research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyl­diazen-1-yl)phen­yl]methyl­­idene}amino)penta­noate-κ3O,N,O′]copper(II)

crossmark logo

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 27 January 2024; accepted 7 April 2024; online 11 April 2024)

The title copper(II) complex, [Cu(C18H19N3O3)(C3H4N2)], consists of a tridentate ligand synthesized from L-leucine and azo­benzene-salicyl­aldehyde. One imidazole mol­ecule is additionally coordinated to the copper(II) ion in the equatorial plane. The crystal structure features N—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (52.0%) and C⋯H/H⋯C (17.9%) contacts.

1. Chemical context

Azo compounds have been thoroughly explored due to their numerous uses in organic synthesis and high-tech fields such as liquid crystalline displays, lasers, leather, inkjet printers, dyeing textile fibers, optical data storage, optical switching technologies, and photo-refractive polymer industries (Andreini et al., 2008[Andreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205-1218.]; Stappen et al., 2022[Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974-12045.]). Furthermore, azo compounds have shown a wide range of pharmacological and medicinal potentials and can be employed as anti­bacterial, anti­fungal, anti­tumor, and anti­oxidant agents (Andreini et al., 2008[Andreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205-1218.]; Van Stappen et al., 2022[Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974-12045.]). Active azo group-containing ligands have been shown to possess a strong coordination ability with various metal ions in different oxidation states and form compounds with improved pharmacological characteristics (Dabis & Ward, 2019[Dabis, H. J. & Ward, T. R. (2019). Science, 5, 1120-1136.]); these compounds are used in a variety of biological processes, such as the suppression of RNA and DNA as well as several anti­microbial activities (Stappen et al., 2022[Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974-12045.]; Dabis et al., 2019[Dabis, H. J. & Ward, T. R. (2019). Science, 5, 1120-1136.]). Over the past few decades, it has become clear that azo Schiff base compounds have a broad range of uses, particularly in the fields of biological applications and chemical synthesis, as well as in a number of industrial applications (Andreini et al., 2008[Andreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205-1218.]; Stappen et al., 2022[Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974-12045.]; Dabis & Ward, 2019[Dabis, H. J. & Ward, T. R. (2019). Science, 5, 1120-1136.]). Furthermore, azo Schiff base compounds can form stable complexes with various metal ions, and find several applications in the treatment of nuclear waste, corrosion control, metal recovery, medicine, etc (Andreini et al., 2008[Andreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205-1218.]; Van Stappen et al., 2022[Van Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974-12045.]; Gandin et al., 2013[Gandin, V., Porchia, M., Tisato, F., Zanella, A., Severin, E., Dolmella, A. & Marzano, C. (2013). J. Med. Chem. 56, 7416-7430.]; Nishihara et al., 2005[Nishihara, H. (2005). Coord. Chem. Rev. 249, 1468-1475.]).

On the other hand, copper has various oxidation states, of which the divalent oxidation state is the most stable. Copper(II) ions readily form complexes and produce abundant coordination chemistry, while amino acid Schiff base–copper(II) complexes have been studied in terms of photoreaction with titanium dioxide (Takeshita et al., 2015[Takeshita, Y., Takakura, K. & Akitsu, T. (2015). Int. J. Mol. Sci. 16, 3955-3969.]), photocatalytic reduction of hexa­valent chromium (Nakagame et al., 2019[Nakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221-231.]), and anti­bacterial activity (Otani et al., 2022[Otani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438-448.]). The introduction of a hydroxyl group is effective in increasing solubility in aqueous solvents (Miyagawa et al., 2020[Miyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665-16674.]). In addition, similar complexes have been reported (Nejati et al., 2019[Nejati, K., Bakhtiari, A., Bikas, R. & Rahimpour, J. (2019). J. Mol. Struct. 1192, 217-229.]; Eren et al., 2015[Eren, T., Kose, M., Kurtoglu, N., Ceyhan, G., McKee, V. & Kurtoglu, M. (2015). Inorg. Chim. Acta, 430, 268-279.]; Zhang et al., 2009[Zhang, Q.-X., Zhao, G.-Q., Zhu, J.-Q., Xue, L.-W. & Han, Y.-J. (2009). Acta Cryst. E65, m1212-m1213.]). In this report, we describe the crystal structure and inter­molecular inter­actions of a leucine derivative copper(II) complex with an imidazole group.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of a tridentate ligand synthesized from L-leucine, azo­benzene-salicyl­aldehyde and one imidazole mol­ecule coordinating by the copper(II) ion (Fig. 1[link]). The planarity of the π-electron system allows for the acquisition of large resonance energies due to the overlap of orbitals, resulting in a planar structure. The azo group is in a trans conformation.

[Figure 1]
Figure 1
Mol­ecular structure of title compound. Displacement ellipsoids (non-H) are drawn at the 50% probability level, with H atoms presented as spheres. Dashed lines indicate inter­molecular hydrogen bonds. Double C=N or N=N bonds are drawn in green. [Symmetry code: (i) x, y, z]

Two independent mol­ecules are contained in an asymmetric unit, mol­ecule 1 (containing atom Cu1) and mol­ecule 2 (including Cu2). In mol­ecule 1, the C60=N61 double-bond distance is 1.315 (5) Å, close to a typical C=N double-bond length for an imine compounds. The Cu1—O51 and Cu1—O52 bonds lengths are 1.948 (3) and 1.896 (3) Å, respectively, close to a typical Cu—O bond length. The Cu1—N43 and Cu1—N61 bonds lengths of 1.936 (4) and 1.948 (4) Å corresponds to the typical Cu—N bond length (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]).

Similarly, in mol­ecule 2 the C57=N53 double-bond distance is 1.334 (5) Å, close to a typical C=N double-bond length for an imine compounds (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]). The Cu2—O26 and Cu2—O27 bonds lengths are 1.947 (3) and 1.904 (3) Å, respectively, close to a typical Cu—O bond length. The Cu2—N18 and Cu2—N53 bonds lengths of 1.928 (4) and 1.949 (4) Å corresponds to the typical Cu—N bond length.

3. Supra­molecular features

There are only two inter­molecular hydrogen bonds (O25⋯H59—N59 and O50⋯H56—N56) between the two mol­ecules in the asymmetric unit (Fig. 1[link] and Table 1[link]). No other inter­molecular hydrogen bonds are found in the crystal packing (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N56—H56⋯O50 0.83 (5) 1.92 (6) 2.730 (5) 169 (5)
N59—H59⋯O25 0.90 (4) 1.83 (4) 2.726 (5) 175 (3)
C55—H55⋯O25i 0.95 2.38 3.316 (5) 168
C58—H58⋯O50ii 0.95 2.35 3.208 (6) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Crystal packing viewed down the crystallographic b axis. Double C=N or N=N bonds are drawn in green.

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) was performed to further investigate the inter­molecular inter­actions and contacts. The inter­molecular O⋯H—O hydrogen bonds are indicated by bright-red spots appearing near O25 and O50 on the Hirshfeld surfaces mapped over dnorm and by two sharp spikes of almost the same length in the region 1.6 Å < (de + di) < 2.0 Å in the 2D finger plots (Fig. 3[link]). The contributions to the packing from H⋯H, C⋯C, C⋯H/H⋯C and H⋯O/O⋯H contacts are 52.0, 4.2, 17.9, and 10.1%, respectively. This structure is characterized by high proportions of H⋯H and C⋯H/H⋯C inter­actions, where H⋯H are van der Waals inter­actions. The high value of C⋯H/H⋯C is thought to arise from C—H⋯π inter­actions due to the presence of aromatic rings in the compound. The low value of C⋯C/C⋯C is the result of the low contribution of ππ stacking due to non-overlapping aromatic rings in the structure.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm and two-dimensional fingerprint plots.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update of January 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned three relevant entries: [Cu(L1)2] and [Cu(L2)2] {HL1 = 4-[(E)-phenyl­diazen­yl]-2-[(E)-(propyl­imino)­meth­yl]phenol and HL2 = salicyl­idene­propyl­amine, the second structure was only calculated in the gas phase} (KODPOL; Nejati et al., 2019[Nejati, K., Bakhtiari, A., Bikas, R. & Rahimpour, J. (2019). J. Mol. Struct. 1192, 217-229.]), 4-[(E)-phenyl­diazen­yl]-2-[(E)-{[4-(propan-2-yl)phen­yl]imino}­meth­yl]phenol (HL) and its copper(II) complex (ZUHFUF; Eren et al., 2015[Eren, T., Kose, M., Kurtoglu, N., Ceyhan, G., McKee, V. & Kurtoglu, M. (2015). Inorg. Chim. Acta, 430, 268-279.]), (2,2′-bi­pyridine-κ2N,N′){N-[2-oxido-5-(phenyl­diazen­yl)benzyl­idene-κO]gly­cinato-κ2N,O}copper(II) (QUCFIE; Zhang et al., 2009[Zhang, Q.-X., Zhao, G.-Q., Zhu, J.-Q., Xue, L.-W. & Han, Y.-J. (2009). Acta Cryst. E65, m1212-m1213.]).

5. Synthesis and crystallization

Azo­benzene-salicyl­aldehyde (226 mg, 1.00 mmol) and L-leu­cine (131 mg, 1.00 mmol) were dissolved in methanol (100 mL) and stirred at 313 K for 3 h to give a red solution. Copper(II) acetate monohydrate (199 mg, 1.00 mmol) was added and stirred for 1 h, and imidazole (68 mg, 1.00 mmol) was added and stirred for 2 h to give a dark-green solution. The reaction solution was allowed to stand at 298 K for 4 d to give a green powder, yield: 0.3507 g (74.9%). Recrystallization was performed by vapor diffusion of diethyl ether into a DMF solution of the copper(II) complex.

Elementary analysis: found: C, 56.23; H, 5.01; N, 14.79%. Calculated C22H23CuN5O3, C, 56.34; H, 4.94; N, 14.93%.

IR (KBr, cm−1): 3450 br, 2921 m, 2748 br, 1631 s (C=N double bond), 1607 s (C=O double bond), 1529 w, 1468 m, 1420 m, 1381 s, 1324 w, 1191 w, 1156 w, 1112 m, 1106 m, 835 m, 764 m, 691 w, 653 w, 529 w (Fig. S1 in the supporting information).

UV–vis: 261 nm (ɛ = 19000 M−1 cm−1, ππ*); 391 nm (ɛ = 22000 M−1 cm−1, nπ*); 676 nm (ɛ = 135 M−1 cm−1, dd) (Figs. S2, S3).

CD: 253 nm (6.72 dm3 M−1 cm−1), 334 nm (−0.57 dm3 M−1 cm−1), 383 nm (−4.04 dm3 M−1 cm−1) (Fig. S4).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in geometrically calculated positions (C—H = 0.93–0.98 Å) and were constrained using a riding model with Uiso(H) = 1.2Ueq(C) for R2CH and R3CH H atoms and 1.5Ueq(C) for the methyl H atoms. The N-bound H atoms, H56 and H59, were located based on a difference-Fourier map. H56 was refined freely as an isotropic atom, and H59 atom was refined with a distance restraint of N—H = 0.86±0.02 Å. One outlier ([\overline{3}] 13 12) was omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C18H19N3O3)(C3H4N2)]
Mr 468.99
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.2816 (2), 17.4856 (3), 14.9186 (3)
β (°) 104.478 (2)
V3) 2091.74 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.77
Crystal size (mm) 0.35 × 0.05 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.338, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34288, 7772, 7186
Rint 0.060
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05
No. of reflections 7772
No. of parameters 571
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.38
Absolute structure Flack x determined using 3052 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.012 (17)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(1H-Imidazole-κN3)[4-methyl-2-({[2-oxido-5-(2-phenyldiazen-1-yl)phenyl]methylidene}amino)pentanoate-κ3O,N,O']copper(II) top
Crystal data top
[Cu(C18H19N3O3)(C3H4N2)]F(000) = 972
Mr = 468.99Dx = 1.489 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.2816 (2) ÅCell parameters from 21230 reflections
b = 17.4856 (3) Åθ = 3.9–77.0°
c = 14.9186 (3) ŵ = 1.77 mm1
β = 104.478 (2)°T = 100 K
V = 2091.74 (8) Å3Block, green
Z = 40.35 × 0.05 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
7772 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7186 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 10.0000 pixels mm-1θmax = 77.1°, θmin = 3.1°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2118
Tmin = 0.338, Tmax = 1.000l = 1817
34288 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.213P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.35 e Å3
7772 reflectionsΔρmin = 0.38 e Å3
571 parametersAbsolute structure: Flack x determined using 3052 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.012 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances H59-N59 0.86 with sigma of 0.02 3.a Ternary CH refined with riding coordinates: C44(H44), C46(H46), C19(H19), C21(H21) 3.b Secondary CH2 refined with riding coordinates: C45(H45A,H45B), C20(H20A,H20B) 3.c Aromatic/amide H refined with riding coordinates: C29(H29), C30(H30), C33(H33), C37(H37), C38(H38), C39(H39), C40(H40), C41(H41), C42(H42), C58(H58), C60(H60), C62(H62), C4(H4), C7(H7), C8(H8), C12(H12), C13(H13), C14(H14), C15(H15), C16(H16), C17(H17), C54(H54), C55(H55), C57(H57) 3.d Idealised Me refined as rotating group: C47(H47A,H47B,H47C), C48(H48A,H48B,H48C), C22(H22A,H22B,H22C), C23(H23A,H23B, H23C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19509 (7)0.50887 (3)0.39555 (4)0.02421 (15)
C280.8701 (5)0.5618 (3)0.2550 (3)0.0270 (9)
C290.8112 (6)0.6217 (3)0.3190 (3)0.0301 (9)
H290.8853870.6603600.3288950.036*
C300.6467 (5)0.6233 (3)0.3665 (3)0.0302 (9)
H300.6089580.6635250.4094370.036*
C310.5302 (5)0.5670 (3)0.3540 (3)0.0256 (8)
C320.5918 (5)0.5059 (3)0.2914 (3)0.0248 (8)
C330.7612 (5)0.5059 (3)0.2436 (3)0.0265 (8)
H330.8018440.4653290.2016440.032*
N341.0357 (4)0.5564 (2)0.2000 (2)0.0280 (8)
N351.1322 (4)0.6080 (2)0.2144 (2)0.0296 (8)
C361.2973 (5)0.6037 (3)0.1572 (3)0.0289 (9)
C371.3437 (6)0.5574 (3)0.0783 (3)0.0356 (10)
H371.2631920.5269770.0592620.043*
C381.5093 (7)0.5566 (3)0.0285 (4)0.0456 (12)
H381.5424980.5246030.0244220.055*
C391.6264 (6)0.6015 (3)0.0545 (4)0.0459 (13)
H391.7393470.5999880.0197030.055*
C401.5807 (6)0.6489 (3)0.1309 (4)0.0407 (12)
H401.6612270.6805430.1480840.049*
C411.4158 (6)0.6497 (3)0.1821 (3)0.0336 (10)
H411.3836730.6819680.2347170.040*
C420.4887 (5)0.4450 (3)0.2737 (3)0.0256 (8)
H420.5420020.4055340.2332790.031*
N430.3304 (4)0.4389 (2)0.3073 (2)0.0235 (7)
C440.2358 (5)0.3729 (2)0.2858 (3)0.0253 (8)
H440.2859290.3252570.3042770.030*
C450.2385 (5)0.3665 (2)0.1821 (3)0.0268 (8)
H45A0.2534170.4184800.1551250.032*
H45B0.1277570.3479600.1776950.032*
C460.3704 (5)0.3149 (3)0.1227 (3)0.0299 (9)
H460.4824710.3338670.1262530.036*
C470.3528 (6)0.2325 (3)0.1559 (3)0.0389 (11)
H47A0.2385630.2148920.1605940.058*
H47B0.4311900.2002070.1116960.058*
H47C0.3771360.2291360.2167330.058*
C480.3602 (6)0.3200 (3)0.0221 (3)0.0375 (10)
H48A0.3805580.3728840.0003680.056*
H48B0.4445360.2864500.0163580.056*
H48C0.2490880.3040300.0176030.056*
C490.0567 (5)0.3787 (3)0.3436 (3)0.0255 (8)
O500.0400 (4)0.32582 (18)0.3384 (2)0.0306 (7)
O510.0141 (3)0.43815 (18)0.39377 (18)0.0275 (6)
O520.3762 (4)0.57403 (18)0.3994 (2)0.0296 (6)
C580.0637 (5)0.6684 (3)0.5806 (3)0.0275 (9)
H580.0771120.7147750.6148740.033*
N590.1840 (5)0.6146 (2)0.5812 (2)0.0269 (7)
H590.292 (4)0.613 (3)0.613 (3)0.033 (13)*
C600.1134 (5)0.5586 (3)0.5240 (3)0.0256 (9)
H600.1700910.5139400.5122450.031*
N610.0447 (4)0.5731 (2)0.4861 (2)0.0254 (7)
C620.0784 (5)0.6427 (2)0.5217 (3)0.0268 (9)
H620.1830190.6682190.5073030.032*
Cu20.75324 (7)0.44616 (3)0.60625 (4)0.02372 (15)
C31.4299 (5)0.3972 (2)0.7467 (3)0.0254 (8)
C41.3185 (5)0.4517 (3)0.7593 (3)0.0246 (8)
H41.3576250.4922030.8015580.029*
C51.1485 (5)0.4500 (3)0.7123 (2)0.0248 (8)
C61.0894 (5)0.3893 (3)0.6476 (3)0.0251 (8)
C71.2091 (6)0.3346 (3)0.6350 (3)0.0309 (10)
H71.1732860.2942330.5919850.037*
C81.3723 (5)0.3377 (3)0.6818 (3)0.0272 (9)
H81.4479680.2999880.6711260.033*
N91.5951 (4)0.4054 (2)0.8008 (2)0.0263 (7)
N101.6950 (5)0.3548 (2)0.7891 (2)0.0288 (8)
C111.8613 (5)0.3639 (3)0.8464 (3)0.0270 (9)
C121.9794 (6)0.3131 (3)0.8308 (3)0.0316 (9)
H121.9473200.2741060.7854500.038*
C132.1446 (6)0.3187 (3)0.8810 (3)0.0355 (10)
H132.2253100.2836770.8701320.043*
C142.1912 (6)0.3757 (3)0.9470 (3)0.0363 (10)
H142.3044080.3803170.9806220.044*
C152.0729 (6)0.4261 (3)0.9641 (3)0.0337 (10)
H152.1051910.4645771.0100170.040*
C161.9072 (6)0.4205 (3)0.9143 (3)0.0298 (9)
H161.8260700.4547940.9262380.036*
C171.0411 (5)0.5061 (3)0.7364 (3)0.0245 (8)
H171.0904900.5419580.7831520.029*
N180.8835 (4)0.5123 (2)0.7004 (2)0.0234 (7)
C190.7810 (5)0.5666 (3)0.7377 (3)0.0261 (8)
H190.7676950.5438820.7969330.031*
C200.8504 (5)0.6468 (3)0.7612 (3)0.0302 (9)
H20A0.8113390.6803670.7065610.036*
H20B0.9737360.6449890.7757570.036*
C210.7961 (5)0.6811 (3)0.8440 (3)0.0310 (9)
H210.6800320.6634870.8411330.037*
C220.9113 (7)0.6542 (3)0.9365 (4)0.0460 (12)
H22A0.9170610.5982070.9373390.069*
H22B0.8667850.6719480.9878670.069*
H22C1.0232950.6753100.9431430.069*
C230.7960 (7)0.7675 (3)0.8392 (3)0.0414 (11)
H23A0.9076880.7855710.8385570.062*
H23B0.7644700.7885350.8933090.062*
H23C0.7157050.7843490.7826370.062*
C240.6064 (5)0.5679 (2)0.6714 (3)0.0250 (8)
O250.5075 (4)0.61784 (18)0.6821 (2)0.0320 (7)
O260.5709 (3)0.51539 (19)0.61010 (18)0.0275 (6)
O270.9361 (4)0.38167 (19)0.60141 (19)0.0292 (6)
N530.6027 (4)0.3813 (2)0.5165 (2)0.0253 (7)
C540.6325 (5)0.3094 (3)0.4859 (3)0.0265 (8)
H540.7369730.2837590.5011570.032*
C550.4897 (5)0.2811 (2)0.4306 (3)0.0281 (9)
H550.4750910.2328520.4004180.034*
N560.3702 (5)0.3362 (2)0.4271 (2)0.0271 (7)
H560.273 (7)0.327 (3)0.399 (3)0.029 (13)*
C570.4412 (5)0.3947 (2)0.4791 (3)0.0252 (9)
H570.3845380.4400530.4885010.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0283 (3)0.0198 (3)0.0230 (3)0.0007 (2)0.0036 (2)0.0022 (2)
C280.028 (2)0.024 (2)0.030 (2)0.0025 (16)0.0081 (16)0.0033 (17)
C290.035 (2)0.021 (2)0.035 (2)0.0015 (17)0.0105 (18)0.0019 (18)
C300.033 (2)0.025 (2)0.032 (2)0.0001 (17)0.0075 (17)0.0051 (18)
C310.031 (2)0.019 (2)0.027 (2)0.0028 (16)0.0081 (16)0.0007 (17)
C320.028 (2)0.020 (2)0.0268 (18)0.0020 (17)0.0079 (14)0.0003 (18)
C330.030 (2)0.022 (2)0.0280 (19)0.0023 (18)0.0063 (15)0.0010 (19)
N340.0283 (19)0.024 (2)0.0307 (18)0.0008 (14)0.0064 (14)0.0017 (15)
N350.0285 (19)0.025 (2)0.0348 (19)0.0011 (14)0.0077 (14)0.0010 (15)
C360.032 (2)0.023 (2)0.030 (2)0.0003 (17)0.0052 (17)0.0080 (17)
C370.044 (3)0.025 (3)0.035 (2)0.0008 (19)0.0055 (19)0.0044 (19)
C380.051 (3)0.033 (3)0.043 (3)0.003 (2)0.007 (2)0.005 (2)
C390.036 (3)0.040 (3)0.056 (3)0.003 (2)0.001 (2)0.021 (2)
C400.032 (2)0.036 (3)0.054 (3)0.006 (2)0.011 (2)0.018 (2)
C410.037 (2)0.025 (3)0.041 (2)0.0006 (18)0.0128 (19)0.0062 (19)
C420.030 (2)0.020 (2)0.0267 (19)0.0036 (18)0.0076 (15)0.0041 (18)
N430.0304 (18)0.0182 (18)0.0227 (15)0.0020 (14)0.0084 (12)0.0034 (14)
C440.030 (2)0.018 (2)0.0283 (19)0.0014 (15)0.0078 (16)0.0037 (16)
C450.032 (2)0.022 (2)0.0273 (19)0.0021 (16)0.0096 (16)0.0014 (16)
C460.0242 (19)0.035 (3)0.028 (2)0.0006 (17)0.0024 (16)0.0039 (18)
C470.052 (3)0.029 (3)0.037 (2)0.013 (2)0.013 (2)0.007 (2)
C480.038 (2)0.044 (3)0.030 (2)0.006 (2)0.0079 (18)0.005 (2)
C490.033 (2)0.019 (2)0.0254 (19)0.0032 (16)0.0078 (16)0.0009 (16)
O500.0301 (16)0.0206 (17)0.0385 (16)0.0001 (12)0.0038 (12)0.0048 (12)
O510.0324 (15)0.0223 (16)0.0256 (13)0.0002 (12)0.0032 (11)0.0026 (12)
O520.0295 (16)0.0252 (17)0.0314 (15)0.0021 (12)0.0028 (12)0.0071 (13)
C580.032 (2)0.018 (2)0.033 (2)0.0000 (16)0.0088 (17)0.0022 (17)
N590.032 (2)0.0188 (19)0.0282 (17)0.0022 (13)0.0035 (14)0.0036 (14)
C600.032 (2)0.019 (2)0.025 (2)0.0006 (16)0.0031 (15)0.0000 (16)
N610.034 (2)0.0180 (19)0.0237 (17)0.0032 (14)0.0055 (14)0.0014 (14)
C620.031 (2)0.019 (2)0.031 (2)0.0020 (16)0.0073 (16)0.0005 (17)
Cu20.0282 (3)0.0192 (3)0.0224 (3)0.0023 (2)0.0037 (2)0.0022 (2)
C30.031 (2)0.022 (2)0.0226 (18)0.0042 (16)0.0069 (15)0.0006 (16)
C40.030 (2)0.019 (2)0.0238 (17)0.0030 (16)0.0048 (14)0.0002 (17)
C50.032 (2)0.018 (2)0.0250 (18)0.0022 (18)0.0086 (15)0.0018 (18)
C60.030 (2)0.023 (2)0.0230 (18)0.0038 (16)0.0086 (16)0.0009 (16)
C70.037 (2)0.024 (2)0.033 (2)0.0052 (17)0.0121 (18)0.0094 (19)
C80.031 (2)0.022 (2)0.030 (2)0.0006 (16)0.0097 (17)0.0011 (17)
N90.0297 (19)0.021 (2)0.0275 (17)0.0009 (14)0.0059 (14)0.0007 (14)
N100.0318 (19)0.027 (2)0.0283 (17)0.0014 (14)0.0084 (14)0.0008 (14)
C110.028 (2)0.024 (2)0.029 (2)0.0013 (16)0.0084 (16)0.0049 (16)
C120.039 (3)0.024 (2)0.034 (2)0.0017 (18)0.0130 (19)0.0059 (18)
C130.036 (2)0.032 (3)0.040 (2)0.0053 (19)0.0131 (19)0.013 (2)
C140.032 (2)0.040 (3)0.034 (2)0.0010 (19)0.0029 (18)0.011 (2)
C150.037 (2)0.032 (3)0.029 (2)0.0026 (17)0.0025 (17)0.0039 (17)
C160.037 (2)0.024 (2)0.029 (2)0.0017 (16)0.0081 (17)0.0026 (16)
C170.030 (2)0.019 (2)0.0239 (17)0.0032 (17)0.0058 (14)0.0015 (17)
N180.0284 (18)0.0168 (17)0.0251 (15)0.0022 (14)0.0068 (12)0.0008 (15)
C190.030 (2)0.022 (2)0.0255 (19)0.0018 (16)0.0057 (16)0.0034 (16)
C200.031 (2)0.023 (2)0.036 (2)0.0009 (16)0.0084 (17)0.0004 (17)
C210.032 (2)0.032 (3)0.031 (2)0.0044 (18)0.0100 (17)0.0040 (18)
C220.051 (3)0.035 (3)0.049 (3)0.002 (2)0.007 (2)0.002 (2)
C230.049 (3)0.033 (3)0.044 (3)0.000 (2)0.015 (2)0.006 (2)
C240.027 (2)0.020 (2)0.028 (2)0.0031 (16)0.0071 (16)0.0013 (17)
O250.0311 (16)0.0235 (17)0.0374 (16)0.0013 (12)0.0012 (12)0.0070 (13)
O260.0329 (15)0.0216 (16)0.0252 (13)0.0017 (12)0.0022 (11)0.0062 (12)
O270.0297 (16)0.0278 (17)0.0283 (14)0.0035 (12)0.0041 (12)0.0081 (13)
N530.0316 (19)0.0198 (19)0.0232 (16)0.0015 (14)0.0042 (13)0.0008 (14)
C540.031 (2)0.019 (2)0.027 (2)0.0013 (16)0.0044 (16)0.0008 (16)
C550.037 (2)0.015 (2)0.029 (2)0.0010 (16)0.0027 (17)0.0024 (16)
N560.0264 (19)0.024 (2)0.0283 (18)0.0017 (14)0.0019 (14)0.0024 (14)
C570.031 (2)0.019 (2)0.0237 (19)0.0007 (16)0.0038 (16)0.0017 (16)
Geometric parameters (Å, º) top
Cu1—N431.936 (4)Cu2—N181.928 (4)
Cu1—O511.948 (3)Cu2—O261.948 (3)
Cu1—O521.896 (3)Cu2—O271.904 (3)
Cu1—N611.948 (4)Cu2—N531.949 (4)
C28—C291.418 (6)C3—C41.371 (6)
C28—C331.370 (6)C3—C81.421 (6)
C28—N341.415 (5)C3—N91.411 (5)
C29—H290.9500C4—H40.9500
C29—C301.370 (6)C4—C51.408 (6)
C30—H300.9500C5—C61.435 (6)
C30—C311.423 (6)C5—C171.430 (6)
C31—C321.426 (6)C6—C71.424 (6)
C31—O521.292 (5)C6—O271.291 (5)
C32—C331.405 (6)C7—H70.9500
C32—C421.430 (6)C7—C81.359 (6)
C33—H330.9500C8—H80.9500
N34—N351.259 (5)N9—N101.253 (5)
N35—C361.421 (6)N10—C111.436 (6)
C36—C371.401 (7)C11—C121.383 (6)
C36—C411.390 (7)C11—C161.400 (6)
C37—H370.9500C12—H120.9500
C37—C381.387 (7)C12—C131.390 (7)
C38—H380.9500C13—H130.9500
C38—C391.377 (8)C13—C141.386 (7)
C39—H390.9500C14—H140.9500
C39—C401.383 (8)C14—C151.388 (7)
C40—H400.9500C15—H150.9500
C40—C411.388 (7)C15—C161.391 (6)
C41—H410.9500C16—H160.9500
C42—H420.9500C17—H170.9500
C42—N431.285 (5)C17—N181.286 (5)
N43—C441.474 (5)N18—C191.471 (5)
C44—H441.0000C19—H191.0000
C44—C451.545 (5)C19—C201.524 (6)
C44—C491.522 (6)C19—C241.535 (6)
C45—H45A0.9900C20—H20A0.9900
C45—H45B0.9900C20—H20B0.9900
C45—C461.520 (6)C20—C211.538 (6)
C46—H461.0000C21—H211.0000
C46—C471.518 (7)C21—C221.543 (7)
C46—C481.527 (6)C21—C231.512 (7)
C47—H47A0.9800C22—H22A0.9800
C47—H47B0.9800C22—H22B0.9800
C47—H47C0.9800C22—H22C0.9800
C48—H48A0.9800C23—H23A0.9800
C48—H48B0.9800C23—H23B0.9800
C48—H48C0.9800C23—H23C0.9800
C49—O501.239 (5)C24—O251.234 (5)
C49—O511.277 (5)C24—O261.277 (5)
C58—H580.9500N53—C541.380 (6)
C58—N591.368 (6)N53—C571.334 (5)
C58—C621.357 (6)C54—H540.9500
N59—H590.90 (3)C54—C551.355 (6)
N59—C601.334 (6)C55—H550.9500
C60—H600.9500C55—N561.372 (6)
C60—N611.315 (5)N56—H560.82 (5)
N61—C621.385 (6)N56—C571.328 (6)
C62—H620.9500C57—H570.9500
N43—Cu1—O5184.61 (13)N18—Cu2—O2684.40 (13)
N43—Cu1—N61175.37 (15)N18—Cu2—N53174.23 (14)
O52—Cu1—N4394.16 (13)O26—Cu2—N5390.83 (14)
O52—Cu1—O51177.38 (14)O27—Cu2—N1894.44 (14)
O52—Cu1—N6190.35 (13)O27—Cu2—O26177.84 (14)
N61—Cu1—O5190.84 (13)O27—Cu2—N5390.43 (14)
C33—C28—C29119.0 (4)C4—C3—C8118.6 (4)
C33—C28—N34116.9 (4)C4—C3—N9116.2 (4)
N34—C28—C29124.1 (4)N9—C3—C8125.2 (4)
C28—C29—H29120.2C3—C4—H4118.6
C30—C29—C28119.6 (4)C3—C4—C5122.8 (4)
C30—C29—H29120.2C5—C4—H4118.6
C29—C30—H30118.8C4—C5—C6118.7 (4)
C29—C30—C31122.5 (4)C4—C5—C17117.9 (4)
C31—C30—H30118.8C17—C5—C6123.2 (4)
C30—C31—C32117.5 (4)C7—C6—C5117.0 (4)
O52—C31—C30118.5 (4)O27—C6—C5124.1 (4)
O52—C31—C32124.0 (4)O27—C6—C7118.9 (4)
C31—C32—C42123.1 (4)C6—C7—H7118.6
C33—C32—C31118.7 (4)C8—C7—C6122.8 (4)
C33—C32—C42118.2 (4)C8—C7—H7118.6
C28—C33—C32122.8 (4)C3—C8—H8120.0
C28—C33—H33118.6C7—C8—C3120.1 (4)
C32—C33—H33118.6C7—C8—H8120.0
N35—N34—C28114.7 (4)N10—N9—C3115.4 (4)
N34—N35—C36114.6 (4)N9—N10—C11114.1 (4)
C37—C36—N35123.8 (4)C12—C11—N10116.2 (4)
C41—C36—N35116.5 (4)C12—C11—C16120.0 (4)
C41—C36—C37119.7 (4)C16—C11—N10123.7 (4)
C36—C37—H37120.6C11—C12—H12119.8
C38—C37—C36118.9 (5)C11—C12—C13120.4 (4)
C38—C37—H37120.6C13—C12—H12119.8
C37—C38—H38119.5C12—C13—H13120.2
C39—C38—C37121.0 (5)C14—C13—C12119.7 (4)
C39—C38—H38119.5C14—C13—H13120.2
C38—C39—H39119.8C13—C14—H14119.9
C38—C39—C40120.5 (5)C13—C14—C15120.2 (4)
C40—C39—H39119.8C15—C14—H14119.9
C39—C40—H40120.4C14—C15—H15119.8
C39—C40—C41119.2 (5)C14—C15—C16120.3 (4)
C41—C40—H40120.4C16—C15—H15119.8
C36—C41—H41119.6C11—C16—H16120.3
C40—C41—C36120.7 (5)C15—C16—C11119.3 (4)
C40—C41—H41119.6C15—C16—H16120.3
C32—C42—H42117.0C5—C17—H17117.2
N43—C42—C32126.0 (4)N18—C17—C5125.6 (4)
N43—C42—H42117.0N18—C17—H17117.2
C42—N43—Cu1124.9 (3)C17—N18—Cu2125.4 (3)
C42—N43—C44121.8 (4)C17—N18—C19121.2 (4)
C44—N43—Cu1113.2 (2)C19—N18—Cu2113.0 (2)
N43—C44—H44108.2N18—C19—H19106.3
N43—C44—C45113.6 (3)N18—C19—C20117.4 (3)
N43—C44—C49108.7 (3)N18—C19—C24107.8 (3)
C45—C44—H44108.2C20—C19—H19106.3
C49—C44—H44108.2C20—C19—C24112.0 (4)
C49—C44—C45109.9 (3)C24—C19—H19106.3
C44—C45—H45A108.0C19—C20—H20A109.2
C44—C45—H45B108.0C19—C20—H20B109.2
H45A—C45—H45B107.3C19—C20—C21112.0 (3)
C46—C45—C44117.1 (3)H20A—C20—H20B107.9
C46—C45—H45A108.0C21—C20—H20A109.2
C46—C45—H45B108.0C21—C20—H20B109.2
C45—C46—H46108.2C20—C21—H21108.5
C45—C46—C48109.3 (4)C20—C21—C22111.1 (4)
C47—C46—C45112.1 (3)C22—C21—H21108.5
C47—C46—H46108.2C23—C21—C20110.4 (4)
C47—C46—C48110.6 (4)C23—C21—H21108.5
C48—C46—H46108.2C23—C21—C22109.9 (4)
C46—C47—H47A109.5C21—C22—H22A109.5
C46—C47—H47B109.5C21—C22—H22B109.5
C46—C47—H47C109.5C21—C22—H22C109.5
H47A—C47—H47B109.5H22A—C22—H22B109.5
H47A—C47—H47C109.5H22A—C22—H22C109.5
H47B—C47—H47C109.5H22B—C22—H22C109.5
C46—C48—H48A109.5C21—C23—H23A109.5
C46—C48—H48B109.5C21—C23—H23B109.5
C46—C48—H48C109.5C21—C23—H23C109.5
H48A—C48—H48B109.5H23A—C23—H23B109.5
H48A—C48—H48C109.5H23A—C23—H23C109.5
H48B—C48—H48C109.5H23B—C23—H23C109.5
O50—C49—C44117.9 (4)O25—C24—C19118.5 (4)
O50—C49—O51123.8 (4)O25—C24—O26124.0 (4)
O51—C49—C44118.3 (4)O26—C24—C19117.5 (4)
C49—O51—Cu1115.1 (3)C24—O26—Cu2115.2 (3)
C31—O52—Cu1127.7 (3)C6—O27—Cu2127.1 (3)
N59—C58—H58126.6C54—N53—Cu2128.3 (3)
C62—C58—H58126.6C57—N53—Cu2125.9 (3)
C62—C58—N59106.8 (4)C57—N53—C54105.4 (3)
C58—N59—H59130 (4)N53—C54—H54125.3
C60—N59—C58107.4 (4)C55—C54—N53109.4 (4)
C60—N59—H59122 (4)C55—C54—H54125.3
N59—C60—H60124.3C54—C55—H55126.9
N61—C60—N59111.3 (4)C54—C55—N56106.2 (4)
N61—C60—H60124.3N56—C55—H55126.9
C60—N61—Cu1125.7 (3)C55—N56—H56119 (4)
C60—N61—C62106.2 (3)C57—N56—C55108.0 (4)
C62—N61—Cu1128.2 (3)C57—N56—H56133 (4)
C58—C62—N61108.3 (4)N53—C57—H57124.5
C58—C62—H62125.8N56—C57—N53111.1 (4)
N61—C62—H62125.8N56—C57—H57124.5
Cu1—N43—C44—C45120.7 (3)C62—C58—N59—C600.2 (5)
Cu1—N43—C44—C491.9 (4)Cu2—N18—C19—C20142.7 (3)
Cu1—N61—C62—C58178.2 (3)Cu2—N18—C19—C2415.1 (4)
C28—C29—C30—C310.3 (7)Cu2—N53—C54—C55173.8 (3)
C28—N34—N35—C36178.3 (3)Cu2—N53—C57—N56174.2 (3)
C29—C28—C33—C321.3 (6)C3—C4—C5—C60.7 (6)
C29—C28—N34—N352.7 (6)C3—C4—C5—C17175.0 (4)
C29—C30—C31—C322.1 (6)C3—N9—N10—C11178.8 (3)
C29—C30—C31—O52177.9 (4)C4—C3—C8—C71.3 (6)
C30—C31—C32—C332.1 (6)C4—C3—N9—N10179.3 (4)
C30—C31—C32—C42179.0 (4)C4—C5—C6—C70.5 (6)
C30—C31—O52—Cu1179.3 (3)C4—C5—C6—O27179.3 (4)
C31—C32—C33—C280.5 (6)C4—C5—C17—N18179.8 (4)
C31—C32—C42—N433.1 (7)C5—C6—C7—C80.8 (6)
C32—C31—O52—Cu10.6 (6)C5—C6—O27—Cu20.1 (6)
C32—C42—N43—Cu13.1 (6)C5—C17—N18—Cu21.1 (6)
C32—C42—N43—C44178.9 (4)C5—C17—N18—C19172.9 (4)
C33—C28—C29—C301.4 (6)C6—C5—C17—N184.4 (6)
C33—C28—N34—N35178.4 (4)C6—C7—C8—C30.1 (7)
C33—C32—C42—N43175.8 (4)C7—C6—O27—Cu2179.6 (3)
N34—C28—C29—C30177.5 (4)C8—C3—C4—C51.6 (6)
N34—C28—C33—C32177.7 (4)C8—C3—N9—N100.6 (6)
N34—N35—C36—C3713.1 (6)N9—C3—C4—C5178.3 (4)
N34—N35—C36—C41167.9 (4)N9—C3—C8—C7178.6 (4)
N35—C36—C37—C38178.9 (4)N9—N10—C11—C12174.9 (4)
N35—C36—C41—C40179.5 (4)N9—N10—C11—C164.5 (6)
C36—C37—C38—C391.3 (8)N10—C11—C12—C13178.2 (4)
C37—C36—C41—C401.5 (7)N10—C11—C16—C15177.9 (4)
C37—C38—C39—C400.4 (8)C11—C12—C13—C140.1 (6)
C38—C39—C40—C411.1 (7)C12—C11—C16—C151.4 (6)
C39—C40—C41—C360.2 (7)C12—C13—C14—C151.2 (7)
C41—C36—C37—C382.2 (7)C13—C14—C15—C160.9 (7)
C42—C32—C33—C28179.4 (4)C14—C15—C16—C110.4 (7)
C42—N43—C44—C4563.1 (5)C16—C11—C12—C131.2 (6)
C42—N43—C44—C49174.3 (3)C17—C5—C6—C7175.9 (4)
N43—Cu1—O52—C310.5 (4)C17—C5—C6—O273.9 (6)
N43—C44—C45—C4694.6 (4)C17—N18—C19—C2044.5 (5)
N43—C44—C49—O50176.3 (3)C17—N18—C19—C24172.1 (4)
N43—C44—C49—O514.5 (5)N18—C19—C20—C21147.5 (4)
C44—C45—C46—C4760.6 (5)N18—C19—C24—O25169.4 (4)
C44—C45—C46—C48176.4 (4)N18—C19—C24—O2612.6 (5)
C44—C49—O51—Cu15.0 (4)C19—C20—C21—C2283.6 (5)
C45—C44—C49—O5058.9 (5)C19—C20—C21—C23154.3 (4)
C45—C44—C49—O51120.3 (4)C19—C24—O26—Cu24.1 (5)
C49—C44—C45—C46143.4 (4)C20—C19—C24—O2538.7 (5)
O50—C49—O51—Cu1175.9 (3)C20—C19—C24—O26143.3 (4)
O52—C31—C32—C33177.9 (4)C24—C19—C20—C2186.9 (4)
O52—C31—C32—C421.0 (7)O25—C24—O26—Cu2178.0 (3)
C58—N59—C60—N610.4 (5)O27—C6—C7—C8179.0 (4)
N59—C58—C62—N610.1 (5)N53—C54—C55—N560.0 (5)
N59—C60—N61—Cu1178.1 (3)C54—N53—C57—N560.5 (5)
N59—C60—N61—C620.5 (5)C54—C55—N56—C570.3 (5)
C60—N61—C62—C580.3 (5)C55—N56—C57—N530.5 (5)
N61—Cu1—O52—C31179.5 (4)C57—N53—C54—C550.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N56—H56···O500.83 (5)1.92 (6)2.730 (5)169 (5)
N59—H59···O250.90 (4)1.83 (4)2.726 (5)175 (3)
C55—H55···O25i0.952.383.316 (5)168
C58—H58···O50ii0.952.353.208 (6)150
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+1.
 

References

First citationAndreini, C., Bertini, I., Cavallaro, G. L. & Thornton, J. M. (2008). J. Biol. Inorg. Chem. 13, 1205–1218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDabis, H. J. & Ward, T. R. (2019). Science, 5, 1120–1136.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEren, T., Kose, M., Kurtoglu, N., Ceyhan, G., McKee, V. & Kurtoglu, M. (2015). Inorg. Chim. Acta, 430, 268–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationGandin, V., Porchia, M., Tisato, F., Zanella, A., Severin, E., Dolmella, A. & Marzano, C. (2013). J. Med. Chem. 56, 7416–7430.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539–1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665–16674.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationNejati, K., Bakhtiari, A., Bikas, R. & Rahimpour, J. (2019). J. Mol. Struct. 1192, 217–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishihara, H. (2005). Coord. Chem. Rev. 249, 1468–1475.  Web of Science CrossRef CAS Google Scholar
First citationOtani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438–448.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTakeshita, Y., Takakura, K. & Akitsu, T. (2015). Int. J. Mol. Sci. 16, 3955–3969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVan Stappen, C., Deng, Y., Liu, Y., Heidari, H., Wang, J.-X., Zhou, Y., Ledray, A. P. & Lu, Y. (2022). Chem. Rev. 122, 11974–12045.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Q.-X., Zhao, G.-Q., Zhu, J.-Q., Xue, L.-W. & Han, Y.-J. (2009). Acta Cryst. E65, m1212–m1213.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds