research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate and N-iso­propyl­­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate

crossmark logo

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
*Correspondence e-mail: dppred@ship.edu

Edited by G. Ferrence, Illinois State University, USA (Received 19 February 2024; accepted 17 April 2024; online 26 April 2024)

Two 2,4,6-tri­methyl­aniline-based trifuloro­methane­sulfonate (tri­fluoro­methane­sulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C10H14NH2+][CF3O3S] (1), was synthesized via methyl­ation of 2,4,6-tri­methyl­aniline. N-Iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­meth­ane­sulfonate, [C13H20N+][CF3O3S] (2), was synthesized in a two-step reaction where the imine, N-iso­propyl­idene-2,4,6-tri­methyl­aniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methyl­ation using methyl tri­fluoro­methane­sulfonate to form the iminium ion. In compound 1, both hydrogen bonding and ππ inter­actions form the main inter­molecular inter­actions. The primary inter­action is a strong N—H⋯O hydrogen bond with the oxygen atoms of the tri­fluoro­methane­sulfonate anions bonded to the hydrogen atoms of the ammonium nitro­gen atom to generate a one-dimensional chain. The [C10H14NH2+] cations form dimers where the benzene rings form a ππ inter­action with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the inter­planar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and inter­planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major inter­molecular inter­actions in 2 are instead a series of weaker C—H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an inter­action virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional inter­actions in either structure.

1. Chemical context

Aniline, the simplest aromatic amine, was first isolated by Otto Unverdorben in 1826 by the destruction of indigo dye. Since its discovery, aniline-based compounds have been extensively utilized as precursors to dyestuffs, pharmaceuticals, polymers, explosives, and industrial feedstocks (Travis, 2007[Travis, A. S. (2007). The Chemistry of Anilines, Part 1, edited by Z. Rappoport, pp. 1-73. Chichester: John Wiley and Sons.]). Of relevance to this work, N-methyl­aniline has been used to synthesize a variety of poly-N-methyl­aniline materials that function as electrodes, batteries, and nanocomposite sorbents to remove metal ions from solution (Lü et al., 2014[Lü, Q., Luo, J., Lin, T. & Zhang, Y. (2014). ACS Sustainable Chem. Eng. 2, 465-471.]). In addition, N-substituted anilines, including N-methyl-2,4,6-tri­methyl­aniline, have been used in the preparation of α-amino diazo­ketones, which have been used as precursors in the synthesis of HIV inhibitors (Castoldi et al., 2018[Castoldi, L., Ielo, L., Holzer, W., Giester, G., Roller, A. & Pace, V. (2018). J. Org. Chem. 83, 4336-4347.]).

Condensation of aniline with aldehydes and ketones leads to the formation of Schiff bases otherwise known as imines, of which the primary functional group is a carbon–nitro­gen double bond (Tsuchimoto et al., 1973[Tsuchimoto, M., Nishimura, S. & Iwamura, H. (1973). Bull. Chem. Soc. Jpn, 46, 675-677.]; Layer, 1963[Layer, R. (1963). Chem. Rev. 63, 489-510.]). Addition of an extra atom or group to the imine nitro­gen leads to the formation of iminium ions. Iminium ions have been identified as versatile inter­mediates in traditional organic chemistry, such as in the Knoevenagel and Mannich reactions and have also been utilized in the synthesis of natural products and pharmaceuticals (Erkkilä et al., 2007[Erkkilä, A., Majander, I. & Pihko, P. M. (2007). Chem. Rev. 107, 5416-5470.]; Böhme et al., 1976[Böhme, H. & Viehe, H. G. (1976). Advances in Organic Chemistry: Methods and Results Vol. 9, Iminium Salts in Organic Chemistry, Part 2. edited by H. Böhme & H. G. Viehe, pp. 759-773. New York: John Wiley and Sons.]). Herein, we report synthesis and characterization of two anilinium-based triflate salts, N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C10H14NH2+][CF3O3S] (1), and N-iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C13H20N+][CF3O3S] (2).

[Scheme 1]

2. Structural commentary

Both compounds 1 and 2 are ionic compounds based on cations of a 2,4,6-tri­methyl­anilinium unit with functionalization of the amine group and the anion tri­fluoro­methane­sulfonate (i.e. triflate). For 1, a secondary ammonium ion results from bonds to a 2,4,6-tri­methyl­phenyl ring, a methyl group, and two hydrogen atoms (Fig. 1[link]). The hydrogen atoms of the ammonium nitro­gen atom form hydrogen bonds with the oxygen atoms of neighboring triflate anions. For 2, the iminium ion consists of an iso­propyl­idene group (nitro­gen atom double bonded to a carbon atom attached to two methyl groups) with a 2,4,6-tri­methyl­phenyl ring and a methyl group also attached to the nitro­gen (Fig. 2[link]). As there are no hydrogen atoms on the iminium nitro­gen atom, the organic cation of 2 does not form any classical hydrogen bonds. The 2,4,6-tri­methyl­phenyl groups in both 1 and 2, and the iso­propyl­idene group in 2 are, as expected, nearly planar with r.m.s. deviations from planarity (including the nitro­gen atom in the defined planes) of only 0.0263, 0.0111 and 0.0200 Å, respectively. In both compounds, the carbon functional groups of the nitro­gen atom lie approximately perpendicular to the tri­methyl­phenyl ring (Fig. 3[link]). For 1, the angle between the calculated mean plane of the methyl group (defined as C1, N1 and C10) and the mean plane of the aniline ring (N1 and C1–C6) is 89.71 (9)°, while for 2, the angle between the mean plane of the iso­propyl­idene and methyl groups (C1, N1, and C10–C13) and the mean plane of the aniline ring (N1, C1–C6) is 85.15 (4)° (Table 1[link]).

Table 1
Angle Between the Mean Plane of the Organic Functional Groups and the Mean Plane of the Aniline Ring

Angles were determined with SHELXL (for 1 and 2; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) or Mercury (for comparison compounds; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Compound Angle (°) CSD Reference Code CCDC Deposition Number
N,2,4,6-Tetra­methyl­anilinium tri­fluoro­methane­sulfonate (1) 89.71 (9) This Work  
N-Iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate (2) 85.15 (4) This Work  
Dimesityl­ammonium penta­fluoro­benzene­sulfonate 49.87 and 55.67 HIBFOO 297281
Dimesityl­ammonium tosyl­ate 49.49 and 52.91 HIBGAB 604748
Oxonium N-(2,6-di­phenyl­phen­yl)mesityl­ammonium bis­(penta­fluoro­benzene­sulfonate) 55.19 HIBFUU 297282
(2,4,6-Tri­methyl­phen­yl){2-[N-(2,4,6-tri­methyl­phen­yl)formamido]­eth­yl}ammonium chloride 75.48 EDUWAD 878245
(S)-2-{[1-(Mesityl­ammonio)-3-methyl­butan-2-yl]carbamo­yl}benzene­sulfonate 76.75 QARJUQ 843836
catena-[N4,N4′,3,3′,5,5′-hexa­meth­yl[1,1′-biphen­yl]-4,4′-bis­(aminium) hexa­kis­(μ-bromo)­dilead(II)] 85.42 CATZEG 2145329
N-Methyl-1-[3-methyl-2-(2,4,6-tri­methyl­phen­yl)-2H-indazol-7-yl]-N-(2,4,6-tri­methyl­phen­yl)ethan-1-iminium tri­fluoro­methane­sulfonate 82.92 JIFFAI 1842546
{2-[(Hy­droxy)(meth­oxy)methyl­idene]-4-meth­oxy-N-methyl-4-oxo-N-(2,4,6-tri­methyl­phen­yl)butan-1-iminiumato}[tris­(penta­fluoro­phen­yl)]boron 80.47 RAVBIC 1504471
[Figure 1]
Figure 1
The single-crystal X-ray structure of N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C10H14NH2+] [CF3O3S] (1). Displacement ellipsoids are at the 50% probability level. Color scheme: gray – carbon, blue – nitro­gen, red – oxygen, yellow – fluorine, orange – sulfur, and white – hydrogen. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 2]
Figure 2
The single-crystal X-ray structure of N-methyl­iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate, [C13H20N+] [CF3O3S] (2). See Fig. 1[link] for additional display details.
[Figure 3]
Figure 3
The organic functional groups bound to nitro­gen atom are approximately orthogonal to the ring of the 2,4,6-tri­methyl­phenyl group for both (a) 1 and (b) 2. For clarity, the hydrogen atoms have been omitted. See Fig. 1[link] for additional display details.

3. Supra­molecular features

The dominant inter­molecular forces in 1 consist of strong N—H⋯O hydrogen bonding (Table 2[link]) and ππ stacking inter­actions (Table 3[link]), while in 2 no classical hydrogen bonds are present and ππ inter­actions are highly slipped. Instead, inter­actions in 2 are governed by a series of weak C—H⋯O/F inter­actions (Table 4[link]; listed H⋯O/F distances are up to 2.70 Å). Similar C—H⋯O inter­actions are also present in 1 but they are much less pronounced; the C—H⋯O distances and angles indicate that they are more likely dispersion (i.e. van der Waals) inter­actions rather than weak directional hydrogen bonds. For both compounds, C—H⋯F and C—H⋯π inter­actions are very weak and not well defined (Tables 2[link]–4[link][link]).

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 1.92 2.7687 (16) 154
N1—H1B⋯O2i 0.91 1.94 2.7669 (16) 150
C8—H8C⋯O1ii 0.98 2.63 3.453 (2) 142
C8—H8C⋯O3ii 0.98 2.69 3.6438 (19) 164
C8—H8A⋯O3iii 0.98 2.55 3.504 (2) 165
C9—H9A⋯O2i 0.98 2.63 3.333 (2) 129
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
π–π Inter­actions with parallel-displaced geometry (Å)

Distances determined with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Compound/cation Anion Benzene ring centroid–centroid distance Inter­planar spacing Slippage CSD Refcode CCDC Deposition Number
N,2,4,6-Tetra­methyl­anilinium CF3SO3 3.9129 (8) 3.5156 (5) 1.718 This Work (1)  
N-Iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium CF3SO3 4.8937 (8) 3.3646 (5) 3.553 This Work (2)  
1,3,5-Tri­methyl­benzene   4.6343 (9) 3.0727 (5) 2.850 SOPLAL01 618820a
2,4,6-Tri­methyl­anilinium SO42− 4.486 (2) 3.3028 (14) 2.434 AZUTOF 850619b
2,4,6-Tri­methyl­anilinium SO42− 4.489 (3) 3.2917 (16) 2.459 AZUTOF01 733935c
2,4,6-Tri­methyl­anilinium Br 5.362 (3) 3.3138 (18) 3.886 CUCTOK 750635d
2,4,6-Tri­methyl­anilinium I 5.5497 (14) 3.4087 4.379 JEVPUW 636623e
2,4,6-Tri­methyl­anilinium Cl 4.8109 (17) 3.4992 (9) 3.302 XIFQAF 654863f
2,4,6-Tri­methyl­anilinium NO3 5.3297 (17) 3.0222 (7) 3.928 YUKNUO 734678g
2,4,6-Tri­methyl­anilinium ClO4 5.374 (2) 3.6118 (8) 3.980 YUKPAW 734679g
2,4,6-Tri­methyl­anilinium ClO4 5.526 (11) 3.958 (10) 3.857 YUKPAW01 865148h
2,4,6-Tri­methyl­anilinium ClO4 5.340 (3) 3.6060 (17) 3.939 YUKPAW02 865149h
References: (a) Ibberson et al. (2007[Ibberson, R. M., Parsons, S., Natkaniec, I. & Hołderna-Natkaniec, K. (2007). Z. Kristallogr. Suppl. 2007, 575-580.]); (b) Rong (2011[Rong, T. (2011). Acta Cryst. E67, o2729.]); (c) Kapoor et al. (2010a[Kapoor, I. P. S., Kapoor, M., Singh, G. & Frohlich, R. (2010a). Indian J. Eng. Mat. Sci. 17, 305-310.]); (d) Cui & Xu (2009[Cui, L.-J. & Xu, H.-J. (2009). Acta Cryst. E65, o2376.]); (e) Lemmerer & Billing (2007[Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929-o931.]); (f) Long et al. (2007[Long, S., Siegler, M. & Li, T. (2007). Acta Cryst. E63, o3080.]); (g) Kapoor et al. (2010b[Kapoor, I. P. S., Kapoor, M., Singh, G., Singh, U. P. & Goel, N. (2010b). J. Hazard. Mater. 173, 173-180.]); (h) Zhang et al. (2012[Zhang, Y., Awaga, K., Yoshikawa, H. & Xiong, R.-G. (2012). J. Mater. Chem. 22, 9841-9845.]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.98 2.56 3.477 (2) 155
C12—H12A⋯F2ii 0.98 2.69 3.3859 (18) 129
C13—H13A⋯O1i 0.98 2.45 3.3789 (18) 159
C13—H13B⋯O2iii 0.98 2.29 3.2377 (18) 162
C13—H13C⋯O3 0.98 2.52 3.1723 (17) 124
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

For 1, the principal directional inter­actions are the N—H⋯O hydrogen bonds. Both ammonium hydrogen atoms are hydrogen bonded to an oxygen atom of neighboring triflate anions (Fig. 4[link]; Table 2[link]). One triflate anion is located on either side of the ammonium nitro­gen atom. The hydrogen-bonding arrangement leads to a one-dimensional chain that extends in the ac plane and is propagated by the n-glide plane at (x, 0.75, z). In addition, the organic cations form dimers with the 2,4,6-tri­methyl­phenyl rings arranged in a parallel-displaced geometry where the 2,4,6-tri­methyl­phenyl rings are offset relative to each other. The cations that make up the dimers are symmetry-related by inversion so that the ammonium groups are opposite of each other, likely to avoid Coulombic repulsions (Fig. 5[link]). The distance between the calculated centroids of the benzene rings in each dimer is 3.9129 (8) Å, and the inter­planar spacing and ring slippage are 3.5156 (5) and 1.718 Å, respectively [determined with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]); Table 3[link]].

[Figure 4]
Figure 4
Inter­molecular hydrogen bonding in 1 between the ammonium hydrogen atoms and the tri­fluoro­methane­sulfonate oxygen atoms. The hydrogen bonding results in a one-dimensional chain that extends in the ac plane. For clarity, only the atoms involved in the hydrogen bonding are labeled. See Fig. 1[link] for additional display details. [Symmetry code: (i) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 5]
Figure 5
The organic cations of (a) 1 and (b) 2 form dimers that are related by a crystallographic inversion center and have inter­molecular ππ inter­actions in a parallel-displaced geometry (black dotted lines). See Fig. 1[link] for additional display details.

In 2, the organic cations also form inversion-related dimers, but the rings are highly slipped (Fig. 5[link]) with respect to each other and ππ inter­action, if present at all, is limited to just the outermost atoms C4 and C5. The distance between the calculated centroids of the benzene rings in each dimer is 4.8937 (8) Å, and inter­planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively (Table 3[link]). In the absence of classical hydrogen bonding as well as significant ππ inter­actions, other weak inter­molecular forces become dominant in the structure of 2. Most obvious are a series of weaker C—H⋯O inter­actions (Table 4[link]). Most important are the hydrogen-bond-like inter­actions that involve the iminium methyl group (C13) being hydrogen bonded to oxygen atoms of three different triflate anions (Fig. 6[link]). This methyl group is directly bonded to the nitro­gen atom and carries the largest partial positive charge, inducing formation of charge-assisted bonds that are unusually short for C—H⋯O inter­actions with C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond In Structural Chemistry and Biology. Oxford University Press.]). The iso­propyl­idene methyl group (C11) also does exhibit another unusually short C—H⋯O bond [C⋯O distance of 3.477 (2) Å] (Fig. 6[link]). Each [C13H20N+] cation is hydrogen bonded to three triflate anions, and each triflate anion is hydrogen bonded to three organic cations, thereby generating a two-dimensional network of C—H⋯O inter­actions with layers extending perpendicular to the b-axis direction. The resulting layers inter­act with each other solely via dispersion inter­actions.

[Figure 6]
Figure 6
Inter­molecular hydrogen bonding in 2 between the methyl hydrogen atoms of the [C13H20N+] cation and the oxygen atoms of three different tri­fluoro­methane­sulfonate anions. For clarity, only the hydrogen atoms on the methyl groups involved in the hydrogen bonding are shown and only the atoms involved in the hydrogen bonding are labeled. See Fig. 1[link] for additional display details. [Symmetry codes: (i) x + 1, y, z; (iii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]

Both the centroid distance between the benzene rings and the ring slippage distance are longer for 2 than 1. However, the values for 2 are more aligned with the distances for 1,3,5-tri­methyl­benzene, i.e. mesitylene. In the crystal structure of deuterated-1,3,5-tri­methyl­benzene (SOPLAL01; Ibberson et al., 2007[Ibberson, R. M., Parsons, S., Natkaniec, I. & Hołderna-Natkaniec, K. (2007). Z. Kristallogr. Suppl. 2007, 575-580.]) the mol­ecules also form long ππ inter­actions with a parallel-displaced geometry, and the distance between the calculated centroids of neighboring benzene rings is 4.634 Å with a ring slippage of 2.850 Å (Table 3[link]). Moreover, the longer distances of 2 are comparable to the centroid and ring slippage distances for a series of 2,4,6-tri­methyl­anilinium cations with various counter-anions (Table 3[link]).

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.45, update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for secondary ammonium cations with a 2,4,6-tri­methyl­phenyl group, as in 1, yielded five entries (EDUWAD, HIBFOO, HIBFUU, HIBGAB and QARJUQ). Two of the cations have two 2,4,6-tri­methyl­phenyl groups bound to the ammonium nitro­gen atom but with different counter-anions, penta­fluoro­benzene­sulfonate (HIBFOO; Sakakura et al., 2007[Sakakura, A., Watanabe, H., Nakagawa, S. & Ishihara, K. (2007). Chem. Asian J. 2, 477-483.]) or 4-methyl­benzene­sulfonate (HIBGAB; Sakakura et al., 2007[Sakakura, A., Watanabe, H., Nakagawa, S. & Ishihara, K. (2007). Chem. Asian J. 2, 477-483.]). A related secondary ammonium cation binds to one 2,4,6-tri­methyl­phenyl group and one 2,6-di­phenyl­phenyl group and the counter-anion is a penta­fluoro­benzene­sulfonate (HIBFUU; Sakakura et al., 2007[Sakakura, A., Watanabe, H., Nakagawa, S. & Ishihara, K. (2007). Chem. Asian J. 2, 477-483.]). The last two entries also only contain one 2,4,6-tri­methyl­phenyl group on the ammonium nitro­gen atom. In one structure (EDUWAD; Ikhile & Bala, 2012[Ikhile, M. I. & Bala, M. D. (2012). Acta Cryst. E68, o3263.]), an ethyl-2-formamido-2,4,6-tri­methyl­benzene group is bound to the ammonium nitro­gen atom and chloride serves as the counter-anion. The other structure (QARJUQ; Latham et al., 2012[Latham, C. M., Blake, A. J., Lewis, W., Lawrence, M. & Woodward, S. (2012). Eur. J. Org. Chem. pp. 699-707.]) is a zwitterion with a 3-methyl­butan-2-yl-carbamoyl­benzene­sulfonate acting as the second group bound to the ammonium nitro­gen atom. Lastly, a biphenyl system with two secondary ammonium nitro­gen atoms (CATZEG; Li et al., 2022[Li, Y., Zheng, R., Fu, Z., Xu, G. & Wang, G. (2022). Inorg. Chem. Commun. 139, 109339.]) is similar to 1. As in 1, the 1,1′ biphenyl system has an ammonium nitro­gen attached to the carbon atom in the 4 and 4′ positions of the benzene rings and on each benzene ring two methyl groups are located on carbon atoms adjacent (3,3′ and 5,5′ positions, respectively) to the carbon atom with the ammonium nitro­gen atom. In addition, the ammonium nitro­gen atoms bind to a methyl group as in 1. A comparison of the angle between the mean planes of the functional groups and of the aniline ring reveal that the angles generally do not approach 90° as in 1 (Table 1[link]; the angles were measured between mean planes defined in a similar manner as for 1 in the Structural commentary section). The angles range from ca 50 to 77° for the five structures with a 2,4,6-tri­methyl­phenyl group attached to the ammonium nitro­gen atom. For these structures, the bulkiness of the groups opposite the 2,4,6-tri­methyl­phenyl groups may prevent the angle being close to 90°. In 1, the group opposite to the 2,4,6-tri­methyl­phenyl group is a smaller methyl group. For the 1,1′-biphenyl system (CATZEG) the angle (ca 85°) is closer to 90° likely due to the two phenyl rings nearly lying in the same plane and the presence of a smaller methyl group.

A survey for compounds containing an iminium nitro­gen atom with a 2,4,6-tri­methyl­phenyl ring and with a double-bonded carbon atom bound to two additional carbon groups yielded only one entry (JIFFAI; Kremláček et al., 2018[Kremláček, V., Hyvl, J., Yoshida, W. Y., Růžička, A., Rheingold, A. L., Turek, J., Hughes, R. P., Dostál, L. & Cain, M. F. (2018). Organometallics, 37, 2481-2490.]). Like 2, the iminium nitro­gen atom is bound to a methyl group and a 2,4,6-tri­methyl­phenyl group and the counter-anion is triflate. Unlike 2, substitution on the carbon atom of the iminium double bond consists of a methyl group and a bulky 3-methyl-2-(2,4,6-tri­methyl­phen­yl)-2H-indazol-7-yl group. Comparison of the equivalent angle between the mean planes of the functional groups and the aniline ring to that of 2 reveals that the angle (ca 83°) deviates more from 90° than that of 2 (Table 1[link]). In a related structure (RAVBIC; Chen et al., 2017[Chen, G., Kehr, G., Daniliuc, C. G., Bursch, M., Grimme, S. & Erker, G. (2017). Chem. Eur. J. 23, 4723-4729.]), substitution on the carbon atom of the iminium double bond consists of a hydrogen atom and a {2-[(hydrox­yl)(meth­oxy)methyl­idene]-4-meth­oxy-4-oxo}{[tris­(penta­fluoro­phen­yl)]boron} group. In addition, the iminium nitro­gen is bound to a methyl group. Also, this compound is a zwitterion instead of a triflate salt with the borate providing the negative charge. In regard to the angle between the mean planes of the functional groups and the aniline ring, there is an even larger deviation (ca 80°), likely due to the bulky {2-[(hydrox­yl)(meth­oxy)methyl­idene]-4-meth­oxy-4-oxo}{[tris­(penta­fluoro­phen­yl)]boron} group (Table 1[link]).

5. Synthesis and crystallization

Synthetic Materials

Methyl tri­fluoro­methane­sulfonate (98%) and 4 Å mol­ecular sieves (8–12 mesh) were purchased from Sigma-Aldrich. Anhydrous diethyl ether (99%, ACS Grade) and 2,4,6-tri­methyl­aniline (97%) were purchased from Thermo Scientific. Acetonitile-d3 (99 atom %D) was purchased from Acros Organics. Chloro­form (99.5%) was purchased from Fisher Scientific. Acetone (99.5%) was purchased from VWR Chemicals. Chloro­form was dried over 4 Å mol­ecular sieves (8–12 mesh) prior to use. All other chemicals were used as received and without further purification.

N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate (1) (29.2%). Dried chloro­form (2.0 mL), methyl tri­fluoro­methane­sulfonate (0.290 mL, 2.4 mmol, 1.1 eq) and a stir bar were added to a dry 10 mL round-bottom flask flushed with nitro­gen gas. 2,4,5-tri­methyl­aniline (0.3200 g, 2.4 mmol, 1 eq) was dissolved in 1.0 mL of dried chloro­form and added dropwise to the flask with stirring over ice with the resulting solution appearing clear and colorless. The flask was allowed to stir for 15 min over ice and an additional 30 min at room temperature. House vacuum was then used to remove the solvent, leaving behind an off-white powder. The powder was redissolved in 1–2 mL of dried chloro­form with 10 drops of anhydrous diethyl ether. Clear, colorless crystals were grown in 1–2 days by slow evaporation of the solvent at room temperature. The clear crystals (0.2090 g, 29.2%) were vacuum filtered and washed with 5.0 mL of anhydrous diethyl ether. A portion of the crystals were separated for X-ray diffraction analysis with the remaining sample being analyzed as follows: m.p. 429.2–430.5 K; IR (ATR) νmax 3082 cm−1 (N+—H stretch), 1610 cm−1 (N+—H bend); 1H-NMR (CD3CN, 80 MHz): δ 2.29 (s, 3 H), 2.40 (s, 6 H), 3.02 (t, J = 2.83 Hz, 3 H), 7.04 (s, 1 H); 13C{1H}-NMR (CD3CN, 80 MHz): δ 17.24, 20.68, 37.43, 131.50, 131.76, 132.18, 140.84.

N-iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate (2) (20.7% over two steps). Synthesis was carried out using a two-step process. In step one, N-iso­propyl­idene-2,4,6-tri­methyl­aniline was synthesized utilizing the procedure published by Tsuchimoto et al. (1973[Tsuchimoto, M., Nishimura, S. & Iwamura, H. (1973). Bull. Chem. Soc. Jpn, 46, 675-677.]). Anhydrous diethyl ether (35.1 mL) was added to a 60 mL amber glass bottle followed by 2,4,6-tri­methyl­aniline (1.5241 g, 11.3 mmol, 1 eq), acetone (1.00 mL, 13.6 mmol, 1.2 eq), and 4 Å mol­ecular sieves (15.6 g) resulting in a clear, slightly brown solution. The bottle was moved to the fridge and reaction progress was monitored by observing the disappearance of the 2,4,6-tri­methyl­aniline peaks by 1H-NMR. After about 4 days, the sieves were removed by gravity filtration and washed with three 10 mL portions of anhydrous diethyl ether. The resulting solution was rotary evaporated yielding a clear, colorless oil (1.4867 g, 75.3%). The oil was purified by fractional short path vacuum distillation (338.8–340.3 K at 1 mm Hg) to yield three clear liquid fractions, with the second fraction (0.4686 g, 23.7% post-distillation) being used in the next step. IR (ATR) v­max 1670 cm−1 (C=N stretch); 1H-NMR (CD3CN, 80MHz): δ 1.58 (s, 3 H), 1.90 (s, 6 H), 2.15 (s, 3 H), 2.21 (s, 3 H), 6.82 (s, 2 H); 13C{1H}-NMR (CD3CN, 80 MHz): δ 17.98, 20.86, 27.73, 126.61, 129.33, 132.33, 147.69, 169.49.

In step two, dried chloro­form (2.0 mL), methyl tri­fluoro­methane­sulfonate (0.324 mL, 2.9 mmol, 1.1 eq) and a stir bar were added to a dry 10 mL round-bottom flask flushed with nitro­gen. N-iso­propyl­idene-2,4,6-tri­methyl­aniline (0.4686 g, 2.7 mmol, 1 eq) was dissolved in dried chloro­form (1 mL) and added dropwise to the flask with stirring over ice resulting a clear and colorless solution. The flask was allowed to stir for 15 min over ice and an additional 30 min at room temperature. Upon completion, house vacuum was used to remove the solvent, leaving behind an off-white powder. The powder was then redissolved in 1–2 mL of dried chloro­form with 10 drops of anhydrous diethyl ether. White crystals were grown in 1–2 days by slow evaporation of the solvent at room temperature. The white crystals (0.7931 g, 87.4%) were vacuum filtered and washed with 5.0 mL of anhydrous diethyl ether. A portion of the crystals were separated for X-ray diffraction analysis with the remaining sample being analyzed as follows: m.p. 359.0–360.4 K; IR (ATR) νmax 1648 cm−1 (C=N stretch); 1H-NMR (CD3CN, 80 MHz): δ 2.16 (s, 6 H), 2.25 (s, 3 H), 2.33 (s, 3 H), 2.74 (s, 3 H), 3.77 (s, 3 H), 7.12 (s, 2 H); 13C{1H}-NMR (CD3CN, 80 MHz): δ 16.98, 20.81, 24.93, 26.09, 45.42, 131.01, 131.90, 141.50, 196.51.

Physical Methods

The 1H and 13C chemical shifts were reported in ppm (δ) and referenced to CD3CN. All NMR spectra were recorded at 299.7 K on a Magritek Spinsolve 80 (Malvern, PA USA). Proton and carbon spectra were operated at 80.98 MHz and 20.36 MHz, respectively, with a field strength of 1.88 Tesla. Spectra were processed using MNova software Ver. 14.3.3 (Mestrelab Research, Escondido, CA USA). Infrared spectroscopy was performed using a Nicolet iS5 FTIR spectrometer (Thermo Electron North America LLC) outfitted with a diamond crystal ATR accessory and Omnic software Omnic version 9.2.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms, 0.98 Å for methyl carbon atoms, and 0.91 Å for ammonium nitro­gen atoms. Methyl hydrogen atoms were allowed to rotate but not to tip to best fit the experimental electron density. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom or nitro­gen atom (1.2 times for sp2-hybridized carbon atoms and the nitro­gen atom or 1.5 times for methyl carbon atoms).

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [C10H16N+][CF3O3S] [C13H20N+][CF3O3S]
Mr 299.31 339.37
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 8.5194 (7), 18.1257 (13), 9.0875 (8) 6.8580 (4), 19.4619 (12), 12.6131 (7)
β (°) 105.106 (3) 102.024 (2)
V3) 1354.80 (19) 1646.53 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.28 0.24
Crystal size (mm) 0.45 × 0.43 × 0.21 0.45 × 0.43 × 0.32
 
Data collection
Diffractometer Bruker AXS D8 Quest Bruker AXS D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.559, 0.747 0.662, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 47829, 5186, 3572 35093, 6151, 4836
Rint 0.093 0.040
(sin θ/λ)max−1) 0.772 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.03 0.045, 0.136, 1.04
No. of reflections 5186 6151
No. of parameters 176 205
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.56 0.63, −0.41
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

N,2,4,6-Tetramethylanilinium trifluoromethanesulfonate (1) top
Crystal data top
C10H16N+·CF3O3SF(000) = 624
Mr = 299.31Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5194 (7) ÅCell parameters from 9989 reflections
b = 18.1257 (13) Åθ = 2.6–32.7°
c = 9.0875 (8) ŵ = 0.28 mm1
β = 105.106 (3)°T = 150 K
V = 1354.80 (19) Å3Plate, colourless
Z = 40.45 × 0.43 × 0.21 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
5186 independent reflections
Radiation source: fine focus sealed tube X-ray source3572 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.093
Detector resolution: 7.4074 pixels mm-1θmax = 33.3°, θmin = 2.6°
ω and phi scansh = 1312
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2727
Tmin = 0.559, Tmax = 0.747l = 1314
47829 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.3108P]
where P = (Fo2 + 2Fc2)/3
5186 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26254 (4)0.70859 (2)0.03063 (4)0.02587 (10)
F10.06186 (16)0.66503 (9)0.22410 (12)0.0730 (4)
F20.00260 (12)0.62874 (6)0.02375 (13)0.0491 (3)
F30.19455 (15)0.57716 (7)0.08796 (18)0.0703 (4)
O10.31540 (15)0.67224 (7)0.17559 (12)0.0431 (3)
O20.16299 (15)0.77239 (7)0.03049 (17)0.0469 (3)
O30.38537 (14)0.71728 (7)0.04960 (13)0.0380 (3)
N10.38672 (14)0.64116 (6)0.48425 (12)0.0243 (2)
H1A0.3588880.6360060.3810790.029*
H1B0.4934050.6543450.5139060.029*
C10.36660 (15)0.56949 (7)0.55382 (14)0.0221 (2)
C20.24275 (15)0.52245 (7)0.47553 (14)0.0229 (2)
C30.21912 (17)0.45701 (7)0.54737 (15)0.0252 (2)
H30.1361310.4240470.4960700.030*
C40.31396 (16)0.43847 (7)0.69272 (15)0.0252 (3)
C50.43919 (16)0.48619 (8)0.76333 (14)0.0257 (3)
H50.5074950.4730660.8601560.031*
C60.46785 (15)0.55238 (7)0.69717 (14)0.0236 (2)
C70.13840 (17)0.53992 (8)0.31822 (15)0.0282 (3)
H7A0.2048150.5377790.2450170.042*
H7B0.0925150.5895320.3177090.042*
H7C0.0500340.5038280.2896690.042*
C80.27871 (19)0.37021 (8)0.77291 (17)0.0318 (3)
H8A0.2198740.3345570.6974130.048*
H8B0.2121070.3833320.8421380.048*
H8C0.3811990.3483170.8313710.048*
C90.60280 (17)0.60290 (8)0.77978 (16)0.0305 (3)
H9A0.6738630.6141430.7135370.046*
H9B0.6661050.5786300.8727170.046*
H9C0.5561130.6487730.8067640.046*
C100.2861 (2)0.70206 (8)0.52615 (18)0.0338 (3)
H10A0.3042500.7478820.4757480.051*
H10B0.3178010.7091860.6368700.051*
H10C0.1707380.6887430.4930860.051*
C110.1221 (2)0.64161 (10)0.08269 (18)0.0374 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02667 (16)0.03106 (18)0.02113 (15)0.00514 (13)0.00846 (11)0.00329 (12)
F10.0665 (8)0.1198 (12)0.0243 (5)0.0232 (8)0.0031 (5)0.0009 (6)
F20.0354 (5)0.0635 (7)0.0509 (6)0.0111 (5)0.0155 (4)0.0054 (5)
F30.0570 (7)0.0532 (7)0.1026 (11)0.0022 (6)0.0240 (7)0.0397 (7)
O10.0452 (6)0.0557 (7)0.0246 (5)0.0077 (6)0.0022 (4)0.0128 (5)
O20.0396 (6)0.0398 (6)0.0647 (9)0.0121 (5)0.0197 (6)0.0029 (6)
O30.0346 (5)0.0491 (7)0.0350 (6)0.0031 (5)0.0174 (5)0.0045 (5)
N10.0262 (5)0.0269 (5)0.0212 (5)0.0026 (4)0.0084 (4)0.0013 (4)
C10.0247 (5)0.0245 (6)0.0192 (5)0.0002 (5)0.0095 (4)0.0013 (4)
C20.0228 (5)0.0280 (6)0.0187 (5)0.0001 (5)0.0072 (4)0.0007 (4)
C30.0277 (6)0.0268 (6)0.0226 (5)0.0015 (5)0.0092 (5)0.0013 (5)
C40.0294 (6)0.0258 (6)0.0231 (6)0.0043 (5)0.0118 (5)0.0014 (5)
C50.0275 (6)0.0315 (7)0.0190 (5)0.0041 (5)0.0079 (4)0.0001 (5)
C60.0236 (5)0.0300 (6)0.0185 (5)0.0014 (5)0.0076 (4)0.0037 (4)
C70.0278 (6)0.0336 (7)0.0217 (6)0.0034 (5)0.0037 (5)0.0027 (5)
C80.0378 (7)0.0307 (7)0.0290 (7)0.0030 (6)0.0124 (6)0.0069 (5)
C90.0302 (7)0.0364 (7)0.0237 (6)0.0027 (6)0.0049 (5)0.0046 (5)
C100.0411 (8)0.0264 (7)0.0382 (8)0.0043 (6)0.0176 (6)0.0005 (6)
C110.0352 (7)0.0486 (9)0.0288 (7)0.0009 (7)0.0088 (6)0.0056 (6)
Geometric parameters (Å, º) top
S1—O31.4315 (11)C4—C51.393 (2)
S1—O21.4339 (12)C4—C81.5052 (19)
S1—O11.4364 (11)C5—C61.3918 (19)
S1—C111.8230 (17)C5—H50.9500
F1—C111.3234 (19)C6—C91.5080 (19)
F2—C111.3293 (19)C7—H7A0.9800
F3—C111.328 (2)C7—H7B0.9800
N1—C11.4742 (17)C7—H7C0.9800
N1—C101.5062 (18)C8—H8A0.9800
N1—H1A0.9100C8—H8B0.9800
N1—H1B0.9100C8—H8C0.9800
C1—C61.3970 (18)C9—H9A0.9800
C1—C21.3983 (18)C9—H9B0.9800
C2—C31.3935 (18)C9—H9C0.9800
C2—C71.5073 (18)C10—H10A0.9800
C3—C41.3980 (18)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
O3—S1—O2114.93 (8)C2—C7—H7A109.5
O3—S1—O1114.93 (7)C2—C7—H7B109.5
O2—S1—O1114.51 (8)H7A—C7—H7B109.5
O3—S1—C11104.16 (7)C2—C7—H7C109.5
O2—S1—C11103.63 (8)H7A—C7—H7C109.5
O1—S1—C11102.43 (7)H7B—C7—H7C109.5
C1—N1—C10113.57 (10)C4—C8—H8A109.5
C1—N1—H1A108.9C4—C8—H8B109.5
C10—N1—H1A108.9H8A—C8—H8B109.5
C1—N1—H1B108.9C4—C8—H8C109.5
C10—N1—H1B108.9H8A—C8—H8C109.5
H1A—N1—H1B107.7H8B—C8—H8C109.5
C6—C1—C2122.66 (12)C6—C9—H9A109.5
C6—C1—N1118.88 (11)C6—C9—H9B109.5
C2—C1—N1118.41 (11)H9A—C9—H9B109.5
C3—C2—C1117.56 (12)C6—C9—H9C109.5
C3—C2—C7120.11 (12)H9A—C9—H9C109.5
C1—C2—C7122.32 (12)H9B—C9—H9C109.5
C2—C3—C4121.93 (12)N1—C10—H10A109.5
C2—C3—H3119.0N1—C10—H10B109.5
C4—C3—H3119.0H10A—C10—H10B109.5
C5—C4—C3118.07 (12)N1—C10—H10C109.5
C5—C4—C8120.84 (12)H10A—C10—H10C109.5
C3—C4—C8121.06 (13)H10B—C10—H10C109.5
C6—C5—C4122.39 (12)F1—C11—F3108.27 (15)
C6—C5—H5118.8F1—C11—F2107.40 (14)
C4—C5—H5118.8F3—C11—F2106.73 (15)
C5—C6—C1117.33 (12)F1—C11—S1111.49 (13)
C5—C6—C9120.35 (12)F3—C11—S1111.33 (12)
C1—C6—C9122.33 (12)F2—C11—S1111.41 (11)
C10—N1—C1—C689.12 (15)C2—C1—C6—C51.40 (18)
C10—N1—C1—C288.69 (14)N1—C1—C6—C5176.31 (11)
C6—C1—C2—C31.63 (19)C2—C1—C6—C9179.04 (12)
N1—C1—C2—C3176.09 (11)N1—C1—C6—C93.25 (18)
C6—C1—C2—C7177.50 (12)O3—S1—C11—F158.65 (14)
N1—C1—C2—C74.78 (18)O2—S1—C11—F161.92 (14)
C1—C2—C3—C40.40 (19)O1—S1—C11—F1178.71 (12)
C7—C2—C3—C4179.54 (12)O3—S1—C11—F362.38 (14)
C2—C3—C4—C52.52 (19)O2—S1—C11—F3177.05 (13)
C2—C3—C4—C8175.57 (12)O1—S1—C11—F357.68 (14)
C3—C4—C5—C62.77 (19)O3—S1—C11—F2178.61 (11)
C8—C4—C5—C6175.32 (12)O2—S1—C11—F258.04 (14)
C4—C5—C6—C10.87 (19)O1—S1—C11—F261.33 (13)
C4—C5—C6—C9178.69 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.922.7687 (16)154
N1—H1B···O2i0.911.942.7669 (16)150
C8—H8C···O1ii0.982.633.453 (2)142
C8—H8C···O3ii0.982.693.6438 (19)164
C8—H8A···O3iii0.982.553.504 (2)165
C9—H9A···O2i0.982.633.333 (2)129
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
N-Isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate (2) top
Crystal data top
C13H20N+·CF3O3SF(000) = 712
Mr = 339.37Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8580 (4) ÅCell parameters from 9901 reflections
b = 19.4619 (12) Åθ = 2.7–33.1°
c = 12.6131 (7) ŵ = 0.24 mm1
β = 102.024 (2)°T = 150 K
V = 1646.53 (17) Å3Block, colourless
Z = 40.45 × 0.43 × 0.32 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
6151 independent reflections
Radiation source: fine focus sealed tube X-ray source4836 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.040
Detector resolution: 7.4074 pixels mm-1θmax = 33.2°, θmin = 2.0°
ω and phi scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2928
Tmin = 0.662, Tmax = 0.747l = 1919
35093 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.6525P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.036
6151 reflectionsΔρmax = 0.63 e Å3
205 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15479 (4)0.79780 (2)0.61391 (2)0.02550 (8)
F10.3761 (3)0.86287 (8)0.77561 (9)0.0851 (5)
F20.2530 (2)0.92744 (5)0.64188 (11)0.0664 (3)
F30.49502 (18)0.86146 (8)0.63158 (12)0.0734 (4)
O10.02107 (18)0.81355 (7)0.65353 (12)0.0494 (3)
O20.1341 (2)0.80438 (7)0.49895 (9)0.0507 (3)
O30.25615 (18)0.73657 (6)0.66054 (11)0.0496 (3)
N10.86535 (15)0.64144 (5)0.77099 (8)0.02325 (18)
C10.81204 (17)0.57568 (6)0.71732 (9)0.0235 (2)
C20.73919 (18)0.52358 (6)0.77498 (10)0.0266 (2)
C30.68216 (19)0.46217 (6)0.72058 (12)0.0310 (3)
H30.6314920.4260530.7577400.037*
C40.69727 (19)0.45226 (7)0.61361 (12)0.0318 (3)
C50.7696 (2)0.50569 (7)0.55946 (11)0.0320 (3)
H50.7797490.4992390.4861530.038*
C60.82752 (19)0.56836 (6)0.60949 (10)0.0269 (2)
C70.7275 (2)0.53217 (8)0.89215 (12)0.0370 (3)
H7A0.6754900.5779580.9030020.055*
H7B0.8608540.5269860.9379720.055*
H7C0.6385300.4971550.9117330.055*
C80.6377 (2)0.38445 (8)0.55818 (16)0.0450 (4)
H8A0.6139070.3906690.4794240.067*
H8B0.5155770.3677450.5783440.067*
H8C0.7448760.3509120.5807690.067*
C90.9047 (2)0.62569 (7)0.54963 (12)0.0365 (3)
H9A0.8988120.6117660.4743570.055*
H9B1.0431170.6358920.5846350.055*
H9C0.8226010.6667660.5508920.055*
C101.03905 (18)0.65257 (6)0.83181 (10)0.0274 (2)
C111.0819 (2)0.71841 (7)0.89199 (12)0.0368 (3)
H11A1.0712970.7565210.8403220.055*
H11B1.2170010.7170580.9367430.055*
H11C0.9854680.7250380.9385590.055*
C121.2004 (2)0.60056 (8)0.84344 (15)0.0411 (3)
H12A1.1483450.5585030.8050150.062*
H12B1.2495690.5902340.9204200.062*
H12C1.3098840.6186160.8125710.062*
C130.70636 (19)0.69461 (6)0.75334 (11)0.0293 (2)
H13A0.7581750.7372070.7282430.044*
H13B0.6634580.7032780.8215350.044*
H13C0.5925980.6784260.6985830.044*
C140.3300 (3)0.86552 (8)0.66949 (12)0.0387 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02328 (14)0.02674 (14)0.02618 (14)0.00154 (10)0.00446 (10)0.00088 (10)
F10.1245 (13)0.0883 (10)0.0321 (5)0.0545 (9)0.0077 (6)0.0097 (6)
F20.0969 (10)0.0280 (5)0.0795 (8)0.0120 (5)0.0304 (7)0.0050 (5)
F30.0431 (6)0.0875 (9)0.0941 (10)0.0345 (6)0.0248 (6)0.0337 (8)
O10.0396 (6)0.0469 (6)0.0695 (8)0.0009 (5)0.0291 (6)0.0024 (6)
O20.0612 (8)0.0616 (8)0.0282 (5)0.0198 (6)0.0068 (5)0.0046 (5)
O30.0405 (6)0.0309 (5)0.0708 (8)0.0043 (4)0.0036 (6)0.0016 (5)
N10.0232 (4)0.0196 (4)0.0266 (4)0.0017 (3)0.0043 (3)0.0010 (3)
C10.0221 (5)0.0191 (4)0.0286 (5)0.0006 (4)0.0036 (4)0.0011 (4)
C20.0235 (5)0.0235 (5)0.0324 (5)0.0009 (4)0.0050 (4)0.0063 (4)
C30.0259 (6)0.0206 (5)0.0461 (7)0.0013 (4)0.0063 (5)0.0071 (5)
C40.0265 (6)0.0204 (5)0.0466 (7)0.0025 (4)0.0032 (5)0.0026 (5)
C50.0351 (6)0.0269 (6)0.0335 (6)0.0043 (5)0.0062 (5)0.0046 (5)
C60.0293 (6)0.0228 (5)0.0288 (5)0.0032 (4)0.0069 (4)0.0002 (4)
C70.0401 (7)0.0387 (7)0.0335 (6)0.0011 (6)0.0110 (5)0.0099 (5)
C80.0404 (8)0.0247 (6)0.0681 (11)0.0077 (5)0.0073 (7)0.0115 (6)
C90.0496 (8)0.0298 (6)0.0328 (6)0.0107 (6)0.0145 (6)0.0006 (5)
C100.0257 (5)0.0237 (5)0.0310 (5)0.0004 (4)0.0022 (4)0.0016 (4)
C110.0405 (7)0.0300 (6)0.0367 (6)0.0056 (5)0.0004 (5)0.0065 (5)
C120.0256 (6)0.0317 (7)0.0604 (9)0.0039 (5)0.0042 (6)0.0033 (6)
C130.0266 (6)0.0253 (5)0.0360 (6)0.0076 (4)0.0066 (5)0.0024 (4)
C140.0479 (8)0.0345 (7)0.0344 (6)0.0132 (6)0.0101 (6)0.0067 (5)
Geometric parameters (Å, º) top
S1—O11.4315 (12)C7—H7A0.9800
S1—O21.4330 (12)C7—H7B0.9800
S1—O31.4419 (12)C7—H7C0.9800
S1—C141.8226 (15)C8—H8A0.9800
F1—C141.3107 (18)C8—H8B0.9800
F2—C141.333 (2)C8—H8C0.9800
F3—C141.319 (2)C9—H9A0.9800
N1—C101.2937 (16)C9—H9B0.9800
N1—C11.4584 (15)C9—H9C0.9800
N1—C131.4860 (15)C10—C121.4843 (18)
C1—C61.3934 (17)C10—C111.4871 (18)
C1—C21.3994 (16)C11—H11A0.9800
C2—C31.3929 (18)C11—H11B0.9800
C2—C71.5060 (19)C11—H11C0.9800
C3—C41.388 (2)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C51.3910 (19)C12—H12C0.9800
C4—C81.5095 (19)C13—H13A0.9800
C5—C61.3925 (17)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—C91.5039 (18)
O1—S1—O2114.90 (9)C4—C8—H8C109.5
O1—S1—O3113.84 (8)H8A—C8—H8C109.5
O2—S1—O3115.11 (8)H8B—C8—H8C109.5
O1—S1—C14104.29 (8)C6—C9—H9A109.5
O2—S1—C14104.07 (7)C6—C9—H9B109.5
O3—S1—C14102.57 (8)H9A—C9—H9B109.5
C10—N1—C1122.21 (10)C6—C9—H9C109.5
C10—N1—C13121.91 (11)H9A—C9—H9C109.5
C1—N1—C13115.87 (10)H9B—C9—H9C109.5
C6—C1—C2122.77 (11)N1—C10—C12121.33 (12)
C6—C1—N1118.69 (10)N1—C10—C11120.42 (12)
C2—C1—N1118.47 (11)C12—C10—C11118.25 (12)
C3—C2—C1117.36 (12)C10—C11—H11A109.5
C3—C2—C7120.79 (12)C10—C11—H11B109.5
C1—C2—C7121.83 (12)H11A—C11—H11B109.5
C4—C3—C2121.87 (12)C10—C11—H11C109.5
C4—C3—H3119.1H11A—C11—H11C109.5
C2—C3—H3119.1H11B—C11—H11C109.5
C3—C4—C5118.67 (12)C10—C12—H12A109.5
C3—C4—C8120.26 (13)C10—C12—H12B109.5
C5—C4—C8121.06 (14)H12A—C12—H12B109.5
C4—C5—C6121.98 (12)C10—C12—H12C109.5
C4—C5—H5119.0H12A—C12—H12C109.5
C6—C5—H5119.0H12B—C12—H12C109.5
C5—C6—C1117.34 (11)N1—C13—H13A109.5
C5—C6—C9121.29 (12)N1—C13—H13B109.5
C1—C6—C9121.37 (11)H13A—C13—H13B109.5
C2—C7—H7A109.5N1—C13—H13C109.5
C2—C7—H7B109.5H13A—C13—H13C109.5
H7A—C7—H7B109.5H13B—C13—H13C109.5
C2—C7—H7C109.5F1—C14—F3108.99 (16)
H7A—C7—H7C109.5F1—C14—F2107.49 (14)
H7B—C7—H7C109.5F3—C14—F2106.43 (14)
C4—C8—H8A109.5F1—C14—S1111.32 (11)
C4—C8—H8B109.5F3—C14—S1111.33 (11)
H8A—C8—H8B109.5F2—C14—S1111.08 (12)
C10—N1—C1—C697.12 (14)N1—C1—C6—C5178.02 (11)
C13—N1—C1—C684.04 (14)C2—C1—C6—C9179.42 (13)
C10—N1—C1—C285.64 (15)N1—C1—C6—C92.30 (18)
C13—N1—C1—C293.20 (13)C1—N1—C10—C124.98 (19)
C6—C1—C2—C30.47 (18)C13—N1—C10—C12176.25 (13)
N1—C1—C2—C3177.60 (10)C1—N1—C10—C11175.12 (12)
C6—C1—C2—C7178.81 (12)C13—N1—C10—C113.65 (19)
N1—C1—C2—C74.06 (18)O1—S1—C14—F163.94 (16)
C1—C2—C3—C40.35 (19)O2—S1—C14—F1175.28 (14)
C7—C2—C3—C4178.00 (12)O3—S1—C14—F155.02 (16)
C2—C3—C4—C50.7 (2)O1—S1—C14—F3174.22 (13)
C2—C3—C4—C8178.79 (13)O2—S1—C14—F353.45 (15)
C3—C4—C5—C60.2 (2)O3—S1—C14—F366.82 (14)
C8—C4—C5—C6179.25 (13)O1—S1—C14—F255.81 (13)
C4—C5—C6—C10.5 (2)O2—S1—C14—F264.97 (13)
C4—C5—C6—C9179.79 (14)O3—S1—C14—F2174.77 (11)
C2—C1—C6—C50.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.563.477 (2)155
C12—H12A···F2ii0.982.693.3859 (18)129
C13—H13A···O1i0.982.453.3789 (18)159
C13—H13B···O2iii0.982.293.2377 (18)162
C13—H13C···O30.982.523.1723 (17)124
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.
Angle Between the Mean Plane of the Organic Functional Groups and the Mean Plane of the Aniline Ring§ top
Angles were determined with SHELXL (for 1 and 2; Sheldrick, 2015b) or Mercury [for comparison compounds; Macrae et al., 2020).
CompoundAngle (°)CSD Reference CodeCCDC Deposition Number
N,2,4,6-Tetramethylanilinium trifluoromethanesulfonate (1)89.71 (9)This Work
N-Isopropylidene-N,2,4,6-tetramethylanilinium trifluoromethanesulfonate (2)85.15 (4)This Work
Dimesitylammonium pentafluorobenzenesulfonate49.87 and 55.67HIBFOO297281
Dimesitylammonium tosylate49.49 and 52.91HIBGAB604748
Oxonium N-(2,6-diphenylphenyl)mesitylammonium bis(pentafluorobenzenesulfonate)55.19HIBFUU297282
(2,4,6-Trimethylphenyl){2-[N-(2,4,6- trimethylphenyl)formamido]ethyl}ammonium chloride75.48EDUWAD878245
(S)-2-{[1-(Mesitylammonio)-3-methylbutan-2- yl]carbamoyl}benzenesulfonate76.75QARJUQ843836
catena-[N4,N4',3,3',5,5'-hexamethyl[1,1'-biphenyl]-\ 4,4'-bis(aminium) hexakis(µ-bromo)dilead(II)]85.42CATZEG2145329
N-Methyl-1-[3-methyl-2-(2,4,6-trimethylphenyl)-2H-indazol-7-yl]-N-(2,4,6-trimethylphenyl)ethan-1-iminium trifluoromethanesulfonate82.92JIFFAI1842546
{2-[(Hydroxy)(methoxy)methylidene]-4-methoxy-N-methyl-4-oxo- N-(2,4,6-trimethylphenyl)butan-1-iminiumato}[tris(pentafluorophenyl)]boron80.47RAVBIC1504471
ππ Interactions with parallel-displaced geometry (Å) top
Distances determined with PLATON (Spek, 2020).
Compound/cationAnionBenzene ring centroid-centroid distanceInterplanar spacingSlippageCSD Reference CodeCCDC Deposition Number
N,2,4,6-TetramethylaniliniumCF3SO3-3.9129 (8)3.5156 (5)1.718This Work (1)
N-Isopropylidene-N,2,4,6-tetramethylaniliniumCF3SO3-4.8937 (8)3.3646 (5)3.553This Work (2)
1,3,5-Trimethylbenzene4.6343 (9)3.0727 (5)2.850SOPLAL01618820a
2,4,6-TrimethylaniliniumSO42-4.486 (2)3.3028 (14)2.434AZUTOF850619b
2,4,6-TrimethylaniliniumSO42-4.489 (3)3.2917 (16)2.459AZUTOF01733935c
2,4,6-TrimethylaniliniumBr-5.362 (3)3.3138 (18)3.886CUCTOK750635d
2,4,6-TrimethylaniliniumI-5.5497 (14)3.40874.379JEVPUW636623e
2,4,6-TrimethylaniliniumCl-4.8109 (17)3.4992 (9)3.302XIFQAF654863f
2,4,6-TrimethylaniliniumNO3-5.3297 (17)3.0222 (7)3.928YUKNUO734678g
2,4,6-TrimethylaniliniumClO4-5.374 (2)3.6118 (8)3.980YUKPAW734679g
2,4,6-TrimethylaniliniumClO4-5.526 (11)3.958 (10)3.857YUKPAW01865148h
2,4,6-TrimethylaniliniumClO4-5.340 (3)3.6060 (17)3.939YUKPAW02865149h
References: (a) Ibberson et al. (2007); (b) Rong (2011); (c) Kapoor et al. (2010a); (d) Cui & Xu (2009); (e) Lemmerer & Billing (2007); (f) Long et al. (2007); (g) Kapoor et al. (2010b); (h) Zhang et al. (2012).
 

Acknowledgements

The authors would like thank Dr James Fishbein at the University of Maryland Baltimore County for project insight and Dr Cynthia Day at Wake Forest University for her original X-ray diffraction analysis of N-methyl­iso­propyl­idene-N,2,4,6-tetra­methyl­anilinium tri­fluoro­methane­sulfonate (2).

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (award No. 1625543 to M. Zeller); Shippensburg University Summer Undergraduate Research Experience (SURE) (grant to E. M. Irons, J. W. Stewart, D. P. Predecki); Shippensburg University College of Arts and Sciences Faculty-Led Research Fund (CAS FLRF) (grant to G. Osorio Abanto, D. P. Predecki); Beres Student/Faculty Research Endowment (grant to J. W. Stewart, D. P. Predecki).

References

First citationBöhme, H. & Viehe, H. G. (1976). Advances in Organic Chemistry: Methods and Results Vol. 9, Iminium Salts in Organic Chemistry, Part 2. edited by H. Böhme & H. G. Viehe, pp. 759–773. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastoldi, L., Ielo, L., Holzer, W., Giester, G., Roller, A. & Pace, V. (2018). J. Org. Chem. 83, 4336–4347.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, G., Kehr, G., Daniliuc, C. G., Bursch, M., Grimme, S. & Erker, G. (2017). Chem. Eur. J. 23, 4723–4729.  CSD CrossRef CAS PubMed Google Scholar
First citationCui, L.-J. & Xu, H.-J. (2009). Acta Cryst. E65, o2376.  CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond In Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationErkkilä, A., Majander, I. & Pihko, P. M. (2007). Chem. Rev. 107, 5416–5470.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbberson, R. M., Parsons, S., Natkaniec, I. & Hołderna-Natkaniec, K. (2007). Z. Kristallogr. Suppl. 2007, 575–580.  CSD CrossRef Google Scholar
First citationIkhile, M. I. & Bala, M. D. (2012). Acta Cryst. E68, o3263.  CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, I. P. S., Kapoor, M., Singh, G. & Frohlich, R. (2010a). Indian J. Eng. Mat. Sci. 17, 305–310.  CAS Google Scholar
First citationKapoor, I. P. S., Kapoor, M., Singh, G., Singh, U. P. & Goel, N. (2010b). J. Hazard. Mater. 173, 173–180.  CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKremláček, V., Hyvl, J., Yoshida, W. Y., Růžička, A., Rheingold, A. L., Turek, J., Hughes, R. P., Dostál, L. & Cain, M. F. (2018). Organometallics, 37, 2481–2490.  Google Scholar
First citationLatham, C. M., Blake, A. J., Lewis, W., Lawrence, M. & Woodward, S. (2012). Eur. J. Org. Chem. pp. 699–707.  CSD CrossRef Google Scholar
First citationLayer, R. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Google Scholar
First citationLemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929–o931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Zheng, R., Fu, Z., Xu, G. & Wang, G. (2022). Inorg. Chem. Commun. 139, 109339.  CSD CrossRef ICSD Google Scholar
First citationLong, S., Siegler, M. & Li, T. (2007). Acta Cryst. E63, o3080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLü, Q., Luo, J., Lin, T. & Zhang, Y. (2014). ACS Sustainable Chem. Eng. 2, 465–471.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRong, T. (2011). Acta Cryst. E67, o2729.  CSD CrossRef IUCr Journals Google Scholar
First citationSakakura, A., Watanabe, H., Nakagawa, S. & Ishihara, K. (2007). Chem. Asian J. 2, 477–483.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, A. S. (2007). The Chemistry of Anilines, Part 1, edited by Z. Rappoport, pp. 1–73. Chichester: John Wiley and Sons.  Google Scholar
First citationTsuchimoto, M., Nishimura, S. & Iwamura, H. (1973). Bull. Chem. Soc. Jpn, 46, 675–677.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Awaga, K., Yoshikawa, H. & Xiong, R.-G. (2012). J. Mater. Chem. 22, 9841–9845.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds