research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of the trigonal–bipyramidal complex tris­­(2-methyl­pyridine N-oxide-κO)bis­­(thio­cyanato-κN)cobalt(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 5 March 2024; accepted 8 April 2024; online 11 April 2024)

Reaction of Co(NCS)2 with 2-methyl­pyridine N-oxide in a 1:3 ratio in n-butanol leads to the formation of crystals of tris­(2-methyl­pyridine N-oxide-κO)bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C6H7NO)3]. The asymmetric unit of the title compound consists of one CoII cation two thio­cyanate anions and three crystallographically independent 2-methyl­pyridine N-oxide coligands in general positions. The CoII cations are trigonal–bipyramidally coordinated by two terminal N-bonding thio­cyanate anions in the trans-positions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. These complexes are linked by inter­molecular C–H⋯S inter­actions into double chains that elongate in the c-axis direction. Powder X-ray diffraction (PXRD) measurements prove that all batches are always contaminated with an additional and unknown crystalline phase. Thermogravimetry and differential analysis of crystals selected by hand reveal that the title compound decomposes at about 229°C in an exothermic reaction. At about 113°C a small endothermic signal is observed that, according to differential scanning calorimetry (DSC) measurements, is irreversible. PXRD measurements of the residue prove that a poorly crystalline and unknown phase has formed and thermomicroscopy indicates that some phase transition occurs that is accompanied with a color change of the title compound.

1. Chemical context

Coordination compounds based on CoII are an inter­esting class of compounds, for example, in the field of mol­ecular magnetism. They can form discrete complexes, which are promising compounds as single-mol­ecule or single-ion magnets (Böhme et al., 2018[Böhme, M., Ziegenbalg, S., Aliabadi, A., Schnegg, A., Görls, H. & Plass, W. (2018). Dalton Trans. 47, 10861-10873.]; Buchholz et al., 2012[Buchholz, A., Eseola, A. O. & Plass, W. (2012). C. R. Chim. 15, 929-936.]; Ziegenbalg et al., 2016[Ziegenbalg, S., Hornig, D., Görls, H. & Plass, W. (2016). Inorg. Chem. 55, 4047-4058.]). If the CoII cations are linked by small-sized ligands into networks, single-chain magnetism might be observed (Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]; Mautner et al., 2018a[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018a). Polyhedron, 154, 436-442.]; Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). This is the case for example for compounds in which the cations are linked by pairs of thio­cyanate anions into chains and this is one reason why we have been inter­ested in this class of compounds for several years.

In the course of these investigations we have prepared a large number of compounds with pyridine derivatives as coligands in which the thio­cyanate anions are either only terminally N-bonded or act as μ-1,3-bridging ligands. The former coordination mostly leads to the formation of discrete complexes, in which the cobalt cations shows an octa­hedral coordination. With very strong donor coligands, in a few cases discrete tetra­hedral complexes are observed (Mautner et al., 2018a[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018a). Polyhedron, 154, 436-442.]; Neumann et al., 2018[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4972-4981.]), whereas compounds with a fivefold coordination are very rare. This is also obvious from a search in the CSD, which confirms this trend (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]). In this regard, it is noted that we have reported the first Co(NCS)2 chain compound, in which the cobalt cations show an alternating five- and sixfold coordination (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]).

In further work we also used O-donor coligands such as pyridine N-oxide derivatives (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.]). With 4-methyl­pyridine N-oxide we obtained two different discrete complexes with the composition Co(NCS)2(4-methyl­pyridine N-oxide)4 and Co(NCS)2(4-methyl­pyridine N-oxide)3, of which the first compound shows the usual octa­hedral coord­ination, whereas the second compound exhibits a trigonal–bipyramidal coordination (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]). Surprisingly, the complex with a fivefold coordination can easily be prepared, whereas for the octa­hedral complex only a very few crystals were accidentally obtained, indicating that the compound with a fivefold coordination is more stable.

In this context, the question arises as to whether this observation can be traced back to the nature of the coligand. Therefore, a search in the CSD was performed, which revealed that only eleven Co(NCS)2 compounds with pyridine N-oxide derivatives and related ligands have been reported that always show an octa­hedral coordination. Nevertheless we tried to prepare new compounds with 2-methyl­pyridine N-oxide, which is similar to 4-methyl­pyridine N-oxide used in previous work. Within these investigations we obtained a compound with the composition Co(NCS)2(2-methyl­pyridine N-oxide) in which the CoII cations are octa­hedrally coordinated and linked into layers by μ-1,3(N,S)-bridging thio­cyanate anions and μ-1,1(O,O)-bridging 2-methyl­pyridine N-oxide coligands (Näther & Jess, 2024b[Näther, C. & Jess, I. (2024b). Acta Cryst. E80, 67-71.]). Later, we additionally obtained a further compound that was characterized by single crystal X-ray diffraction. This proved that a discrete complex with the composition Co(NCS)2(2-methyl­pyridine N-oxide)3 had been obtained in which the CoII cations show a trigonal–pyramidal coordination, as was the case with 4-methyl­pyridine N-oxide as coligand.

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of one CoII cation, two crystallographically unique thio­cyanate anions and three distinct 2-methyl­pyridine N-oxide coligands, all located in general positions (Fig. 1[link]). In the crystal structure, the cobalt cations are fivefold coordinated by two terminally N-bonded thio­cyanate anions and three 2-methyl­pyridine N-oxide coligands into discrete complexes. From the bond angles it is obvious that a slightly distorted trigonal–bipyramidal coordination is formed (Table 1[link]) with the 2-methyl­pyridine N-oxide coligands in the equatorial and the anionic ligands in the axial position, as is the case for Co(NCS)2(4-methyl­pyridine N-oxide)3 already reported in the literature (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]). Therefore, the bond lengths and angles of the title compound are similar to those in the 4-methyl­pyridine N-oxide compound.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.086 (3) Co1—O21 2.016 (2)
Co1—N2 2.051 (3) Co1—O31 2.037 (3)
Co1—O11 1.992 (3)    
       
N2—Co1—N1 176.35 (13) O21—Co1—N2 91.70 (12)
O11—Co1—N1 91.87 (12) O21—Co1—O31 118.20 (11)
O11—Co1—N2 88.87 (12) O31—Co1—N1 84.17 (12)
O11—Co1—O21 114.88 (12) O31—Co1—N2 92.52 (12)
O11—Co1—O31 126.83 (11) C1—N1—Co1 155.7 (3)
O21—Co1—N1 91.23 (11)    
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

In this context, it is noted that the Co(NCS)2 compound with only 2-methyl­pyridine forms discrete tetra­hedral complexes, which presumably can be traced back to steric crowding because the methyl group is adjacent to the coordinating N atom (Refcode DEYGAR; Wöhlert et al., 2013[Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326-5336.]). With 3-methyl­pyridine, two discrete complexes with the composition Co(NCS)2(3-methyl­pyridine)2 (Refcode EYARIG; Boeckmann et al., 2011[Boeckmann, J., Reimer, O. & Näther, C. (2011). Z. Naturforsch. B, 66, 819-827.]) and Co(NCS)2(3-methyl­pyridine)4 (Refcodes EYAROM and EYAROM01; Boeckmann et al., 2011[Boeckmann, J., Reimer, O. & Näther, C. (2011). Z. Naturforsch. B, 66, 819-827.] and Małecki et al., 2012[Małecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219-1232.]) have been reported, of which the first shows a tetra­hedral, whereas the second an octa­hedral coordination. Finally, discrete complexes are also known with 4-methyl­pyridine, including several solvates, in which the CoII cations always show an octa­hedral coordination [Refcodes VERNUC (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]), CECCOC (Micu-Semeniuc et al., 1983[Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.]), XIHHEB and XIHHEB01 (Harris et al., 2001[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625-634.], 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])].

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are linked by inter­molecular C—H⋯S hydrogen bonding into chains for which one contact with an C–H⋯S angle close to linearity is responsible (Fig. 2[link] and Table 2[link]). The chains are joined by an additional much weaker C—H⋯S contact into double chains that elongate along the c-axis direction (Figs. 2[link] and 3[link] and Table 2[link]). From Fig. 3[link], the non-centrosymmetric arrangement of the complexes becomes obvious. Finally, there is one intra­chain and one inter­chain C—H⋯O contact, but from the H⋯O distances and the C—H⋯O angles, they only correspond to weak inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1i 0.95 2.95 3.868 (4) 163
C15—H15⋯O31i 0.95 2.47 3.296 (5) 145
C32—H32⋯S2ii 0.95 3.02 3.873 (4) 150
C26—H26B⋯O31 0.98 2.64 3.512 (5) 149
Symmetry codes: (i) [x, y, z-1]; (ii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound with a view down a of part of a double chain. Inter­molecular C—H⋯S contacts are shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound with a view along the crystallographic c-axis direction. Inter­molecular C—H⋯S contacts are shown as dashed lines.

4. Database survey

A search in the CSD (version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveal that no Co(NCS)2 compounds with 2-methyl­pyridine N-oxide have been reported. If the search is expanded to all transition metals, three hits are found, including a discrete Zn complex with a fivefold coordination with the composition Zn(NCS)2(2-methyl­pyridine N-oxide)2(H2O) (Refcode UKIMEI; Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. (2016). Polyhedron, 111, 86-93.]) and a polymeric Cd compound with an octa­hedral coordination with the composition Cd(NCS)2(2-methyl­pyridine N-oxide) (Refcode UKILIL; Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. (2016). Polyhedron, 111, 86-93.]). Finally, there is one compound with the composition Mn(NCS)2(2-methyl­pyridine), which is isotypic to the Cd compound mentioned before (Mautner et al., 2018b[Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018b). Polyhedron, 141, 17-24.]).

If one searches for cobalt thio­cyanate compounds with pyridine N-oxide derivatives, eleven structures are found in which the cobalt cations are always octa­hedrally coordinated. In most structures, the thio­cyanate anions are only terminally N-bonded, which leads to the formation of mononuclear or dinuclear complexes or compounds with chain structures [Refcodes FONBIU (Shi et al., 2005[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1133-m1134.]), IDOYEG (Shi et al., 2006a[Shi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006a). Acta Cryst. E62, m1577-m1578.]), VAZDAB (Craig et al., 1989[Craig, D. C., Phillips, D. J. & Kaifi, F. M. Z. (1989). Inorg. Chim. Acta, 161, 247-251.]), FATJAN (Cao et al., 2012[Cao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19-22.]) and FATJER (Cao et al., 2012[Cao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19-22.])].

Finally, there are also compounds with chain or layered structure with pyridine N-oxide derivatives that contain μ-1,3-bridging thio­cyanate anions [TILHIG (Shi et al., 2007[Shi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 1637-1644.]), REKBUF (Shi et al., 2006b[Shi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006b). Chem. Phys. 325, 237-242.]), TERRAK (Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398-m3400.]), MEQKOJ (Zhang et al., 2006b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506-m3608.]), UMAVAF (Zhang et al., 2003[Zhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830-2831.]) and UMAVUZ (Zhang et al., 2003[Zhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830-2831.])].

5. Additional investigations

Based on single-crystal data measured at room temperature, a powder pattern was calculated and compared with the experimental pattern, which reveals that the title compound is contaminated with an additional and unknown phase (Fig. S1). Several batches with different ratios between Co(NCS)2 and 2-methyl­pyridine N-oxide in different solvents were prepared, but it was not possible to obtain the title compound as a pure phase.

Nevertheless, the thermal properties of the title compound were investigated by thermogravimetry and differential thermoanalysis (TG-DTA) measurements using crystals separated by hand. Upon heating, two mass losses were observed that according to the DTG curve are poorly resolved and that are accompanied with a strong exothermic event in the DTA curve, indicating the decomposition of the coligands (Fig. 4[link]). There is one weak endothermic signal at about 113°C, where the sample mass does not change. Measurements using differential scanning calorimetry (DSC) and PXRD prove that this event is irreversible and leads to a new phase of very poor crystallinity (Figs. S2 and S3). Thermomicroscopic investigations reveal that this process is accompanied with a change of the color of this compound and that it leads to a destruction of the single crystals, indicating that a reconstructive phase transition occurred (Fig. S4).

[Figure 4]
Figure 4
DTG, TG and DTG curves for the title compound. The mass loss is given in % and the peak temperature in °C. For this measurement, crystals selected by hand were used.

6. Synthesis and crystallization

Synthesis

Co(NCS)2 (99%) and 2-methyl­pyridine N-oxide (96%) were purchased from Sigma Aldrich and n-butanol (99.5%) from Carl Roth.

Single crystals of the title compound were obtained by the reaction of 0.5 mmol (87.4 mg) of Co(SCN)2 and 1.5 mmol (163.7 mg) of 2-methyl­pyridine N-oxide in 1 mL of n-butanol. Within 3 d, crystals suitable for structure analysis were obtained together with some powder of an unknown crystalline phase. We also tried other solvents such as methanol or ethanol and we varied the ratio between Ni(NCS)2 and 2-methyl­pyridine but the title compound was never obtained as a pure phase.

Experimental details

X-ray powder patterns were measured using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a linear, position-sensitive MYTHEN 1K detector from Stoe & Cie and a XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku, both with Cu Kα radiation.

Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles at 8°C min−1 using a STA-PT 1000 thermobalance from Linseis. The DSC measurements were performed using a DSC 1 Star System with STARe Excellence Software from Mettler-Toledo AG at 10°C min−1. Thermomicroscopy was performed with a hot-stage from Linkam and a microscope from Olympus. All thermoanalytical instruments were calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with Uĩso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The absolute structure was determined and is in agreement with the selected setting.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H7NO)3]
Mr 502.47
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 11.9020 (2), 26.4007 (2), 7.1933 (1)
β (°) 104.299 (1)
V3) 2190.26 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 8.21
Crystal size (mm) 0.2 × 0.05 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.581, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24478, 4183, 4137
Rint 0.036
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.04
No. of reflections 4183
No. of parameters 283
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.28
Absolute structure Flack x determined using 1732 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tris(2-methylpyridine N-oxide-κO)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C6H7NO)3]F(000) = 1036
Mr = 502.47Dx = 1.524 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 11.9020 (2) ÅCell parameters from 17140 reflections
b = 26.4007 (2) Åθ = 3.4–79.0°
c = 7.1933 (1) ŵ = 8.21 mm1
β = 104.299 (1)°T = 100 K
V = 2190.26 (5) Å3Needle, pink
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4183 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4137 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 80.2°, θmin = 3.4°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 3333
Tmin = 0.581, Tmax = 1.000l = 98
24478 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0636P)2 + 1.9394P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.62 e Å3
4183 reflectionsΔρmin = 0.28 e Å3
283 parametersAbsolute structure: Flack x determined using 1732 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.003 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.63119 (5)0.86737 (2)0.79970 (6)0.01961 (14)
N10.4719 (3)0.83113 (11)0.7698 (4)0.0235 (6)
C10.3811 (3)0.82456 (12)0.7982 (5)0.0227 (7)
S10.25390 (8)0.81632 (4)0.84239 (13)0.0304 (2)
N20.7907 (3)0.90130 (11)0.8467 (4)0.0243 (6)
C20.8812 (3)0.92031 (13)0.8804 (5)0.0233 (7)
S21.00934 (8)0.94704 (4)0.92598 (13)0.0313 (2)
O110.6887 (2)0.81252 (9)0.6570 (4)0.0277 (6)
N110.6138 (3)0.77822 (11)0.5616 (5)0.0250 (6)
C110.6035 (3)0.73262 (14)0.6406 (6)0.0260 (7)
C120.5254 (3)0.69782 (14)0.5330 (6)0.0269 (7)
H120.5182360.6651280.5840750.032*
C130.4589 (3)0.71024 (15)0.3547 (6)0.0288 (8)
H130.4047850.6866320.2836270.035*
C140.4715 (3)0.75755 (15)0.2791 (6)0.0292 (8)
H140.4257790.7667770.1558680.035*
C150.5502 (4)0.79080 (14)0.3837 (6)0.0284 (8)
H150.5605850.8230100.3313960.034*
O210.5544 (2)0.92584 (9)0.6365 (4)0.0268 (5)
N210.4395 (3)0.92595 (11)0.5586 (4)0.0237 (6)
C210.3663 (3)0.94142 (13)0.6653 (5)0.0264 (8)
C220.2489 (4)0.94383 (14)0.5780 (6)0.0292 (8)
H220.1962910.9546310.6499710.035*
C230.2074 (4)0.93070 (15)0.3871 (6)0.0323 (8)
H230.1269160.9329150.3274240.039*
C240.2845 (4)0.91433 (15)0.2842 (6)0.0308 (8)
H240.2574300.9047130.1535470.037*
C250.4001 (4)0.91215 (14)0.3729 (6)0.0284 (8)
H250.4534690.9007810.3031520.034*
O310.6345 (2)0.86796 (9)1.0842 (4)0.0246 (5)
N310.7388 (3)0.87132 (12)1.2112 (5)0.0268 (7)
C310.7804 (4)0.91637 (15)1.2867 (6)0.0302 (8)
C320.8873 (4)0.91678 (17)1.4195 (6)0.0335 (9)
H320.9183140.9480721.4743740.040*
C330.9489 (4)0.87328 (17)1.4731 (6)0.0342 (9)
H331.0217780.8742071.5642650.041*
C340.9030 (4)0.82742 (16)1.3916 (6)0.0331 (9)
H340.9445260.7967541.4271240.040*
C350.7986 (4)0.82690 (15)1.2613 (6)0.0297 (8)
H350.7671060.7958421.2048770.036*
C360.7088 (4)0.96175 (16)1.2225 (7)0.0365 (9)
H36A0.6376070.9597911.2674470.055*
H36B0.6888370.9634301.0820580.055*
H36C0.7524160.9921351.2753860.055*
C160.6740 (4)0.72348 (16)0.8382 (6)0.0325 (8)
H16A0.6482590.7461500.9272800.049*
H16B0.7558590.7300270.8438480.049*
H16C0.6646500.6882120.8740790.049*
C260.4185 (4)0.95516 (14)0.8691 (6)0.0289 (8)
H26A0.4800120.9802500.8750550.043*
H26B0.4513610.9248050.9406470.043*
H26C0.3586310.9694620.9257160.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0208 (3)0.0204 (2)0.0194 (3)0.0007 (2)0.0083 (2)0.0004 (2)
N10.0219 (14)0.0255 (13)0.0247 (14)0.0035 (11)0.0089 (12)0.0014 (11)
C10.0264 (17)0.0220 (14)0.0193 (16)0.0011 (13)0.0047 (13)0.0005 (12)
S10.0238 (4)0.0396 (5)0.0308 (5)0.0034 (3)0.0124 (4)0.0036 (4)
N20.0219 (14)0.0265 (14)0.0255 (15)0.0026 (11)0.0079 (12)0.0007 (11)
C20.0276 (18)0.0223 (15)0.0213 (16)0.0036 (12)0.0088 (14)0.0012 (11)
S20.0256 (4)0.0383 (5)0.0296 (5)0.0083 (4)0.0060 (4)0.0015 (4)
O110.0232 (12)0.0260 (11)0.0377 (15)0.0062 (9)0.0148 (11)0.0096 (10)
N110.0217 (14)0.0237 (13)0.0336 (16)0.0020 (11)0.0143 (12)0.0075 (12)
C110.0230 (16)0.0278 (16)0.0301 (19)0.0001 (13)0.0116 (15)0.0012 (14)
C120.0269 (17)0.0265 (16)0.0327 (19)0.0009 (14)0.0175 (15)0.0027 (14)
C130.0246 (17)0.0336 (18)0.0306 (19)0.0011 (14)0.0114 (15)0.0089 (15)
C140.0259 (18)0.0359 (19)0.0277 (18)0.0032 (15)0.0104 (15)0.0000 (14)
C150.0310 (18)0.0277 (17)0.0312 (19)0.0055 (14)0.0164 (15)0.0025 (14)
O210.0229 (12)0.0274 (12)0.0307 (13)0.0003 (9)0.0077 (10)0.0069 (10)
N210.0233 (15)0.0228 (13)0.0252 (15)0.0016 (11)0.0060 (12)0.0055 (11)
C210.0318 (19)0.0220 (15)0.0267 (18)0.0004 (13)0.0096 (15)0.0024 (12)
C220.031 (2)0.0309 (17)0.0289 (19)0.0027 (14)0.0135 (16)0.0053 (14)
C230.0272 (19)0.0361 (19)0.032 (2)0.0040 (15)0.0055 (16)0.0051 (16)
C240.035 (2)0.0325 (18)0.0242 (17)0.0044 (15)0.0068 (16)0.0025 (14)
C250.0323 (19)0.0290 (17)0.0260 (18)0.0024 (15)0.0108 (15)0.0033 (14)
O310.0224 (12)0.0322 (13)0.0203 (12)0.0040 (9)0.0071 (10)0.0003 (9)
N310.0277 (16)0.0349 (16)0.0206 (14)0.0067 (12)0.0117 (13)0.0007 (11)
C310.036 (2)0.0322 (18)0.0263 (18)0.0067 (15)0.0155 (16)0.0013 (14)
C320.031 (2)0.048 (2)0.0242 (18)0.0095 (17)0.0117 (15)0.0030 (16)
C330.029 (2)0.051 (2)0.0251 (19)0.0066 (16)0.0116 (16)0.0017 (16)
C340.035 (2)0.0381 (19)0.029 (2)0.0036 (17)0.0148 (17)0.0053 (15)
C350.0329 (19)0.0331 (18)0.0271 (18)0.0052 (15)0.0149 (15)0.0006 (14)
C360.037 (2)0.0340 (19)0.040 (2)0.0022 (16)0.0138 (18)0.0041 (17)
C160.031 (2)0.0377 (19)0.030 (2)0.0020 (15)0.0085 (16)0.0011 (15)
C260.0312 (19)0.0300 (17)0.0270 (18)0.0031 (15)0.0103 (15)0.0015 (14)
Geometric parameters (Å, º) top
Co1—N12.086 (3)C22—C231.384 (6)
Co1—N22.051 (3)C23—H230.9500
Co1—O111.992 (3)C23—C241.382 (7)
Co1—O212.016 (2)C24—H240.9500
Co1—O312.037 (3)C24—C251.368 (6)
N1—C11.162 (5)C25—H250.9500
C1—S11.637 (4)O31—N311.351 (4)
N2—C21.158 (5)N31—C311.350 (5)
C2—S21.639 (4)N31—C351.373 (5)
O11—N111.335 (4)C31—C321.390 (6)
N11—C111.350 (5)C31—C361.477 (6)
N11—C151.358 (5)C32—H320.9500
C11—C121.397 (5)C32—C331.366 (7)
C11—C161.481 (5)C33—H330.9500
C12—H120.9500C33—C341.396 (6)
C12—C131.370 (6)C34—H340.9500
C13—H130.9500C34—C351.359 (6)
C13—C141.385 (6)C35—H350.9500
C14—H140.9500C36—H36A0.9800
C14—C151.367 (6)C36—H36B0.9800
C15—H150.9500C36—H36C0.9800
O21—N211.344 (4)C16—H16A0.9800
N21—C211.358 (5)C16—H16B0.9800
N21—C251.352 (5)C16—H16C0.9800
C21—C221.384 (6)C26—H26A0.9800
C21—C261.489 (5)C26—H26B0.9800
C22—H220.9500C26—H26C0.9800
N2—Co1—N1176.35 (13)C24—C23—H23120.4
O11—Co1—N191.87 (12)C23—C24—H24120.4
O11—Co1—N288.87 (12)C25—C24—C23119.2 (4)
O11—Co1—O21114.88 (12)C25—C24—H24120.4
O11—Co1—O31126.83 (11)N21—C25—C24120.8 (4)
O21—Co1—N191.23 (11)N21—C25—H25119.6
O21—Co1—N291.70 (12)C24—C25—H25119.6
O21—Co1—O31118.20 (11)N31—O31—Co1117.8 (2)
O31—Co1—N184.17 (12)O31—N31—C35116.9 (3)
O31—Co1—N292.52 (12)C31—N31—O31121.0 (3)
C1—N1—Co1155.7 (3)C31—N31—C35122.2 (4)
N1—C1—S1178.6 (3)N31—C31—C32117.8 (4)
C2—N2—Co1177.5 (3)N31—C31—C36117.6 (4)
N2—C2—S2179.4 (4)C32—C31—C36124.6 (4)
N11—O11—Co1119.1 (2)C31—C32—H32119.2
O11—N11—C11120.5 (3)C33—C32—C31121.6 (4)
O11—N11—C15117.7 (3)C33—C32—H32119.2
C11—N11—C15121.8 (3)C32—C33—H33120.5
N11—C11—C12118.1 (3)C32—C33—C34118.9 (4)
N11—C11—C16117.4 (3)C34—C33—H33120.5
C12—C11—C16124.5 (4)C33—C34—H34120.2
C11—C12—H12119.6C35—C34—C33119.6 (4)
C13—C12—C11120.8 (4)C35—C34—H34120.2
C13—C12—H12119.6N31—C35—H35120.0
C12—C13—H13120.3C34—C35—N31119.9 (4)
C12—C13—C14119.4 (4)C34—C35—H35120.0
C14—C13—H13120.3C31—C36—H36A109.5
C13—C14—H14120.4C31—C36—H36B109.5
C15—C14—C13119.3 (4)C31—C36—H36C109.5
C15—C14—H14120.4H36A—C36—H36B109.5
N11—C15—C14120.6 (3)H36A—C36—H36C109.5
N11—C15—H15119.7H36B—C36—H36C109.5
C14—C15—H15119.7C11—C16—H16A109.5
N21—O21—Co1120.8 (2)C11—C16—H16B109.5
O21—N21—C21119.6 (3)C11—C16—H16C109.5
O21—N21—C25118.7 (3)H16A—C16—H16B109.5
C25—N21—C21121.7 (3)H16A—C16—H16C109.5
N21—C21—C22118.3 (3)H16B—C16—H16C109.5
N21—C21—C26117.4 (3)C21—C26—H26A109.5
C22—C21—C26124.4 (4)C21—C26—H26B109.5
C21—C22—H22119.6C21—C26—H26C109.5
C23—C22—C21120.8 (4)H26A—C26—H26B109.5
C23—C22—H22119.6H26A—C26—H26C109.5
C22—C23—H23120.4H26B—C26—H26C109.5
C24—C23—C22119.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1i0.952.953.868 (4)163
C15—H15···O31i0.952.473.296 (5)145
C32—H32···S2ii0.953.023.873 (4)150
C26—H26B···O310.982.643.512 (5)149
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z+1/2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBoeckmann, J., Reimer, O. & Näther, C. (2011). Z. Naturforsch. B, 66, 819–827.  CrossRef CAS Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBöhme, M., Ziegenbalg, S., Aliabadi, A., Schnegg, A., Görls, H. & Plass, W. (2018). Dalton Trans. 47, 10861–10873.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBuchholz, A., Eseola, A. O. & Plass, W. (2012). C. R. Chim. 15, 929–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, W., Sun, H. L. & Li, Z. (2012). Inorg. Chem. Commun. 19, 19–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCraig, D. C., Phillips, D. J. & Kaifi, F. M. Z. (1989). Inorg. Chim. Acta, 161, 247–251.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625–634.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.  Google Scholar
First citationMałecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219–1232.  Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. (2016). Polyhedron, 111, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018b). Polyhedron, 141, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018a). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMicu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471–475.  CAS Google Scholar
First citationNäther, C. & Jess, I. (2023). Acta Cryst. E79, 867–871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024a). Acta Cryst. E80, 174–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024b). Acta Cryst. E80, 67–71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4972–4981.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1133–m1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006b). Chem. Phys. 325, 237–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J. M., Liu, Z., Xu, H. K., Wu, C. J. & Liu, L. D. (2007). J. Coord. Chem. 60, 1637–1644.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006a). Acta Cryst. E62, m1577–m1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326–5336.  Google Scholar
First citationZhang, L. P., Lu, W. J. & Mak, T. C. W. (2003). Chem. Commun. pp. 2830–2831.  Web of Science CSD CrossRef Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3398–m3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3506–m3608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZiegenbalg, S., Hornig, D., Görls, H. & Plass, W. (2016). Inorg. Chem. 55, 4047–4058.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds