) | |
H7 | 1.173286 | 0.294233 | 0.591985 | 0.037* | |
C8 | 1.3723 (5) | 0.3377 (3) | 0.6818 (3) | 0.0272 (9) | |
H8 | 1.447968 | 0.299988 | 0.671126 | 0.033* | |
N9 | 1.5951 (4) | 0.4054 (2) | 0.8008 (2) | 0.0263 (7) | |
N10 | 1.6950 (5) | 0.3548 (2) | 0.7891 (2) | 0.0288 (8) | |
C11 | 1.8613 (5) | 0.3639 (3) | 0.8464 (3) | 0.0270 (9) | |
C12 | 1.9794 (6) | 0.3131 (3) | 0.8308 (3) | 0.0316 (9) | |
H12 | 1.947320 | 0.274106 | 0.785450 | 0.038* | |
C13 | 2.1446 (6) | 0.3187 (3) | 0.8810 (3) | 0.0355 (10) | |
H13 | 2.225310 | 0.283677 | 0.870132 | 0.043* | |
C14 | 2.1912 (6) | 0.3757 (3) | 0.9470 (3) | 0.0363 (10) | |
H14 | 2.304408 | 0.380317 | 0.980622 | 0.044* | |
C15 | 2.0729 (6) | 0.4261 (3) | 0.9641 (3) | 0.0337 (10) | |
H15 | 2.105191 | 0.464577 | 1.010017 | 0.040* | |
C16 | 1.9072 (6) | 0.4205 (3) | 0.9143 (3) | 0.0298 (9) | |
H16 | 1.826070 | 0.454794 | 0.926238 | 0.036* | |
C17 | 1.0411 (5) | 0.5061 (3) | 0.7364 (3) | 0.0245 (8) | |
H17 | 1.090490 | 0.541958 | 0.783152 | 0.029* | |
N18 | 0.8835 (4) | 0.5123 (2) | 0.7004 (2) | 0.0234 (7) | |
C19 | 0.7810 (5) | 0.5666 (3) | 0.7377 (3) | 0.0261 (8) | |
H19 | 0.767695 | 0.543882 | 0.796933 | 0.031* | |
C20 | 0.8504 (5) | 0.6468 (3) | 0.7612 (3) | 0.0302 (9) | |
H20A | 0.811339 | 0.680367 | 0.706561 | 0.036* | |
H20B | 0.973736 | 0.644989 | 0.775757 | 0.036* | |
C21 | 0.7961 (5) | 0.6811 (3) | 0.8440 (3) | 0.0310 (9) | |
H21 | 0.680032 | 0.663487 | 0.841133 | 0.037* | |
C22 | 0.9113 (7) | 0.6542 (3) | 0.9365 (4) | 0.0460 (12) | |
H22A | 0.917061 | 0.598207 | 0.937339 | 0.069* | |
H22B | 0.866785 | 0.671948 | 0.987867 | 0.069* | |
H22C | 1.023295 | 0.675310 | 0.943143 | 0.069* | |
C23 | 0.7960 (7) | 0.7675 (3) | 0.8392 (3) | 0.0414 (11) | |
H23A | 0.907688 | 0.785571 | 0.838557 | 0.062* | |
H23B | 0.764470 | 0.788535 | 0.893309 | 0.062* | |
H23C | 0.715705 | 0.784349 | 0.782637 | 0.062* | |
C24 | 0.6064 (5) | 0.5679 (2) | 0.6714 (3) | 0.0250 (8) | |
O25 | 0.5075 (4) | 0.61784 (18) | 0.6821 (2) | 0.0320 (7) | |
O26 | 0.5709 (3) | 0.51539 (19) | 0.61010 (18) | 0.0275 (6) | |
O27 | 0.9361 (4) | 0.38167 (19) | 0.60141 (19) | 0.0292 (6) | |
N53 | 0.6027 (4) | 0.3813 (2) | 0.5165 (2) | 0.0253 (7) | |
C54 | 0.6325 (5) | 0.3094 (3) | 0.4859 (3) | 0.0265 (8) | |
H54 | 0.736973 | 0.283759 | 0.501157 | 0.032* | |
C55 | 0.4897 (5) | 0.2811 (2) | 0.4306 (3) | 0.0281 (9) | |
H55 | 0.475091 | 0.232852 | 0.400418 | 0.034* | |
N56 | 0.3702 (5) | 0.3362 (2) | 0.4271 (2) | 0.0271 (7) | |
H56 | 0.273 (7) | 0.327 (3) | 0.399 (3) | 0.029 (13)* | |
C57 | 0.4412 (5) | 0.3947 (2) | 0.4791 (3) | 0.0252 (9) | |
H57 | 0.384538 | 0.440053 | 0.488501 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0283 (3) | 0.0198 (3) | 0.0230 (3) | −0.0007 (2) | 0.0036 (2) | −0.0022 (2) |
C28 | 0.028 (2) | 0.024 (2) | 0.030 (2) | −0.0025 (16) | 0.0081 (16) | 0.0033 (17) |
C29 | 0.035 (2) | 0.021 (2) | 0.035 (2) | −0.0015 (17) | 0.0105 (18) | −0.0019 (18) |
C30 | 0.033 (2) | 0.025 (2) | 0.032 (2) | −0.0001 (17) | 0.0075 (17) | −0.0051 (18) |
C31 | 0.031 (2) | 0.019 (2) | 0.027 (2) | −0.0028 (16) | 0.0081 (16) | −0.0007 (17) |
C32 | 0.028 (2) | 0.020 (2) | 0.0268 (18) | −0.0020 (17) | 0.0079 (14) | 0.0003 (18) |
C33 | 0.030 (2) | 0.022 (2) | 0.0280 (19) | −0.0023 (18) | 0.0063 (15) | −0.0010 (19) |
N34 | 0.0283 (19) | 0.024 (2) | 0.0307 (18) | −0.0008 (14) | 0.0064 (14) | 0.0017 (15) |
N35 | 0.0285 (19) | 0.025 (2) | 0.0348 (19) | −0.0011 (14) | 0.0077 (14) | 0.0010 (15) |
C36 | 0.032 (2) | 0.023 (2) | 0.030 (2) | −0.0003 (17) | 0.0052 (17) | 0.0080 (17) |
C37 | 0.044 (3) | 0.025 (3) | 0.035 (2) | 0.0008 (19) | 0.0055 (19) | 0.0044 (19) |
C38 | 0.051 (3) | 0.033 (3) | 0.043 (3) | −0.003 (2) | −0.007 (2) | 0.005 (2) |
C39 | 0.036 (3) | 0.040 (3) | 0.056 (3) | −0.003 (2) | −0.001 (2) | 0.021 (2) |
C40 | 0.032 (2) | 0.036 (3) | 0.054 (3) | 0.006 (2) | 0.011 (2) | 0.018 (2) |
C41 | 0.037 (2) | 0.025 (3) | 0.041 (2) | 0.0006 (18) | 0.0128 (19) | 0.0062 (19) |
C42 | 0.030 (2) | 0.020 (2) | 0.0267 (19) | −0.0036 (18) | 0.0076 (15) | −0.0041 (18) |
N43 | 0.0304 (18) | 0.0182 (18) | 0.0227 (15) | 0.0020 (14) | 0.0084 (12) | 0.0034 (14) |
C44 | 0.030 (2) | 0.018 (2) | 0.0283 (19) | −0.0014 (15) | 0.0078 (16) | −0.0037 (16) |
C45 | 0.032 (2) | 0.022 (2) | 0.0273 (19) | −0.0021 (16) | 0.0096 (16) | 0.0014 (16) |
C46 | 0.0242 (19) | 0.035 (3) | 0.028 (2) | 0.0006 (17) | 0.0024 (16) | −0.0039 (18) |
C47 | 0.052 (3) | 0.029 (3) | 0.037 (2) | −0.013 (2) | 0.013 (2) | −0.007 (2) |
C48 | 0.038 (2) | 0.044 (3) | 0.030 (2) | 0.006 (2) | 0.0079 (18) | −0.005 (2) |
C49 | 0.033 (2) | 0.019 (2) | 0.0254 (19) | −0.0032 (16) | 0.0078 (16) | 0.0009 (16) |
O50 | 0.0301 (16) | 0.0206 (17) | 0.0385 (16) | 0.0001 (12) | 0.0038 (12) | −0.0048 (12) |
O51 | 0.0324 (15) | 0.0223 (16) | 0.0256 (13) | −0.0002 (12) | 0.0032 (11) | −0.0026 (12) |
O52 | 0.0295 (16) | 0.0252 (17) | 0.0314 (15) | −0.0021 (12) | 0.0028 (12) | −0.0071 (13) |
C58 | 0.032 (2) | 0.018 (2) | 0.033 (2) | 0.0000 (16) | 0.0088 (17) | −0.0022 (17) |
N59 | 0.032 (2) | 0.0188 (19) | 0.0282 (17) | −0.0022 (13) | 0.0035 (14) | −0.0036 (14) |
C60 | 0.032 (2) | 0.019 (2) | 0.025 (2) | 0.0006 (16) | 0.0031 (15) | 0.0000 (16) |
N61 | 0.034 (2) | 0.0180 (19) | 0.0237 (17) | 0.0032 (14) | 0.0055 (14) | −0.0014 (14) |
C62 | 0.031 (2) | 0.019 (2) | 0.031 (2) | 0.0020 (16) | 0.0073 (16) | −0.0005 (17) |
Cu2 | 0.0282 (3) | 0.0192 (3) | 0.0224 (3) | −0.0023 (2) | 0.0037 (2) | −0.0022 (2) |
C3 | 0.031 (2) | 0.022 (2) | 0.0226 (18) | −0.0042 (16) | 0.0069 (15) | −0.0006 (16) |
C4 | 0.030 (2) | 0.019 (2) | 0.0238 (17) | −0.0030 (16) | 0.0048 (14) | −0.0002 (17) |
C5 | 0.032 (2) | 0.018 (2) | 0.0250 (18) | −0.0022 (18) | 0.0086 (15) | 0.0018 (18) |
C6 | 0.030 (2) | 0.023 (2) | 0.0230 (18) | −0.0038 (16) | 0.0086 (16) | −0.0009 (16) |
C7 | 0.037 (2) | 0.024 (2) | 0.033 (2) | −0.0052 (17) | 0.0121 (18) | −0.0094 (19) |
C8 | 0.031 (2) | 0.022 (2) | 0.030 (2) | 0.0006 (16) | 0.0097 (17) | −0.0011 (17) |
N9 | 0.0297 (19) | 0.021 (2) | 0.0275 (17) | −0.0009 (14) | 0.0059 (14) | 0.0007 (14) |
N10 | 0.0318 (19) | 0.027 (2) | 0.0283 (17) | −0.0014 (14) | 0.0084 (14) | 0.0008 (14) |
C11 | 0.028 (2) | 0.024 (2) | 0.029 (2) | −0.0013 (16) | 0.0084 (16) | 0.0049 (16) |
C12 | 0.039 (3) | 0.024 (2) | 0.034 (2) | 0.0017 (18) | 0.0130 (19) | 0.0059 (18) |
C13 | 0.036 (2) | 0.032 (3) | 0.040 (2) | 0.0053 (19) | 0.0131 (19) | 0.013 (2) |
C14 | 0.032 (2) | 0.040 (3) | 0.034 (2) | −0.0010 (19) | 0.0029 (18) | 0.011 (2) |
C15 | 0.037 (2) | 0.032 (3) | 0.029 (2) | −0.0026 (17) | 0.0025 (17) | 0.0039 (17) |
C16 | 0.037 (2) | 0.024 (2) | 0.029 (2) | 0.0017 (16) | 0.0081 (17) | 0.0026 (16) |
C17 | 0.030 (2) | 0.019 (2) | 0.0239 (17) | −0.0032 (17) | 0.0058 (14) | −0.0015 (17) |
N18 | 0.0284 (18) | 0.0168 (17) | 0.0251 (15) | −0.0022 (14) | 0.0068 (12) | 0.0008 (15) |
C19 | 0.030 (2) | 0.022 (2) | 0.0255 (19) | 0.0018 (16) | 0.0057 (16) | −0.0034 (16) |
C20 | 0.031 (2) | 0.023 (2) | 0.036 (2) | −0.0009 (16) | 0.0084 (17) | −0.0004 (17) |
C21 | 0.032 (2) | 0.032 (3) | 0.031 (2) | −0.0044 (18) | 0.0100 (17) | −0.0040 (18) |
C22 | 0.051 (3) | 0.035 (3) | 0.049 (3) | 0.002 (2) | 0.007 (2) | −0.002 (2) |
C23 | 0.049 (3) | 0.033 (3) | 0.044 (3) | 0.000 (2) | 0.015 (2) | −0.006 (2) |
C24 | 0.027 (2) | 0.020 (2) | 0.028 (2) | −0.0031 (16) | 0.0071 (16) | −0.0013 (17) |
O25 | 0.0311 (16) | 0.0235 (17) | 0.0374 (16) | 0.0013 (12) | 0.0012 (12) | −0.0070 (13) |
O26 | 0.0329 (15) | 0.0216 (16) | 0.0252 (13) | −0.0017 (12) | 0.0022 (11) | −0.0062 (12) |
O27 | 0.0297 (16) | 0.0278 (17) | 0.0283 (14) | −0.0035 (12) | 0.0041 (12) | −0.0081 (13) |
N53 | 0.0316 (19) | 0.0198 (19) | 0.0232 (16) | −0.0015 (14) | 0.0042 (13) | −0.0008 (14) |
C54 | 0.031 (2) | 0.019 (2) | 0.027 (2) | 0.0013 (16) | 0.0044 (16) | −0.0008 (16) |
C55 | 0.037 (2) | 0.015 (2) | 0.029 (2) | −0.0010 (16) | 0.0027 (17) | −0.0024 (16) |
N56 | 0.0264 (19) | 0.024 (2) | 0.0283 (18) | −0.0017 (14) | 0.0019 (14) | −0.0024 (14) |
C57 | 0.031 (2) | 0.019 (2) | 0.0237 (19) | −0.0007 (16) | 0.0038 (16) | −0.0017 (16) |
Cu1—N43 | 1.936 (4) | Cu2—N18 | 1.928 (4) |
Cu1—O51 | 1.948 (3) | Cu2—O26 | 1.948 (3) |
Cu1—O52 | 1.896 (3) | Cu2—O27 | 1.904 (3) |
Cu1—N61 | 1.948 (4) | Cu2—N53 | 1.949 (4) |
C28—C29 | 1.418 (6) | C3—C4 | 1.371 (6) |
C28—C33 | 1.370 (6) | C3—C8 | 1.421 (6) |
C28—N34 | 1.415 (5) | C3—N9 | 1.411 (5) |
C29—H29 | 0.9500 | C4—H4 | 0.9500 |
C29—C30 | 1.370 (6) | C4—C5 | 1.408 (6) |
C30—H30 | 0.9500 | C5—C6 | 1.435 (6) |
C30—C31 | 1.423 (6) | C5—C17 | 1.430 (6) |
C31—C32 | 1.426 (6) | C6—C7 | 1.424 (6) |
C31—O52 | 1.292 (5) | C6—O27 | 1.291 (5) |
C32—C33 | 1.405 (6) | C7—H7 | 0.9500 |
C32—C42 | 1.430 (6) | C7—C8 | 1.359 (6) |
C33—H33 | 0.9500 | C8—H8 | 0.9500 |
N34—N35 | 1.259 (5) | N9—N10 | 1.253 (5) |
N35—C36 | 1.421 (6) | N10—C11 | 1.436 (6) |
C36—C37 | 1.401 (7) | C11—C12 | 1.383 (6) |
C36—C41 | 1.390 (7) | C11—C16 | 1.400 (6) |
C37—H37 | 0.9500 | C12—H12 | 0.9500 |
C37—C38 | 1.387 (7) | C12—C13 | 1.390 (7) |
C38—H38 | 0.9500 | C13—H13 | 0.9500 |
C38—C39 | 1.377 (8) | C13—C14 | 1.386 (7) |
C39—H39 | 0.9500 | C14—H14 | 0.9500 |
C39—C40 | 1.383 (8) | C14—C15 | 1.388 (7) |
C40—H40 | 0.9500 | C15—H15 | 0.9500 |
C40—C41 | 1.388 (7) | C15—C16 | 1.391 (6) |
C41—H41 | 0.9500 | C16—H16 | 0.9500 |
C42—H42 | 0.9500 | C17—H17 | 0.9500 |
C42—N43 | 1.285 (5) | C17—N18 | 1.286 (5) |
N43—C44 | 1.474 (5) | N18—C19 | 1.471 (5) |
C44—H44 | 1.0000 | C19—H19 | 1.0000 |
C44—C45 | 1.545 (5) | C19—C20 | 1.524 (6) |
C44—C49 | 1.522 (6) | C19—C24 | 1.535 (6) |
C45—H45A | 0.9900 | C20—H20A | 0.9900 |
C45—H45B | 0.9900 | C20—H20B | 0.9900 |
C45—C46 | 1.520 (6) | C20—C21 | 1.538 (6) |
C46—H46 | 1.0000 | C21—H21 | 1.0000 |
C46—C47 | 1.518 (7) | C21—C22 | 1.543 (7) |
C46—C48 | 1.527 (6) | C21—C23 | 1.512 (7) |
C47—H47A | 0.9800 | C22—H22A | 0.9800 |
C47—H47B | 0.9800 | C22—H22B | 0.9800 |
C47—H47C | 0.9800 | C22—H22C | 0.9800 |
C48—H48A | 0.9800 | C23—H23A | 0.9800 |
C48—H48B | 0.9800 | C23—H23B | 0.9800 |
C48—H48C | 0.9800 | C23—H23C | 0.9800 |
C49—O50 | 1.239 (5) | C24—O25 | 1.234 (5) |
C49—O51 | 1.277 (5) | C24—O26 | 1.277 (5) |
C58—H58 | 0.9500 | N53—C54 | 1.380 (6) |
C58—N59 | 1.368 (6) | N53—C57 | 1.334 (5) |
C58—C62 | 1.357 (6) | C54—H54 | 0.9500 |
N59—H59 | 0.90 (3) | C54—C55 | 1.355 (6) |
N59—C60 | 1.334 (6) | C55—H55 | 0.9500 |
C60—H60 | 0.9500 | C55—N56 | 1.372 (6) |
C60—N61 | 1.315 (5) | N56—H56 | 0.82 (5) |
N61—C62 | 1.385 (6) | N56—C57 | 1.328 (6) |
C62—H62 | 0.9500 | C57—H57 | 0.9500 |
N43—Cu1—O51 | 84.61 (13) | N18—Cu2—O26 | 84.40 (13) |
N43—Cu1—N61 | 175.37 (15) | N18—Cu2—N53 | 174.23 (14) |
O52—Cu1—N43 | 94.16 (13) | O26—Cu2—N53 | 90.83 (14) |
O52—Cu1—O51 | 177.38 (14) | O27—Cu2—N18 | 94.44 (14) |
O52—Cu1—N61 | 90.35 (13) | O27—Cu2—O26 | 177.84 (14) |
N61—Cu1—O51 | 90.84 (13) | O27—Cu2—N53 | 90.43 (14) |
C33—C28—C29 | 119.0 (4) | C4—C3—C8 | 118.6 (4) |
C33—C28—N34 | 116.9 (4) | C4—C3—N9 | 116.2 (4) |
N34—C28—C29 | 124.1 (4) | N9—C3—C8 | 125.2 (4) |
C28—C29—H29 | 120.2 | C3—C4—H4 | 118.6 |
C30—C29—C28 | 119.6 (4) | C3—C4—C5 | 122.8 (4) |
C30—C29—H29 | 120.2 | C5—C4—H4 | 118.6 |
C29—C30—H30 | 118.8 | C4—C5—C6 | 118.7 (4) |
C29—C30—C31 | 122.5 (4) | C4—C5—C17 | 117.9 (4) |
C31—C30—H30 | 118.8 | C17—C5—C6 | 123.2 (4) |
C30—C31—C32 | 117.5 (4) | C7—C6—C5 | 117.0 (4) |
O52—C31—C30 | 118.5 (4) | O27—C6—C5 | 124.1 (4) |
O52—C31—C32 | 124.0 (4) | O27—C6—C7 | 118.9 (4) |
C31—C32—C42 | 123.1 (4) | C6—C7—H7 | 118.6 |
C33—C32—C31 | 118.7 (4) | C8—C7—C6 | 122.8 (4) |
C33—C32—C42 | 118.2 (4) | C8—C7—H7 | 118.6 |
C28—C33—C32 | 122.8 (4) | C3—C8—H8 | 120.0 |
C28—C33—H33 | 118.6 | C7—C8—C3 | 120.1 (4) |
C32—C33—H33 | 118.6 | C7—C8—H8 | 120.0 |
N35—N34—C28 | 114.7 (4) | N10—N9—C3 | 115.4 (4) |
N34—N35—C36 | 114.6 (4) | N9—N10—C11 | 114.1 (4) |
C37—C36—N35 | 123.8 (4) | C12—C11—N10 | 116.2 (4) |
C41—C36—N35 | 116.5 (4) | C12—C11—C16 | 120.0 (4) |
C41—C36—C37 | 119.7 (4) | C16—C11—N10 | 123.7 (4) |
C36—C37—H37 | 120.6 | C11—C12—H12 | 119.8 |
C38—C37—C36 | 118.9 (5) | C11—C12—C13 | 120.4 (4) |
C38—C37—H37 | 120.6 | C13—C12—H12 | 119.8 |
C37—C38—H38 | 119.5 | C12—C13—H13 | 120.2 |
C39—C38—C37 | 121.0 (5) | C14—C13—C12 | 119.7 (4) |
C39—C38—H38 | 119.5 | C14—C13—H13 | 120.2 |
C38—C39—H39 | 119.8 | C13—C14—H14 | 119.9 |
C38—C39—C40 | 120.5 (5) | C13—C14—C15 | 120.2 (4) |
C40—C39—H39 | 119.8 | C15—C14—H14 | 119.9 |
C39—C40—H40 | 120.4 | C14—C15—H15 | 119.8 |
C39—C40—C41 | 119.2 (5) | C14—C15—C16 | 120.3 (4) |
C41—C40—H40 | 120.4 | C16—C15—H15 | 119.8 |
C36—C41—H41 | 119.6 | C11—C16—H16 | 120.3 |
C40—C41—C36 | 120.7 (5) | C15—C16—C11 | 119.3 (4) |
C40—C41—H41 | 119.6 | C15—C16—H16 | 120.3 |
C32—C42—H42 | 117.0 | C5—C17—H17 | 117.2 |
N43—C42—C32 | 126.0 (4) | N18—C17—C5 | 125.6 (4) |
N43—C42—H42 | 117.0 | N18—C17—H17 | 117.2 |
C42—N43—Cu1 | 124.9 (3) | C17—N18—Cu2 | 125.4 (3) |
C42—N43—C44 | 121.8 (4) | C17—N18—C19 | 121.2 (4) |
C44—N43—Cu1 | 113.2 (2) | C19—N18—Cu2 | 113.0 (2) |
N43—C44—H44 | 108.2 | N18—C19—H19 | 106.3 |
N43—C44—C45 | 113.6 (3) | N18—C19—C20 | 117.4 (3) |
N43—C44—C49 | 108.7 (3) | N18—C19—C24 | 107.8 (3) |
C45—C44—H44 | 108.2 | C20—C19—H19 | 106.3 |
C49—C44—H44 | 108.2 | C20—C19—C24 | 112.0 (4) |
C49—C44—C45 | 109.9 (3) | C24—C19—H19 | 106.3 |
C44—C45—H45A | 108.0 | C19—C20—H20A | 109.2 |
C44—C45—H45B | 108.0 | C19—C20—H20B | 109.2 |
H45A—C45—H45B | 107.3 | C19—C20—C21 | 112.0 (3) |
C46—C45—C44 | 117.1 (3) | H20A—C20—H20B | 107.9 |
C46—C45—H45A | 108.0 | C21—C20—H20A | 109.2 |
C46—C45—H45B | 108.0 | C21—C20—H20B | 109.2 |
C45—C46—H46 | 108.2 | C20—C21—H21 | 108.5 |
C45—C46—C48 | 109.3 (4) | C20—C21—C22 | 111.1 (4) |
C47—C46—C45 | 112.1 (3) | C22—C21—H21 | 108.5 |
C47—C46—H46 | 108.2 | C23—C21—C20 | 110.4 (4) |
C47—C46—C48 | 110.6 (4) | C23—C21—H21 | 108.5 |
C48—C46—H46 | 108.2 | C23—C21—C22 | 109.9 (4) |
C46—C47—H47A | 109.5 | C21—C22—H22A | 109.5 |
C46—C47—H47B | 109.5 | C21—C22—H22B | 109.5 |
C46—C47—H47C | 109.5 | C21—C22—H22C | 109.5 |
H47A—C47—H47B | 109.5 | H22A—C22—H22B | 109.5 |
H47A—C47—H47C | 109.5 | H22A—C22—H22C | 109.5 |
H47B—C47—H47C | 109.5 | H22B—C22—H22C | 109.5 |
C46—C48—H48A | 109.5 | C21—C23—H23A | 109.5 |
C46—C48—H48B | 109.5 | C21—C23—H23B | 109.5 |
C46—C48—H48C | 109.5 | C21—C23—H23C | 109.5 |
H48A—C48—H48B | 109.5 | H23A—C23—H23B | 109.5 |
H48A—C48—H48C | 109.5 | H23A—C23—H23C | 109.5 |
H48B—C48—H48C | 109.5 | H23B—C23—H23C | 109.5 |
O50—C49—C44 | 117.9 (4) | O25—C24—C19 | 118.5 (4) |
O50—C49—O51 | 123.8 (4) | O25—C24—O26 | 124.0 (4) |
O51—C49—C44 | 118.3 (4) | O26—C24—C19 | 117.5 (4) |
C49—O51—Cu1 | 115.1 (3) | C24—O26—Cu2 | 115.2 (3) |
C31—O52—Cu1 | 127.7 (3) | C6—O27—Cu2 | 127.1 (3) |
N59—C58—H58 | 126.6 | C54—N53—Cu2 | 128.3 (3) |
C62—C58—H58 | 126.6 | C57—N53—Cu2 | 125.9 (3) |
C62—C58—N59 | 106.8 (4) | C57—N53—C54 | 105.4 (3) |
C58—N59—H59 | 130 (4) | N53—C54—H54 | 125.3 |
C60—N59—C58 | 107.4 (4) | C55—C54—N53 | 109.4 (4) |
C60—N59—H59 | 122 (4) | C55—C54—H54 | 125.3 |
N59—C60—H60 | 124.3 | C54—C55—H55 | 126.9 |
N61—C60—N59 | 111.3 (4) | C54—C55—N56 | 106.2 (4) |
N61—C60—H60 | 124.3 | N56—C55—H55 | 126.9 |
C60—N61—Cu1 | 125.7 (3) | C55—N56—H56 | 119 (4) |
C60—N61—C62 | 106.2 (3) | C57—N56—C55 | 108.0 (4) |
C62—N61—Cu1 | 128.2 (3) | C57—N56—H56 | 133 (4) |
C58—C62—N61 | 108.3 (4) | N53—C57—H57 | 124.5 |
C58—C62—H62 | 125.8 | N56—C57—N53 | 111.1 (4) |
N61—C62—H62 | 125.8 | N56—C57—H57 | 124.5 |
Cu1—N43—C44—C45 | −120.7 (3) | C62—C58—N59—C60 | −0.2 (5) |
Cu1—N43—C44—C49 | 1.9 (4) | Cu2—N18—C19—C20 | −142.7 (3) |
Cu1—N61—C62—C58 | −178.2 (3) | Cu2—N18—C19—C24 | −15.1 (4) |
C28—C29—C30—C31 | 0.3 (7) | Cu2—N53—C54—C55 | 173.8 (3) |
C28—N34—N35—C36 | 178.3 (3) | Cu2—N53—C57—N56 | −174.2 (3) |
C29—C28—C33—C32 | −1.3 (6) | C3—C4—C5—C6 | −0.7 (6) |
C29—C28—N34—N35 | −2.7 (6) | C3—C4—C5—C17 | 175.0 (4) |
C29—C30—C31—C32 | −2.1 (6) | C3—N9—N10—C11 | −178.8 (3) |
C29—C30—C31—O52 | 177.9 (4) | C4—C3—C8—C7 | −1.3 (6) |
C30—C31—C32—C33 | 2.1 (6) | C4—C3—N9—N10 | 179.3 (4) |
C30—C31—C32—C42 | −179.0 (4) | C4—C5—C6—C7 | −0.5 (6) |
C30—C31—O52—Cu1 | −179.3 (3) | C4—C5—C6—O27 | 179.3 (4) |
C31—C32—C33—C28 | −0.5 (6) | C4—C5—C17—N18 | −179.8 (4) |
C31—C32—C42—N43 | −3.1 (7) | C5—C6—C7—C8 | 0.8 (6) |
C32—C31—O52—Cu1 | 0.6 (6) | C5—C6—O27—Cu2 | −0.1 (6) |
C32—C42—N43—Cu1 | 3.1 (6) | C5—C17—N18—Cu2 | 1.1 (6) |
C32—C42—N43—C44 | 178.9 (4) | C5—C17—N18—C19 | 172.9 (4) |
C33—C28—C29—C30 | 1.4 (6) | C6—C5—C17—N18 | −4.4 (6) |
C33—C28—N34—N35 | 178.4 (4) | C6—C7—C8—C3 | 0.1 (7) |
C33—C32—C42—N43 | 175.8 (4) | C7—C6—O27—Cu2 | 179.6 (3) |
N34—C28—C29—C30 | −177.5 (4) | C8—C3—C4—C5 | 1.6 (6) |
N34—C28—C33—C32 | 177.7 (4) | C8—C3—N9—N10 | −0.6 (6) |
N34—N35—C36—C37 | −13.1 (6) | N9—C3—C4—C5 | −178.3 (4) |
N34—N35—C36—C41 | 167.9 (4) | N9—C3—C8—C7 | 178.6 (4) |
N35—C36—C37—C38 | 178.9 (4) | N9—N10—C11—C12 | −174.9 (4) |
N35—C36—C41—C40 | −179.5 (4) | N9—N10—C11—C16 | 4.5 (6) |
C36—C37—C38—C39 | 1.3 (8) | N10—C11—C12—C13 | 178.2 (4) |
C37—C36—C41—C40 | 1.5 (7) | N10—C11—C16—C15 | −177.9 (4) |
C37—C38—C39—C40 | 0.4 (8) | C11—C12—C13—C14 | −0.1 (6) |
C38—C39—C40—C41 | −1.1 (7) | C12—C11—C16—C15 | 1.4 (6) |
C39—C40—C41—C36 | 0.2 (7) | C12—C13—C14—C15 | 1.2 (7) |
C41—C36—C37—C38 | −2.2 (7) | C13—C14—C15—C16 | −0.9 (7) |
C42—C32—C33—C28 | −179.4 (4) | C14—C15—C16—C11 | −0.4 (7) |
C42—N43—C44—C45 | 63.1 (5) | C16—C11—C12—C13 | −1.2 (6) |
C42—N43—C44—C49 | −174.3 (3) | C17—C5—C6—C7 | −175.9 (4) |
N43—Cu1—O52—C31 | −0.5 (4) | C17—C5—C6—O27 | 3.9 (6) |
N43—C44—C45—C46 | −94.6 (4) | C17—N18—C19—C20 | 44.5 (5) |
N43—C44—C49—O50 | 176.3 (3) | C17—N18—C19—C24 | 172.1 (4) |
N43—C44—C49—O51 | −4.5 (5) | N18—C19—C20—C21 | −147.5 (4) |
C44—C45—C46—C47 | −60.6 (5) | N18—C19—C24—O25 | −169.4 (4) |
C44—C45—C46—C48 | 176.4 (4) | N18—C19—C24—O26 | 12.6 (5) |
C44—C49—O51—Cu1 | 5.0 (4) | C19—C20—C21—C22 | 83.6 (5) |
C45—C44—C49—O50 | −58.9 (5) | C19—C20—C21—C23 | −154.3 (4) |
C45—C44—C49—O51 | 120.3 (4) | C19—C24—O26—Cu2 | −4.1 (5) |
C49—C44—C45—C46 | 143.4 (4) | C20—C19—C24—O25 | −38.7 (5) |
O50—C49—O51—Cu1 | −175.9 (3) | C20—C19—C24—O26 | 143.3 (4) |
O52—C31—C32—C33 | −177.9 (4) | C24—C19—C20—C21 | 86.9 (4) |
O52—C31—C32—C42 | 1.0 (7) | O25—C24—O26—Cu2 | 178.0 (3) |
C58—N59—C60—N61 | 0.4 (5) | O27—C6—C7—C8 | −179.0 (4) |
N59—C58—C62—N61 | −0.1 (5) | N53—C54—C55—N56 | 0.0 (5) |
N59—C60—N61—Cu1 | 178.1 (3) | C54—N53—C57—N56 | −0.5 (5) |
N59—C60—N61—C62 | −0.5 (5) | C54—C55—N56—C57 | −0.3 (5) |
C60—N61—C62—C58 | 0.3 (5) | C55—N56—C57—N53 | 0.5 (5) |
N61—Cu1—O52—C31 | −179.5 (4) | C57—N53—C54—C55 | 0.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N56—H56···O50 | 0.83 (5) | 1.92 (6) | 2.730 (5) | 169 (5) |
N59—H59···O25 | 0.90 (4) | 1.83 (4) | 2.726 (5) | 175 (3) |
C55—H55···O25i | 0.95 | 2.38 | 3.316 (5) | 168 |
C58—H58···O50ii | 0.95 | 2.35 | 3.208 (6) | 150 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y+1/2, −z+1. |
References
Andreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205–1218. Web of Science CrossRef PubMed CAS Google Scholar
Dabis, H. J. & Ward, T. R. (2019). Science, 5, 1120–1136. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eren, T., Kose, M., Kurtoglu, N., Ceyhan, G., McKee, V. & Kurtoglu, M. (2015). Inorg. Chim. Acta, 430, 268–279. Web of Science CSD CrossRef CAS Google Scholar
Gandin, V., Porchia, M., Tisato, F., Zanella, A., Severin, E., Dolmella, A. & Marzano, C. (2013). J. Med. Chem. 56, 7416–7430. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539–1542. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Miyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665–16674. Web of Science CSD CrossRef CAS Google Scholar
Nakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221–231. Web of Science CSD CrossRef CAS Google Scholar
Nejati, K., Bakhtiari, A., Bikas, R. & Rahimpour, J. (2019). J. Mol. Struct. 1192, 217–229. Web of Science CSD CrossRef CAS Google Scholar
Nishihara, H. (2005). Coord. Chem. Rev. 249, 1468–1475. Web of Science CrossRef CAS Google Scholar
Otani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438–448. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Takeshita, Y., Takakura, K. & Akitsu, T. (2015). Int. J. Mol. Sci. 16, 3955–3969. Web of Science CrossRef CAS PubMed Google Scholar
Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974–12045. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Q.-X., Zhao, G.-Q., Zhu, J.-Q., Xue, L.-W. & Han, Y.-J. (2009). Acta Cryst. E65, m1212–m1213. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.