research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-N-(4-bromo­phen­yl)-2-cyano-3-[3-(2-methyl­prop­yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide

crossmark logo

aGreen Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza, Egypt, bChemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt, cChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and dInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 25 March 2024; accepted 9 April 2024; online 23 April 2024)

The structure of the title compound, C23H21BrN4O, contains two independent mol­ecules connected by hydrogen bonds of the type Namide—H⋯N≡C to form a dimer. The configuration at the exocyclic C=C double bond is E. The mol­ecules are roughly planar except for the isopropyl groups. There are minor differences in the orientations of these groups and the phenyl rings at N1. The dimers are further linked by ‘weak’ hydrogen bonds, two each of the types Hphen­yl⋯O=C (H⋯O = 2.50, 2.51 Å) and Hphen­yl⋯Br (H⋯Br = 2.89, 2.91 Å), to form ribbons parallel to the b and c axes, respectively. The studied crystal was a non-merohedral twin.

1. Chemical context

Pyrazoles contribute significantly to medicinal applications (Bennani et al., 2020[Bennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M. & Faouzi, M. E. A. (2020). Bioorg. Chem. 97, 103470.]; Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16-41.]); their pharmaco­logical activity is reflected in their presence in various therapeutic agents (Küçükgüzel & Şenkardeş, 2015[Küçükgüzel, G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786-815.]), e.g. as agents against human colon cancer, leukaemia and melanoma (Elgemeie & Mohamed-Ezzat, 2022[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00010-8.]), as anti-inflammatory agents, and in the field of anti­viral therapeutics against various targets such as CoX-1, CoX-2, NNRTI, HSV-1 and H1N1 (Khan et al., 2016[Khan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M. & Shaquiquzzaman, M. (2016). Eur. J. Med. Chem. 120, 170-201.]; Li et al., 2015[Li, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., Zheng, C. J. & Piao, H. R. (2015). Bioorg. Med. Chem. Lett. 25, 5052-5057.]). Heterocyclic compounds containing pyrazole rings are also efficacious components in many multi-component syntheses (Tu et al., 2014[Tu, X., Hao, W., Ye, Q., Wang, S., Jiang, B., Li, G. & Tu, S. (2014). J. Org. Chem. 79, 11110-11118.]); we have reported and reviewed their use as novel synthetic inter­mediates (Elgemeie et al., 2015[Elgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104-106.]; Abu-Zaied et al., 2018[Abu-Zaied, M. A. & Elgemeie, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 67-77.], 2019[Abu-Zaied, M. A. & Elgemeie, G. H. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 374-389.]; Metwally et al., 2024[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 29-33.]). We have also synthesized various pyrazole-fused heterocyclic compounds as bioactive agents acting as anti­metabolites (Elgemeie & Abu-Zaied, 2015[Elgemeie, G. & Abu-Zaied, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834-847.]; Elgemeie et al. 2017a[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.],b[Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853-5861.], 2019[Elgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20-66.]; Mohamed-Ezzat & Elgemeie, 2023[Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167-185.]).

[Scheme 1]

In this article, we report the synthesis of the title compound 7, which bears a substituted acryl­amide side chain at the 4-position of the pyrazole ring, by the reaction between 2-[(3-isobutyl-1-phenyl-1H-pyrazol-4-yl)methyl­ene]malono­nitrile 3 and N-(4-bromo­phen­yl)-2-cyano­acetamide 4 in an ethanol–water mixture in the presence of sodium hydroxide (see Fig. 1[link], where the suggested mechanism is also shown). The reaction starts by the nucleophilic attack of the active methyl­ene group of 4 at the double bond of 3 to give an inter­mediate Michael addition product 5, which eliminates malono­nitrile to give the final product 7. The structure of 7 was confirmed via spectroscopic techniques; thus, the IR spectrum indicated the presence of a characteristic NH absorption band at 3455 cm−1, and the 1H NMR spectrum revealed the presence of an NH signal at 10.36 ppm, a singlet vinylic signal at 8.10 ppm, and aromatic protons at 7.52–7.63 ppm. It is possible that compound 7 is the thermodynamically controlled product because of lower steric hindrance, and is thus formed instead of the N-aryl-2-pyridone 8 via inter­mediate 6. The structure of compound 7 has now been been unambiguously confirmed by single-crystal X-ray diffraction and is presented here.

[Figure 1]
Figure 1
The reaction scheme leading to the title compound 7.

2. Structural commentary

The structure of compound 7 is shown in Fig. 2[link], with selected mol­ecular dimensions in Table 1[link] (and hydrogen bonds in Table 2[link]); there are two independent mol­ecules in the asymmetric unit. The configuration at the double bond C10=C11 is E, with the amide and pyrazolyl groups mutually trans, which leads to short intra­molecular contacts H10⋯O1 of 2.43, 2.44 Å. The two independent mol­ecules are linked to form a dimer by hydrogen bonds of the type Namide—H⋯N≡C; the graph set is R22(12). The atom numbering of both mol­ecules is the same, but with the addition of primes (′) for the second mol­ecule. The centre of gravity of the asymmetric unit lies close to the point (0.5, 0.75, 0.5).

Table 1
Selected geometric parameters (Å, °)

N1—C5 1.357 (4) N1′—C5′ 1.343 (4)
N1—N2 1.375 (3) N1′—N2′ 1.380 (3)
N2—C3 1.317 (4) N2′—C3′ 1.324 (4)
C3—C4 1.424 (4) C3′—C4′ 1.432 (4)
C4—C5 1.392 (4) C4′—C5′ 1.390 (4)
C12—O1 1.221 (3) C12′—O1′ 1.228 (3)
C13—N3 1.145 (4) C13′—N3′ 1.155 (4)
C23—Br1 1.911 (3) C23′—Br1′ 1.906 (3)
       
C5—N1—N2 112.2 (2) C5′—N1′—N2′ 112.5 (2)
C5—N1—C14 128.3 (2) C5′—N1′—C14′ 128.5 (2)
C3—N2—N1 104.9 (2) C3′—N2′—N1′ 104.6 (2)
N2—C3—C4 111.9 (2) N2′—C3′—C4′ 111.5 (3)
C4—C3—C6 128.0 (3) C4′—C3′—C6′ 128.2 (3)
C5—C4—C3 104.5 (2) C5′—C4′—C10′ 131.0 (3)
C5—C4—C10 130.7 (3) C5′—C4′—C3′ 104.3 (2)
N1—C5—C4 106.5 (2) N1′—C5′—C4′ 107.0 (2)
C11—C10—C4 130.1 (3) C11′—C10′—C4′ 130.4 (3)
       
N2—C3—C6—C7 −107.2 (3) N2′—C3′—C6′—C7′ −102.1 (3)
C4—C3—C6—C7 73.5 (4) C4′—C3′—C6′—C7′ 78.5 (4)
C10—C11—C12—N4 156.4 (3) C10′—C11′—C12′—N4′ 155.5 (3)
C5—N1—C14—C15 10.7 (5) C5′—N1′—C14′—C15′ 23.4 (5)
N2—N1—C14—C15 −173.4 (3) N2′—N1′—C14′—C15′ −159.4 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3′ 0.82 (3) 2.31 (3) 3.107 (3) 162 (3)
N4′—H4′⋯N3 0.82 (3) 2.32 (4) 3.097 (3) 158 (4)
C15—H15⋯O1′i 0.95 2.50 3.417 (4) 162
C15′—H15′⋯O1ii 0.95 2.51 3.455 (4) 174
C16′—H16′⋯Br1iii 0.95 2.91 3.813 (3) 159
C16—H16⋯Br1′iii 0.95 2.89 3.726 (3) 148
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [x+1, y, z].
[Figure 2]
Figure 2
The structure of compound 7 in the crystal; two independent mol­ecules are linked by hydrogen bonds (shown as dashed lines). Ellipsoids represent 50% probability levels.

Bond lengths and angles may be considered normal, although the narrow angles in the pyrazole rings are necessarily reflected in some wide exocyclic angles, and the angle C4—C10—C11 is also wide. A least-squares fit of both mol­ecules (for all atoms except hydrogens; Fig. 3[link]) gave an r.m.s. deviation of 0.12 Å, with minor differences in the orientations of the isopropyl groups and the ring C14–19 (the latter involving torsion angle differences of ca 13°). This corresponds to the presence of a local twofold axis passing through the centre of gravity of the asymmetric unit. A side view of mol­ecule 1 shows that it is very roughly planar except for the isopropyl group (Fig. 4[link]). The inter­planar angles between the pyrazole ring and rings C14–C19 and C20–C25, respectively, are 10.4 (2), 22.5 (2)° in mol­ecule 1 and 10.3 (2), 8.9 (2)° in mol­ecule 2. Another factor associated with the lack of planarity is the central torsion angle of the atom sequence C4—C10—C11—C12—N4—C20, which differs by ca 24° from the 180° required for an ideally extended sequence. The geometry at the amide nitro­gen atoms is almost exactly planar (r.m.s. deviations from the best plane through the nitro­gen and its immediate substituents are 0.012 and 0.004 Å for the two mol­ecules).

[Figure 3]
Figure 3
A least-squares fit of both independent mol­ecules. The second independent mol­ecule is indicated by dashed green bonds.
[Figure 4]
Figure 4
Side view of mol­ecule 1 (hydrogen atoms omitted).

3. Supra­molecular features

The association of the two independent mol­ecules to form a hydrogen-bonded dimer was discussed in the previous section. The common hydrogen-bonding pattern for amides, with dimer formation via two N—H⋯O=C bonds, is not observed; this would require rotation around the amide C4—N12 bond to make the sequence O1=C12—N4—H4 synperiplanar rather than anti­periplanar, which would presumably involve a close approach of the bromo­phenyl and nitrile groups. There are also two pairs of ‘weak’ hydrogen bonds, namely H15⋯O1′/H15′⋯O1 and H16⋯Br1′/H16′⋯Br1 (for details see Table 2[link]). The former link the dimers to form a ribbon structure parallel to the b axis (Fig. 5[link]), whereas the latter are associated with a ribbon structure parallel to the c axis (Fig. 6[link]). The combination of the two ribbons leads to the final three-dimensional packing.

[Figure 5]
Figure 5
Packing diagram of compound 7 viewed parallel to the a axis. The dashed bonds indicate classical (thick) or ‘weak’ (thin) hydrogen bonds. For clarity, the bromo­phenyl rings have been reduced to their ipso carbon atoms and the isopropyl groups are omitted, as are the hydrogen atoms not involved in hydrogen bonding.
[Figure 6]
Figure 6
Packing diagram of compound 7 viewed parallel to the b axis. The dashed bonds indicate classical (thick) or ‘weak’ (thin) hydrogen bonds. For clarity, the isopropyl groups are omitted, as are the hydrogen atoms not involved in hydrogen bonding.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2023.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), and sought structures with pyrazole rings substituted at C4 by the group —C=C(CN)—C(=O)—N. Only one exact hit was registered: 2-cyano-3-(1-phenyl-3-(thio­phen-2-yl)-1H-pyrazol-4-yl)prop-2-enamide (YEJVES; Kariuki et al., 2022[Kariuki, B. M., Abdel-Wahab, B. F., Mohamed, H. A. & El-Hiti, G. A. (2022). Molbank, 2022, M1372.]), which has a thio­phenyl group instead of the isobutyl group in 7, and an unsubstituted amide group. It too shows the E configuration; the hydrogen bonding involves hydrogen-bonded dimers via N—H⋯O=C contacts between the two independent mol­ecules, crosslinked by further hydrogen bonds N—H⋯N≡C. There were, however, four other hits in which the substituent was involved in another ring fused with the pyrazole, e.g. methyl 5-cyano-6-oxo-3-[4-(tri­fluoro­meth­yl)phen­yl]-6,7-di­hydro-2H-pyrazolo­[3,4-b]pyridine-4-carboxyl­ate (HUVXED; Ali et al., 2013[Ali, K. A., Ragab, E. A., Mlostoń, G., Celeda, M., Linden, A. & Heimgartner, H. (2013). Helv. Chim. Acta, 96, 633-643.]).

5. Synthesis and crystallization

Synthesis of compound 3

To a solution of the pyrazole-4-carbaldehyde derivative 1 (10 mmol) in absolute ethanol (10 mL) containing 3 drops of tri­ethyl­amine, malono­nitrile 2 (10 mmol) was added, and the mixture was stirred for 5 min. The precipitate thus formed was filtered off and recrystallized from ethanol to afford compound 3 as a colourless solid in 90% yield. M.p. 442 K; IR (KBr, cm−1) ν 3132 (C—H aromatic), 2950 (CH), 2216, 2210, (2 CN), 1612 (C=N), 1594 (C=C); 1H NMR (500 MHz, DMSO-d6): δ 0.90 (d, J = 6.4 Hz, 6H, 2 × CH3), 1.94–1.96 (m, 1H, CH), 2.65 (d, J = 7.2 Hz, CH2), 7.45–7.84 (m, 5H, C6H5), 8.08 (s, 1H, vinylic H), 9.01 (s, 1H, pyrazole H-5). Analysis calculated for C17H16N4 (276.34): C 73.89, H 5.84, N 20.27. Found: C 73.80, H 5.75, N 20.18%.

Synthesis of compound 7

A solution of 2-[(3-isobutyl-1-phenyl-1H-pyrazol-4-yl)methyl­ene]malono­nitrile 3 (10 mmol) in an ethanol–water mixture (1:1) containing sodium hydroxide (10 mmol) was treated with N-(4-bromo­phen­yl)-2-cyano­acetamide 4 (10 mmol) and heated under reflux for 12 h. The reaction mixture was then cooled to ambient temperature, and the precipitate thus formed was collected by filtration, dried and recrystallized from DMSO to furnish compound 7 as colourless crystals in 95% yield. M.p. 497–499 K; IR (KBr, cm−1) ν 3455 (NH), 3045 (C—H aromatic), 2960 (CH), 2210 (CN), 1663 (C=O), 1602 (C=N), 1591 (C=C); 1H NMR (500 MHz, DMSO-d6): δ 0.93 (d, 6H, J = 6.7 Hz, 2 × CH3), 1.99–2.02 (m, 1H, CH), 2.71 (d, 2H, J = 7.15 Hz, CH2), 7.52–7.63 (m, 9H, C6H5, C6H4), 8.10 (s, 1H, vinylic-H), 9.00 (s, 1H, pyrazole H-5), 10.36 (br, s, D2O exch., 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ 22.84 (2C, 2 × CH3), 28.91 (CH), 34.3 (CH2), 103 (pyrazole C4), 115.9 (C=CH), 117.45 (CN), 119.82 (2C, Ar-C), 123.41 (2C, Ar-C), 128.15 (Ar-C), 128.74 (pyrazole-C5), 130.36 (2C, Ar-C), 132.05 (2C, Ar-C), 138.22 (2C, Ar-C), 142.15 (Ar-C), 156.28 (pyrazole-C-3), 159.112 (–CH=C), 161.01 (C=O). Analysis calculated for C23H21BrN4O (449.34): C 61.48, H 4.71, Br 17.78, N 12.47. Found: C 61.38, H 4.60, Br 17.68, N 12.38%.

6. Data collection and reduction

Most crystals were fine needles that diffracted very weakly. However, a few broader laths were found, one of which was used for the data collection despite its somewhat diffuse reflection form. The reflections found in the initial cell determination were 93% indexed using a C-centred monoclinic cell with approximate cell constants a = 35.16, b = 12.77, c = 9.22 Å, β = 97.3°. During the course of the data collection, this was automatically changed to the final triclinic cell, presumably on the basis of a prohibitively high Rint value for the monoclinic cell. A closer inspection of the complete data then revealed the twinning, and the data reduction was repeated accordingly.

7. Refinement

The structure was refined using the ‘HKLF 5’ command as a two-component non-merohedral twin (by 180° rotation around c*), whereby the relative volume of the smaller component refined to 0.2500 (8). The two largest peaks in the residual electron density (ca 1.4 e Å−3) are arithmetically related to the coordinates of the two bromine atoms and are probably attributable to residual twinning effects. As is often the case for non-merohedral twins, some intensities were badly in error; six such reflections were omitted from the refinement. Because of the special methods involved in the data reduction of non-merohedral twins, equivalent reflections were merged and R(int) is thus meaningless; because reflections from both twinning components are included, the number of reflections should be inter­preted with caution. The weighting parameters did not converge, but oscillated over a small range (e.g. the SHELXL ‘a’ parameter between 0.0504 and 0.0507); arbitrarily, we chose the former value. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C23H21BrN4O
Mr 449.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.2260 (6), 12.7703 (9), 18.6607 (13)
α, β, γ (°) 109.790 (6), 96.720 (6), 90.657 (6)
V3) 2051.4 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.90
Crystal size (mm) 0.15 × 0.08 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.778, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8658, 8658, 8436
θ values (°) θmax = 80.7, θmin = 2.5
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections 8658
No. of parameters 536
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.45, −0.75
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

The hydrogen atoms of the NH groups were refined freely, but with the N—H distances restrained to be approximately equal (command ‘SADI’). The methyl groups were included as idealized rigid groups allowed to rotate but not tip (command ‘AFIX 137’), with C—H = 0.99 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethyl­ene = 0.99, C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens.

Supporting information


Computing details top

(E)-N-(4-Bromophenyl)-2-cyano-3-[3-(2-methylpropyl)-1-phenyl-1H-pyrazol-4-yl]prop-2-enamide top
Crystal data top
C23H21BrN4OZ = 4
Mr = 449.35F(000) = 920
Triclinic, P1Dx = 1.455 Mg m3
a = 9.2260 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.7703 (9) ÅCell parameters from 28092 reflections
c = 18.6607 (13) Åθ = 4.8–80.0°
α = 109.790 (6)°µ = 2.90 mm1
β = 96.720 (6)°T = 100 K
γ = 90.657 (6)°Lath, colourless
V = 2051.4 (3) Å30.15 × 0.08 × 0.02 mm
Data collection top
XtaLAB Synergy
diffractometer
8658 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source8658 independent reflections
Mirror monochromator8436 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 80.7°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1616
Tmin = 0.778, Tmax = 1.000l = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0504P)2 + 3.4902P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
8658 reflectionsΔρmax = 1.45 e Å3
536 parametersΔρmin = 0.75 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8296 (3)0.93208 (19)0.80174 (13)0.0195 (5)
N20.8728 (3)1.0434 (2)0.83283 (14)0.0223 (5)
C30.7898 (3)1.0913 (2)0.79189 (16)0.0204 (5)
C40.6899 (3)1.0129 (2)0.73414 (15)0.0192 (5)
C50.7208 (3)0.9108 (2)0.74228 (15)0.0194 (5)
H50.6748530.8401710.7121390.023*
C60.8085 (3)1.2144 (2)0.80848 (17)0.0234 (6)
H6A0.8148651.2273620.7595120.028*
H6B0.9025401.2421390.8416530.028*
C70.6856 (4)1.2837 (3)0.84792 (18)0.0269 (6)
H70.5929451.2613730.8115980.032*
C80.6612 (5)1.2636 (3)0.9211 (2)0.0364 (8)
H8A0.6334891.1846220.9093250.055*
H8B0.5828451.3092330.9441960.055*
H8C0.7514281.2837610.9572850.055*
C90.7220 (4)1.4066 (3)0.8637 (2)0.0331 (7)
H9A0.8148661.4294490.8975520.050*
H9B0.6441921.4508260.8886170.050*
H9C0.7304561.4186010.8151900.050*
C100.5809 (3)1.0408 (2)0.68333 (15)0.0188 (5)
H100.5811561.1175480.6888730.023*
C110.4770 (3)0.9745 (2)0.62836 (16)0.0191 (5)
C120.3728 (3)1.0298 (2)0.58637 (15)0.0188 (5)
C130.4618 (3)0.8564 (2)0.60891 (16)0.0215 (6)
N30.4422 (3)0.7617 (2)0.59075 (15)0.0274 (5)
N40.3098 (3)0.9632 (2)0.51592 (14)0.0204 (5)
H40.334 (4)0.899 (3)0.497 (2)0.026 (9)*
O10.3486 (2)1.12794 (16)0.61581 (11)0.0224 (4)
C140.8933 (3)0.8565 (2)0.83581 (16)0.0217 (6)
C150.8624 (3)0.7422 (2)0.80079 (17)0.0242 (6)
H150.8017380.7133210.7529300.029*
C160.9223 (4)0.6715 (3)0.83729 (18)0.0279 (6)
H160.9017610.5933880.8140560.033*
C171.0113 (4)0.7126 (3)0.90700 (18)0.0282 (6)
H171.0500900.6630520.9316120.034*
C181.0436 (4)0.8263 (3)0.94063 (18)0.0301 (7)
H181.1057990.8547880.9880460.036*
C190.9854 (4)0.8986 (3)0.90518 (18)0.0278 (6)
H191.0080140.9764940.9280110.033*
C200.2082 (3)0.9978 (2)0.46651 (15)0.0181 (5)
C210.2181 (3)1.1050 (2)0.46342 (16)0.0197 (5)
H210.2945431.1564140.4946850.024*
C220.1169 (3)1.1369 (2)0.41490 (16)0.0211 (5)
H220.1228201.2099050.4125290.025*
C230.0071 (3)1.0600 (2)0.36994 (16)0.0205 (5)
Br10.13165 (3)1.10741 (2)0.30445 (2)0.02507 (8)
C240.0026 (3)0.9522 (2)0.37003 (17)0.0227 (6)
H240.0769160.9002630.3370750.027*
C250.0985 (3)0.9211 (2)0.41927 (16)0.0220 (6)
H250.0929150.8475720.4208020.026*
N1'0.6634 (3)0.5581 (2)0.19407 (13)0.0212 (5)
N2'0.6975 (3)0.4479 (2)0.16639 (14)0.0232 (5)
C3'0.6367 (3)0.4009 (2)0.20969 (16)0.0219 (6)
C4'0.5604 (3)0.4795 (2)0.26490 (16)0.0206 (5)
C5'0.5837 (3)0.5796 (2)0.25271 (16)0.0204 (5)
H5'0.5496380.6498000.2805810.024*
C6'0.6537 (3)0.2800 (2)0.19788 (18)0.0237 (6)
H6A'0.6758750.2715290.2487840.028*
H6B'0.7387930.2554320.1697960.028*
C7'0.5204 (4)0.2024 (3)0.15374 (18)0.0290 (7)
H7'0.4372210.2238750.1847100.035*
C8'0.4739 (6)0.2124 (4)0.0759 (2)0.0559 (13)
H8A'0.4484150.2890570.0824560.067*
H8B'0.3887530.1613780.0500550.067*
H8C'0.5544720.1930700.0446530.067*
C9'0.5519 (4)0.0823 (3)0.1454 (2)0.0364 (8)
H9A'0.5793750.0769610.1963700.044*
H9B'0.6323260.0587810.1145470.044*
H9C'0.4643450.0338820.1200150.044*
C10'0.4783 (3)0.4527 (2)0.31708 (16)0.0197 (5)
H10'0.4753590.3763010.3124490.024*
C11'0.4033 (3)0.5191 (2)0.37249 (16)0.0190 (5)
C12'0.3216 (3)0.4648 (2)0.41656 (16)0.0201 (5)
C13'0.3989 (3)0.6369 (2)0.39099 (16)0.0209 (5)
N3'0.3903 (3)0.7323 (2)0.40865 (15)0.0274 (5)
N4'0.2974 (3)0.5319 (2)0.48735 (14)0.0206 (5)
H4'0.328 (5)0.597 (3)0.504 (3)0.046 (13)*
O1'0.2807 (2)0.36590 (16)0.38837 (11)0.0221 (4)
C14'0.7091 (3)0.6320 (2)0.15749 (17)0.0227 (6)
C15'0.7193 (3)0.7463 (2)0.19677 (17)0.0234 (6)
H15'0.6968810.7757490.2479980.028*
C16'0.7630 (4)0.8168 (3)0.15950 (18)0.0276 (6)
H16'0.7708240.8950770.1856820.033*
C17'0.7951 (4)0.7743 (3)0.08488 (19)0.0288 (6)
H17'0.8242730.8232760.0599270.035*
C18'0.7847 (4)0.6603 (3)0.04658 (19)0.0322 (7)
H18'0.8077490.6313700.0045540.039*
C19'0.7409 (4)0.5874 (3)0.08222 (18)0.0290 (7)
H19'0.7327880.5092380.0557840.035*
C20'0.2234 (3)0.4972 (2)0.53829 (15)0.0184 (5)
C21'0.2400 (3)0.3921 (2)0.54385 (16)0.0199 (5)
H21'0.3024040.3423600.5130820.024*
C22'0.1665 (3)0.3593 (2)0.59383 (16)0.0216 (6)
H22'0.1769150.2872450.5973660.026*
C23'0.0771 (3)0.4338 (2)0.63876 (16)0.0207 (5)
Br1'0.02465 (4)0.38496 (3)0.70597 (2)0.02632 (8)
C24'0.0621 (3)0.5396 (2)0.63612 (17)0.0237 (6)
H24'0.0026190.5898730.6685370.028*
C25'0.1352 (3)0.5716 (2)0.58544 (17)0.0221 (6)
H25'0.1254420.6442000.5827140.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0240 (12)0.0131 (11)0.0200 (11)0.0007 (9)0.0023 (9)0.0041 (8)
N20.0240 (12)0.0152 (11)0.0244 (12)0.0013 (9)0.0012 (9)0.0032 (9)
C30.0208 (14)0.0169 (13)0.0227 (13)0.0002 (10)0.0034 (10)0.0057 (10)
C40.0204 (13)0.0170 (13)0.0200 (12)0.0001 (10)0.0030 (10)0.0060 (10)
C50.0225 (14)0.0161 (12)0.0181 (12)0.0006 (10)0.0005 (10)0.0047 (10)
C60.0225 (14)0.0172 (13)0.0283 (14)0.0035 (11)0.0002 (11)0.0061 (11)
C70.0299 (16)0.0214 (14)0.0286 (15)0.0015 (12)0.0012 (12)0.0082 (12)
C80.050 (2)0.0303 (17)0.0289 (16)0.0076 (15)0.0096 (15)0.0092 (13)
C90.0348 (18)0.0229 (15)0.0378 (17)0.0036 (13)0.0010 (14)0.0073 (13)
C100.0205 (13)0.0140 (12)0.0218 (12)0.0002 (10)0.0045 (10)0.0056 (10)
C110.0201 (13)0.0172 (13)0.0200 (12)0.0027 (10)0.0048 (10)0.0058 (10)
C120.0190 (13)0.0184 (13)0.0190 (12)0.0003 (10)0.0036 (10)0.0059 (10)
C130.0204 (14)0.0208 (14)0.0222 (13)0.0008 (11)0.0008 (10)0.0065 (11)
N30.0268 (13)0.0190 (13)0.0339 (13)0.0013 (10)0.0021 (11)0.0080 (10)
N40.0239 (12)0.0132 (11)0.0218 (11)0.0025 (9)0.0002 (9)0.0037 (9)
O10.0269 (11)0.0145 (9)0.0224 (9)0.0023 (8)0.0007 (8)0.0027 (7)
C140.0237 (14)0.0203 (14)0.0218 (13)0.0027 (11)0.0037 (11)0.0077 (11)
C150.0266 (15)0.0190 (14)0.0247 (14)0.0016 (11)0.0029 (11)0.0046 (11)
C160.0323 (17)0.0207 (14)0.0307 (15)0.0062 (12)0.0060 (13)0.0080 (12)
C170.0335 (17)0.0255 (15)0.0304 (15)0.0091 (13)0.0076 (13)0.0141 (12)
C180.0335 (17)0.0307 (16)0.0246 (14)0.0057 (13)0.0021 (12)0.0092 (12)
C190.0339 (17)0.0206 (14)0.0266 (14)0.0029 (12)0.0017 (12)0.0067 (11)
C200.0187 (13)0.0143 (12)0.0205 (12)0.0035 (10)0.0027 (10)0.0050 (10)
C210.0199 (13)0.0158 (12)0.0204 (12)0.0012 (10)0.0030 (10)0.0022 (10)
C220.0258 (15)0.0155 (12)0.0210 (13)0.0007 (11)0.0026 (11)0.0052 (10)
C230.0198 (13)0.0213 (13)0.0187 (12)0.0043 (11)0.0028 (10)0.0044 (10)
Br10.02476 (15)0.02211 (15)0.02525 (15)0.00458 (11)0.00201 (11)0.00573 (12)
C240.0220 (14)0.0188 (13)0.0247 (14)0.0009 (11)0.0003 (11)0.0050 (11)
C250.0257 (14)0.0148 (12)0.0237 (13)0.0000 (11)0.0036 (11)0.0041 (10)
N1'0.0272 (13)0.0144 (11)0.0218 (11)0.0036 (9)0.0049 (9)0.0054 (9)
N2'0.0256 (13)0.0155 (11)0.0261 (12)0.0017 (9)0.0046 (10)0.0034 (9)
C3'0.0232 (14)0.0191 (13)0.0219 (13)0.0019 (11)0.0030 (11)0.0050 (11)
C4'0.0207 (14)0.0189 (13)0.0210 (13)0.0035 (10)0.0017 (10)0.0054 (10)
C5'0.0218 (14)0.0184 (13)0.0206 (12)0.0054 (10)0.0056 (10)0.0051 (10)
C6'0.0260 (15)0.0175 (13)0.0291 (14)0.0047 (11)0.0072 (11)0.0089 (11)
C7'0.0369 (18)0.0221 (15)0.0282 (15)0.0012 (13)0.0033 (13)0.0091 (12)
C8'0.089 (4)0.038 (2)0.035 (2)0.019 (2)0.018 (2)0.0147 (17)
C9'0.043 (2)0.0219 (16)0.0423 (19)0.0015 (14)0.0102 (15)0.0075 (14)
C10'0.0214 (13)0.0161 (12)0.0207 (12)0.0008 (10)0.0011 (10)0.0057 (10)
C11'0.0185 (13)0.0154 (12)0.0219 (13)0.0010 (10)0.0002 (10)0.0059 (10)
C12'0.0196 (13)0.0183 (13)0.0212 (13)0.0018 (10)0.0017 (10)0.0056 (10)
C13'0.0212 (14)0.0196 (14)0.0223 (13)0.0015 (11)0.0037 (10)0.0073 (11)
N3'0.0300 (14)0.0213 (13)0.0323 (13)0.0024 (10)0.0089 (11)0.0093 (10)
N4'0.0250 (12)0.0136 (11)0.0221 (11)0.0015 (9)0.0054 (9)0.0040 (9)
O1'0.0274 (11)0.0142 (9)0.0223 (9)0.0023 (8)0.0034 (8)0.0032 (7)
C14'0.0242 (14)0.0211 (14)0.0240 (13)0.0011 (11)0.0044 (11)0.0090 (11)
C15'0.0274 (15)0.0198 (14)0.0221 (13)0.0014 (11)0.0018 (11)0.0067 (11)
C16'0.0309 (16)0.0209 (14)0.0295 (15)0.0058 (12)0.0014 (12)0.0087 (12)
C17'0.0325 (17)0.0258 (15)0.0300 (15)0.0031 (13)0.0011 (13)0.0132 (12)
C18'0.046 (2)0.0257 (16)0.0248 (15)0.0039 (14)0.0083 (13)0.0072 (12)
C19'0.0404 (18)0.0198 (14)0.0265 (14)0.0001 (13)0.0082 (13)0.0061 (12)
C20'0.0194 (13)0.0152 (12)0.0195 (12)0.0008 (10)0.0014 (10)0.0048 (10)
C21'0.0207 (13)0.0148 (12)0.0213 (13)0.0023 (10)0.0029 (10)0.0021 (10)
C22'0.0268 (15)0.0161 (13)0.0207 (13)0.0011 (11)0.0023 (11)0.0050 (10)
C23'0.0211 (14)0.0203 (13)0.0202 (13)0.0030 (11)0.0018 (10)0.0066 (10)
Br1'0.02965 (17)0.02193 (15)0.02696 (15)0.00282 (11)0.00926 (12)0.00613 (12)
C24'0.0242 (15)0.0217 (14)0.0235 (13)0.0035 (11)0.0059 (11)0.0048 (11)
C25'0.0255 (14)0.0134 (12)0.0268 (14)0.0033 (11)0.0029 (11)0.0063 (10)
Geometric parameters (Å, º) top
N1—C51.357 (4)C16'—C17'1.382 (5)
N1—N21.375 (3)C17'—C18'1.384 (5)
N1—C141.423 (4)C18'—C19'1.395 (4)
N2—C31.317 (4)C20'—C21'1.390 (4)
C3—C41.424 (4)C20'—C25'1.399 (4)
C3—C61.499 (4)C21'—C22'1.382 (4)
C4—C51.392 (4)C22'—C23'1.388 (4)
C4—C101.432 (4)C23'—C24'1.377 (4)
C6—C71.545 (4)C23'—Br1'1.906 (3)
C7—C81.514 (5)C24'—C25'1.386 (4)
C7—C91.521 (4)C5—H50.9500
C10—C111.361 (4)C6—H6A0.9900
C11—C131.428 (4)C6—H6B0.9900
C11—C121.500 (4)C7—H71.0000
C12—O11.221 (3)C8—H8A0.9800
C12—N41.357 (4)C8—H8B0.9800
C13—N31.145 (4)C8—H8C0.9800
N4—C201.417 (4)C9—H9A0.9800
C14—C151.392 (4)C9—H9B0.9800
C14—C191.395 (4)C9—H9C0.9800
C15—C161.387 (4)C10—H100.9500
C16—C171.386 (5)N4—H40.82 (3)
C17—C181.386 (5)C15—H150.9500
C18—C191.385 (4)C16—H160.9500
C20—C211.391 (4)C17—H170.9500
C20—C251.395 (4)C18—H180.9500
C21—C221.385 (4)C19—H190.9500
C22—C231.384 (4)C21—H210.9500
C23—C241.379 (4)C22—H220.9500
C23—Br11.911 (3)C24—H240.9500
C24—C251.388 (4)C25—H250.9500
N1'—C5'1.343 (4)C5'—H5'0.9500
N1'—N2'1.380 (3)C6'—H6A'0.9900
N1'—C14'1.425 (4)C6'—H6B'0.9900
N2'—C3'1.324 (4)C7'—H7'1.0000
C3'—C4'1.432 (4)C8'—H8A'0.9800
C3'—C6'1.497 (4)C8'—H8B'0.9800
C4'—C5'1.390 (4)C8'—H8C'0.9800
C4'—C10'1.425 (4)C9'—H9A'0.9800
C6'—C7'1.534 (4)C9'—H9B'0.9800
C7'—C8'1.514 (5)C9'—H9C'0.9800
C7'—C9'1.523 (5)C10'—H10'0.9500
C10'—C11'1.361 (4)N4'—H4'0.82 (3)
C11'—C13'1.427 (4)C15'—H15'0.9500
C11'—C12'1.498 (4)C16'—H16'0.9500
C12'—O1'1.228 (3)C17'—H17'0.9500
C12'—N4'1.355 (4)C18'—H18'0.9500
C13'—N3'1.155 (4)C19'—H19'0.9500
N4'—C20'1.413 (4)C21'—H21'0.9500
C14'—C15'1.390 (4)C22'—H22'0.9500
C14'—C19'1.393 (4)C24'—H24'0.9500
C15'—C16'1.392 (4)C25'—H25'0.9500
C5—N1—N2112.2 (2)C3—C6—H6A108.5
C5—N1—C14128.3 (2)C7—C6—H6A108.5
N2—N1—C14119.4 (2)C3—C6—H6B108.5
C3—N2—N1104.9 (2)C7—C6—H6B108.5
N2—C3—C4111.9 (2)H6A—C6—H6B107.5
N2—C3—C6120.1 (3)C8—C7—H7108.1
C4—C3—C6128.0 (3)C9—C7—H7108.1
C5—C4—C3104.5 (2)C6—C7—H7108.1
C5—C4—C10130.7 (3)C7—C8—H8A109.5
C3—C4—C10124.8 (3)C7—C8—H8B109.5
N1—C5—C4106.5 (2)H8A—C8—H8B109.5
C3—C6—C7115.1 (3)C7—C8—H8C109.5
C8—C7—C9110.8 (3)H8A—C8—H8C109.5
C8—C7—C6112.3 (3)H8B—C8—H8C109.5
C9—C7—C6109.2 (3)C7—C9—H9A109.5
C11—C10—C4130.1 (3)C7—C9—H9B109.5
C10—C11—C13123.8 (3)H9A—C9—H9B109.5
C10—C11—C12117.5 (2)C7—C9—H9C109.5
C13—C11—C12118.7 (2)H9A—C9—H9C109.5
O1—C12—N4124.3 (3)H9B—C9—H9C109.5
O1—C12—C11120.4 (2)C11—C10—H10115.0
N4—C12—C11115.3 (2)C4—C10—H10115.0
N3—C13—C11176.0 (3)C12—N4—H4121 (3)
C12—N4—C20124.9 (2)C20—N4—H4114 (3)
C15—C14—C19120.6 (3)C16—C15—H15120.7
C15—C14—N1120.3 (3)C14—C15—H15120.7
C19—C14—N1119.0 (3)C17—C16—H16119.4
C16—C15—C14118.5 (3)C15—C16—H16119.4
C17—C16—C15121.3 (3)C16—C17—H17120.2
C16—C17—C18119.7 (3)C18—C17—H17120.2
C19—C18—C17120.1 (3)C19—C18—H18120.0
C18—C19—C14119.7 (3)C17—C18—H18120.0
C21—C20—C25120.1 (3)C18—C19—H19120.1
C21—C20—N4121.4 (2)C14—C19—H19120.1
C25—C20—N4118.5 (2)C22—C21—H21119.9
C22—C21—C20120.2 (3)C20—C21—H21119.9
C23—C22—C21118.6 (3)C23—C22—H22120.7
C24—C23—C22122.5 (3)C21—C22—H22120.7
C24—C23—Br1120.1 (2)C23—C24—H24120.7
C22—C23—Br1117.4 (2)C25—C24—H24120.7
C23—C24—C25118.6 (3)C24—C25—H25120.0
C24—C25—C20120.0 (3)C20—C25—H25120.0
C5'—N1'—N2'112.5 (2)N1'—C5'—H5'126.5
C5'—N1'—C14'128.5 (2)C4'—C5'—H5'126.5
N2'—N1'—C14'118.9 (2)C3'—C6'—H6A'108.5
C3'—N2'—N1'104.6 (2)C7'—C6'—H6A'108.5
N2'—C3'—C4'111.5 (3)C3'—C6'—H6B'108.5
N2'—C3'—C6'120.3 (3)C7'—C6'—H6B'108.5
C4'—C3'—C6'128.2 (3)H6A'—C6'—H6B'107.5
C5'—C4'—C10'131.0 (3)C8'—C7'—H7'107.9
C5'—C4'—C3'104.3 (2)C9'—C7'—H7'107.9
C10'—C4'—C3'124.6 (3)C6'—C7'—H7'107.9
N1'—C5'—C4'107.0 (2)C7'—C8'—H8A'109.5
C3'—C6'—C7'115.2 (3)C7'—C8'—H8B'109.5
C8'—C7'—C9'110.5 (3)H8A'—C8'—H8B'109.5
C8'—C7'—C6'112.6 (3)C7'—C8'—H8C'109.5
C9'—C7'—C6'110.0 (3)H8A'—C8'—H8C'109.5
C11'—C10'—C4'130.4 (3)H8B'—C8'—H8C'109.5
C10'—C11'—C13'123.8 (3)C7'—C9'—H9A'109.5
C10'—C11'—C12'117.7 (2)C7'—C9'—H9B'109.5
C13'—C11'—C12'118.5 (2)H9A'—C9'—H9B'109.5
O1'—C12'—N4'124.0 (3)C7'—C9'—H9C'109.5
O1'—C12'—C11'120.5 (3)H9A'—C9'—H9C'109.5
N4'—C12'—C11'115.5 (2)H9B'—C9'—H9C'109.5
N3'—C13'—C11'176.4 (3)C11'—C10'—H10'114.8
C12'—N4'—C20'124.6 (2)C4'—C10'—H10'114.8
C15'—C14'—C19'121.5 (3)C12'—N4'—H4'120 (3)
C15'—C14'—N1'119.8 (3)C20'—N4'—H4'115 (3)
C19'—C14'—N1'118.7 (3)C14'—C15'—H15'120.7
C14'—C15'—C16'118.6 (3)C16'—C15'—H15'120.7
C17'—C16'—C15'120.8 (3)C17'—C16'—H16'119.6
C16'—C17'—C18'119.9 (3)C15'—C16'—H16'119.6
C17'—C18'—C19'120.7 (3)C16'—C17'—H17'120.1
C14'—C19'—C18'118.5 (3)C18'—C17'—H17'120.1
C21'—C20'—C25'119.7 (3)C17'—C18'—H18'119.6
C21'—C20'—N4'121.2 (2)C19'—C18'—H18'119.6
C25'—C20'—N4'119.1 (2)C14'—C19'—H19'120.8
C22'—C21'—C20'120.5 (3)C18'—C19'—H19'120.8
C21'—C22'—C23'118.7 (3)C22'—C21'—H21'119.8
C24'—C23'—C22'122.0 (3)C20'—C21'—H21'119.8
C24'—C23'—Br1'120.4 (2)C21'—C22'—H22'120.6
C22'—C23'—Br1'117.5 (2)C23'—C22'—H22'120.6
C23'—C24'—C25'119.0 (3)C23'—C24'—H24'120.5
C24'—C25'—C20'120.1 (3)C25'—C24'—H24'120.5
N1—C5—H5126.7C24'—C25'—H25'120.0
C4—C5—H5126.7C20'—C25'—H25'120.0
C5—N1—N2—C30.1 (3)C5'—N1'—N2'—C3'0.1 (3)
C14—N1—N2—C3176.7 (2)C14'—N1'—N2'—C3'177.8 (3)
N1—N2—C3—C40.7 (3)N1'—N2'—C3'—C4'1.1 (3)
N1—N2—C3—C6178.7 (2)N1'—N2'—C3'—C6'178.4 (3)
N2—C3—C4—C51.0 (3)N2'—C3'—C4'—C5'1.6 (3)
C6—C3—C4—C5178.3 (3)C6'—C3'—C4'—C5'177.8 (3)
N2—C3—C4—C10176.7 (3)N2'—C3'—C4'—C10'176.9 (3)
C6—C3—C4—C104.0 (5)C6'—C3'—C4'—C10'3.7 (5)
N2—N1—C5—C40.5 (3)N2'—N1'—C5'—C4'0.9 (3)
C14—N1—C5—C4175.6 (3)C14'—N1'—C5'—C4'176.5 (3)
C3—C4—C5—N10.9 (3)C10'—C4'—C5'—N1'176.9 (3)
C10—C4—C5—N1176.6 (3)C3'—C4'—C5'—N1'1.4 (3)
N2—C3—C6—C7107.2 (3)N2'—C3'—C6'—C7'102.1 (3)
C4—C3—C6—C773.5 (4)C4'—C3'—C6'—C7'78.5 (4)
C3—C6—C7—C854.6 (4)C3'—C6'—C7'—C8'56.1 (4)
C3—C6—C7—C9177.9 (3)C3'—C6'—C7'—C9'179.8 (3)
C5—C4—C10—C110.3 (5)C5'—C4'—C10'—C11'3.0 (5)
C3—C4—C10—C11177.4 (3)C3'—C4'—C10'—C11'178.9 (3)
C4—C10—C11—C132.5 (5)C4'—C10'—C11'—C13'2.7 (5)
C4—C10—C11—C12177.3 (3)C4'—C10'—C11'—C12'177.6 (3)
C10—C11—C12—O124.1 (4)C10'—C11'—C12'—O1'24.7 (4)
C13—C11—C12—O1155.7 (3)C13'—C11'—C12'—O1'155.5 (3)
C10—C11—C12—N4156.4 (3)C10'—C11'—C12'—N4'155.5 (3)
C13—C11—C12—N423.8 (4)C13'—C11'—C12'—N4'24.2 (4)
O1—C12—N4—C200.4 (5)O1'—C12'—N4'—C20'0.6 (5)
C11—C12—N4—C20179.9 (3)C11'—C12'—N4'—C20'179.6 (3)
C5—N1—C14—C1510.7 (5)C5'—N1'—C14'—C15'23.4 (5)
N2—N1—C14—C15173.4 (3)N2'—N1'—C14'—C15'159.4 (3)
C5—N1—C14—C19168.4 (3)C5'—N1'—C14'—C19'155.8 (3)
N2—N1—C14—C197.5 (4)N2'—N1'—C14'—C19'21.5 (4)
C19—C14—C15—C161.6 (5)C19'—C14'—C15'—C16'0.3 (5)
N1—C14—C15—C16177.6 (3)N1'—C14'—C15'—C16'179.5 (3)
C14—C15—C16—C170.2 (5)C14'—C15'—C16'—C17'0.3 (5)
C15—C16—C17—C181.0 (5)C15'—C16'—C17'—C18'0.4 (5)
C16—C17—C18—C190.9 (5)C16'—C17'—C18'—C19'0.6 (5)
C17—C18—C19—C140.4 (5)C15'—C14'—C19'—C18'0.5 (5)
C15—C14—C19—C181.7 (5)N1'—C14'—C19'—C18'179.6 (3)
N1—C14—C19—C18177.4 (3)C17'—C18'—C19'—C14'0.6 (5)
C12—N4—C20—C2134.5 (4)C12'—N4'—C20'—C21'37.1 (4)
C12—N4—C20—C25146.8 (3)C12'—N4'—C20'—C25'144.8 (3)
C25—C20—C21—C221.7 (4)C25'—C20'—C21'—C22'2.1 (4)
N4—C20—C21—C22179.7 (3)N4'—C20'—C21'—C22'179.8 (3)
C20—C21—C22—C230.1 (4)C20'—C21'—C22'—C23'0.6 (4)
C21—C22—C23—C242.0 (4)C21'—C22'—C23'—C24'1.4 (4)
C21—C22—C23—Br1179.4 (2)C21'—C22'—C23'—Br1'179.1 (2)
C22—C23—C24—C252.5 (4)C22'—C23'—C24'—C25'1.9 (4)
Br1—C23—C24—C25178.9 (2)Br1'—C23'—C24'—C25'178.6 (2)
C23—C24—C25—C200.9 (4)C23'—C24'—C25'—C20'0.4 (4)
C21—C20—C25—C241.1 (4)C21'—C20'—C25'—C24'1.5 (4)
N4—C20—C25—C24179.8 (3)N4'—C20'—C25'—C24'179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N30.82 (3)2.31 (3)3.107 (3)162 (3)
N4—H4···N30.82 (3)2.32 (4)3.097 (3)158 (4)
C15—H15···O1i0.952.503.417 (4)162
C15—H15···O1ii0.952.513.455 (4)174
C16—H16···Br1iii0.952.913.813 (3)159
C16—H16···Br1iii0.952.893.726 (3)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braun­schweig.

References

First citationAbu-Zaied, M. A. & Elgemeie, G. H. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 67–77.  Web of Science CAS PubMed Google Scholar
First citationAbu-Zaied, M. A. & Elgemeie, G. H. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 374–389.  CAS PubMed Google Scholar
First citationAli, K. A., Ragab, E. A., Mlostoń, G., Celeda, M., Linden, A. & Heimgartner, H. (2013). Helv. Chim. Acta, 96, 633–643.  CSD CrossRef CAS Google Scholar
First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.  Web of Science CrossRef CAS Google Scholar
First citationBennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M. & Faouzi, M. E. A. (2020). Bioorg. Chem. 97, 103470.  CrossRef PubMed Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. & Abu-Zaied, M. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 834–847.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104–106.  CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853–5861.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20–66.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00010-8.  Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKariuki, B. M., Abdel-Wahab, B. F., Mohamed, H. A. & El-Hiti, G. A. (2022). Molbank, 2022, M1372.  CSD CrossRef Google Scholar
First citationKhan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M. & Shaquiquzzaman, M. (2016). Eur. J. Med. Chem. 120, 170–201.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKüçükgüzel, G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786–815.  PubMed Google Scholar
First citationLi, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., Zheng, C. J. & Piao, H. R. (2015). Bioorg. Med. Chem. Lett. 25, 5052–5057.  CrossRef CAS PubMed Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 29–33.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167–185.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTu, X., Hao, W., Ye, Q., Wang, S., Jiang, B., Li, G. & Tu, S. (2014). J. Org. Chem. 79, 11110–11118.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds