research communications
Z)-4-({[2-(benzo[b]thiophen-3-yl)cyclopent-1-en-1-yl]methyl}(phenyl)amino)-4-oxobut-2-enoic acid
and Hirshfeld surface analysis of (aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C24H21NO3S, the cyclopentene ring adopts an In the crystal, molecules are linked by C—H⋯π interactions, forming ribbons along the a axis. Intermolecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (01) plane. The molecular packing is strengthened by van der Waals interactions between the layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.
Keywords: crystal structure; acylation; thienylallylamine; maleic acid amide; weak interaction; Hirshfeld surface analysis.
CCDC reference: 2348265
1. Chemical context
Of particular practical value in chemistry are multicomponent approaches based on cycloaddition reactions, which make it possible to selectively increase the functional periphery around a heterocyclic scaffold in two to four simple steps while achieving high structural and stereochemical diversity of the products. At the same time, of additional interest is the strategy of the method for preparing heterocyclic assemblies based on the intramolecular cyclocondensation of 3-(hetaryl)allylamines under the action of unsaturated acid et al., 2022). This work is a continuation of studies on the mechanism of the tandem acylation/[4 + 2]-cycloaddition reaction between 3-(hetaryl)allylamines and maleic anhydride as an example of the IMDAV approach (Horak et al., 2015, 2017; Nadirova et al., 2020; Zubkov et al., 2016; Yakovleva et al., 2024). On the other hand, functionalization of with multiple coordination centres can be used as an important synthetic strategy for the preparation of new functional materials (Akbari Afkhami et al., 2017; Abdelhamid et al., 2011; Khalilov et al., 2021; Safavora et al., 2019). In fact, those substituents or functional groups can participate in various sorts of intermolecular interactions (Gurbanov et al., 2018, 2020, 2022a,b; Kopylovich et al., 2011a,b,c; Mahmudov et al., 2013, 2021), which improve the function of supramolecular networks. The co-operation of weak interactions with the coordination bond in N-donating ligands can be used in the crystal engineering of tectons (Aliyeva et al., 2024; Mahmoudi et al., 2017a,b, 2019, 2021). Benzothienylallylamine 1 (Yakovleva et al., 2024) is able to readily react with maleic anhydride providing a mixture of products 2 and 3 in nearly quantitative yield. The synthesis and spectral data for the major adduct 3 have been published previously (Yakovleva et al., 2024), but the minor amide 2 could not be isolated and characterized because of its high tendency to spontaneously cyclize with the formation of 3 (Fig. 1). In this work, under mild reaction conditions, we successfully isolated and characterized the intermediate maleic amide 2. Detection of amide 2 confirms directly an assumption that the IMDAV reaction begins with an acylation step followed by an intramolecular [4 + 2]-cycloaddition.
– the IMDAV reaction (the IntraMolecular Diels–Alder reaction in Vinylarenes) (Krishna2. Structural commentary
As can be seen in Fig. 2, the nine-membered ring system (S1/C2/C3/C3A/C4-C7/C7A) of the molecule is essentially planar (r.m.s. deviation = 0.002 Å), while the cyclopentene ring (C11–C15) adopts an with the C14 atom as the flap [puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.200 (3) Å and φ(2) = 103.3 (7)°]. The nine-membered ring system makes an angle of 66.00 (11)° with the r.m.s. plane of the cyclopentene ring. These planes make angles of 61.68 (10) and 64.83 (12)° with the phenyl ring, respectively. The C12—C11—C1—N5, C11—C1—N5—C24, C11—C1—N5—C31, N5—C24—C23—C22, O28—C24—C23—C22, C23—C22—C21—O2 and C23—C22—C21—O29 torsion angles are 117.2 (2), 102.2 (2), −80.0 (2), −177.6 (2), 3.1 (4), −179.9 (3) and 0.3 (5)°, respectively. The bond length and angle values of the title molecule are comparable to those of the molecules in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
The molecular conformation remains stable via an intramolecular O29—H29⋯O28 hydrogen bond, which forms a ring with an S(7) motif, and an intramolecular C2—H2A⋯Cg4 interaction (Table 1 and Fig. 2) (Bernstein et al., 1995; Cg4 is the centroid of the C31–C36 ring). In the crystal, molecules are linked by C—H⋯π interactions, forming ribbons along the a axis. Intermolecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (01) plane. The molecular packing is strengthened by van der Waals interactions between the layers (Table 1 and Figs. 3, 4 and 5).
CrystalExplorer17.5 (Spackman et al., 2021) was used to compute the Hirshfeld surfaces and the two-dimensional fingerprints of the title molecule. The dnorm mappings were performed in the range from −0.1088 (red) to +1.5482 (blue) a.u., on the dnorm surfaces, allowing the location of the C—H⋯O and C—H⋯π interactions (Table 1 and Fig. 6).
The fingerprint plots (Fig. 7) show that H⋯H [Fig. 7(b); 46.0%], C⋯H/H⋯C [Fig. 7(c); 21.1%], O⋯H/H⋯O [Fig. 7(d); 20.6%] and S⋯H/H⋯S [Fig. 7(e); 9.0%] interactions have the greatest contributions to the surface contacts. The crystal packing is additionally influenced by C⋯C (2.2%), O⋯O (0.4%), O⋯C/C⋯O (0.3%), N⋯C/C⋯C (0.2%), S⋯C/C⋯S (0.1%) and S⋯O/O⋯S (0.1%) interactions. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S interactions indicates that van der Waals interactions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the 1-benzothiophene unit yielded three compounds related to the title compound, viz. CSD refcode WOJBII (Kaur et al., 2014), GAPZOO (Inaç et al., 2012) and EYISEK (Sonar et al., 2004).
In WOJBII, an intramolecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, very weak aromatic π–π stacking interactions [centroid–centroid separation = 3.9009 (10) Å] are observed. In GAPZOO, the molecular conformation features a short C—H⋯N contact. There are no significant intermolecular contacts. In EYISEK, intermolecular hydrogen bonding exists between the imino H atom and the Cl atoms, and gives rise to chains of molecules extending in the c direction. contribute to the stabilization of the crystal structure.
5. Synthesis and crystallization
Maleic anhydride (0.12 g, 1.3 mmol) was added to a solution of the corresponding allylamine 1 (0.37 g, 1.2 mmol) in benzene (10 ml). The resulting mixture was stirred for 6 h at room temperature. The resulting precipitate was filtered off, washed with benzene (5 ml), diethyl ether (2 × 5 ml) and air dried to give acid 3 (0.27 g, 74%) as a colourless solid (for full characteristics, see Yakovleva et al., 2024). The mother liquor was mixed with C2H5OH (5 ml) and the precipitate was filtered off, washed with benzene (5 ml), diethyl ether (2 × 5 ml) and air dried to give the title compound 2 as a colourless powder (yield 18%, 0.09 g; m.p. 400–402 K). IR (KBr), ν (cm−1): 3032 (OH), 1734 (CO2), 1669 (N—C=O). 1H NMR (600.2 MHz, DMSO-d6, 298 K): δ (J, Hz) 12.71 (s, 1H, CO2H), 7.93 (d, J = 8.1, 1H, H-Ar), 7.35–7.09 (m, 8H, H-Ar), 6.84 (s, 1H, H-2 benzothiophene), 6.37 (d, J = 12.1, 1H, H-2 CH=CH), 5.71 (d, J = 12.1, 1H, H-2 CH=CH), 4.36 (br s, 2H, NCH2), 2.66–2.62 (m, 4H, H-3, H-5), 1.93 (pent, J = 7.6, 2H, H-4). 13C {1H} NMR (150.9 MHz, DMSO-d6, 298 K): δ 166.0, 162.0, 140.4, 139.1, 138.5, 136.2, 135.2, 133.3, 132.1, 128.9 (2C), 128.0, 124.4, 124.3, 123.2, 122.8, 122.2, 119.0, 118.0 (2C), 52.9, 34.0, 31.7, 21.1. MS (ESI) m/z: [M + H]+ 404. Elemental analysis calculated (%) for C24H21NO3S: C 71.44, H 5.25, N 3.47, S 7.95; found: C 71.40, H 5.35, N 3.55, S, 7.91.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The O-bound H atom was located in difference Fourier maps [O29—H29 = 0.93 (4) Å] and refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2348265
https://doi.org/10.1107/S2056989024003232/nx2009sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024003232/nx2009Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024003232/nx2009Isup3.cml
C24H21NO3S | Z = 2 |
Mr = 403.48 | F(000) = 424 |
Triclinic, P1 | Dx = 1.289 Mg m−3 |
a = 9.4270 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4386 (4) Å | Cell parameters from 2139 reflections |
c = 12.3849 (7) Å | θ = 2.7–21.1° |
α = 95.392 (3)° | µ = 0.18 mm−1 |
β = 96.849 (3)° | T = 296 K |
γ = 106.512 (3)° | Fragment, colourless |
V = 1039.49 (9) Å3 | 0.32 × 0.26 × 0.22 mm |
Bruker Kappa APEXII area-detector diffractometer | 2579 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 27.5°, θmin = 4.3° |
Tmin = 0.882, Tmax = 0.961 | h = −12→12 |
13624 measured reflections | k = −12→12 |
4758 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1315P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
4758 reflections | Δρmax = 0.21 e Å−3 |
266 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.87037 (7) | 0.68170 (6) | 0.61573 (5) | 0.0594 (2) | |
O21 | 0.1824 (3) | −0.0483 (2) | −0.14619 (18) | 0.1267 (9) | |
O28 | 0.3378 (2) | 0.04844 (18) | 0.20444 (14) | 0.0791 (6) | |
O29 | 0.1793 (3) | −0.0840 (2) | 0.0262 (2) | 0.1150 (9) | |
H29 | 0.224 (5) | −0.045 (4) | 0.098 (3) | 0.158 (16)* | |
N5 | 0.51977 (19) | 0.26204 (18) | 0.26864 (14) | 0.0485 (5) | |
C1 | 0.5116 (2) | 0.2342 (2) | 0.38357 (17) | 0.0521 (6) | |
H1A | 0.415584 | 0.163072 | 0.386915 | 0.063* | |
H1B | 0.517549 | 0.326562 | 0.428083 | 0.063* | |
C2 | 0.8233 (2) | 0.5180 (2) | 0.52668 (18) | 0.0512 (6) | |
H2A | 0.830032 | 0.515746 | 0.452274 | 0.061* | |
C3A | 0.7750 (2) | 0.4286 (2) | 0.68961 (17) | 0.0406 (5) | |
C3 | 0.7756 (2) | 0.3932 (2) | 0.57416 (17) | 0.0424 (5) | |
C4 | 0.7341 (2) | 0.3332 (2) | 0.76803 (19) | 0.0500 (6) | |
H4A | 0.699452 | 0.230472 | 0.747835 | 0.060* | |
C5 | 0.7460 (3) | 0.3934 (3) | 0.8750 (2) | 0.0671 (7) | |
H5A | 0.718992 | 0.330231 | 0.927272 | 0.080* | |
C6 | 0.7974 (3) | 0.5468 (3) | 0.9073 (2) | 0.0763 (8) | |
H6A | 0.805046 | 0.584341 | 0.980612 | 0.092* | |
C7A | 0.8246 (2) | 0.5832 (2) | 0.72381 (18) | 0.0466 (5) | |
C7 | 0.8367 (3) | 0.6423 (3) | 0.8327 (2) | 0.0630 (7) | |
H7A | 0.870953 | 0.744824 | 0.854184 | 0.076* | |
C11 | 0.6337 (2) | 0.1755 (2) | 0.43046 (17) | 0.0436 (5) | |
C12 | 0.7407 (2) | 0.2407 (2) | 0.51466 (16) | 0.0426 (5) | |
C13 | 0.8318 (3) | 0.1381 (2) | 0.54573 (19) | 0.0552 (6) | |
H13A | 0.806912 | 0.098031 | 0.612696 | 0.066* | |
H13B | 0.938174 | 0.189892 | 0.555652 | 0.066* | |
C14 | 0.7866 (3) | 0.0148 (2) | 0.4478 (2) | 0.0598 (6) | |
H14A | 0.861755 | 0.031363 | 0.399435 | 0.072* | |
H14B | 0.775219 | −0.081812 | 0.472422 | 0.072* | |
C15 | 0.6382 (3) | 0.0221 (2) | 0.38884 (19) | 0.0554 (6) | |
H15A | 0.635418 | 0.009946 | 0.309899 | 0.066* | |
H15B | 0.554836 | −0.054219 | 0.407358 | 0.066* | |
C21 | 0.2336 (4) | −0.0081 (3) | −0.0502 (3) | 0.0835 (9) | |
C22 | 0.3591 (3) | 0.1295 (3) | −0.0208 (2) | 0.0683 (7) | |
H22A | 0.388556 | 0.174848 | −0.081361 | 0.082* | |
C23 | 0.4395 (3) | 0.2030 (3) | 0.07372 (19) | 0.0645 (7) | |
H23A | 0.513533 | 0.290349 | 0.068407 | 0.077* | |
C24 | 0.4279 (3) | 0.1656 (2) | 0.18604 (19) | 0.0556 (6) | |
C31 | 0.6267 (2) | 0.3994 (2) | 0.25315 (16) | 0.0423 (5) | |
C32 | 0.7609 (3) | 0.3991 (2) | 0.22026 (18) | 0.0520 (6) | |
H32A | 0.784507 | 0.310332 | 0.207993 | 0.062* | |
C33 | 0.8601 (3) | 0.5327 (3) | 0.2057 (2) | 0.0636 (7) | |
H33A | 0.949957 | 0.533354 | 0.181491 | 0.076* | |
C34 | 0.8276 (3) | 0.6634 (3) | 0.2264 (2) | 0.0708 (8) | |
H34A | 0.895368 | 0.752805 | 0.216795 | 0.085* | |
C35 | 0.6957 (4) | 0.6629 (3) | 0.2613 (2) | 0.0696 (8) | |
H35A | 0.674317 | 0.752324 | 0.276532 | 0.083* | |
C36 | 0.5938 (3) | 0.5303 (2) | 0.2740 (2) | 0.0593 (6) | |
H36A | 0.503131 | 0.530002 | 0.296694 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0715 (4) | 0.0433 (3) | 0.0593 (4) | 0.0106 (3) | 0.0078 (3) | 0.0104 (3) |
O21 | 0.177 (2) | 0.0925 (15) | 0.0651 (15) | −0.0041 (15) | −0.0275 (15) | −0.0161 (12) |
O28 | 0.0936 (13) | 0.0594 (10) | 0.0586 (12) | −0.0113 (10) | −0.0108 (10) | 0.0158 (9) |
O29 | 0.155 (2) | 0.0688 (13) | 0.0749 (16) | −0.0215 (13) | −0.0289 (15) | 0.0109 (12) |
N5 | 0.0521 (11) | 0.0506 (10) | 0.0382 (11) | 0.0113 (9) | −0.0011 (9) | 0.0063 (8) |
C1 | 0.0502 (14) | 0.0593 (13) | 0.0408 (14) | 0.0087 (11) | 0.0033 (11) | 0.0057 (11) |
C2 | 0.0588 (14) | 0.0500 (12) | 0.0416 (13) | 0.0111 (11) | 0.0064 (11) | 0.0088 (10) |
C3A | 0.0347 (11) | 0.0445 (11) | 0.0423 (13) | 0.0121 (9) | 0.0037 (9) | 0.0067 (9) |
C3 | 0.0408 (12) | 0.0462 (11) | 0.0382 (13) | 0.0111 (10) | 0.0022 (10) | 0.0069 (9) |
C4 | 0.0525 (14) | 0.0518 (12) | 0.0486 (15) | 0.0157 (11) | 0.0138 (11) | 0.0124 (11) |
C5 | 0.0861 (19) | 0.0754 (17) | 0.0500 (17) | 0.0312 (15) | 0.0246 (14) | 0.0196 (13) |
C6 | 0.106 (2) | 0.0870 (19) | 0.0440 (16) | 0.0427 (18) | 0.0152 (15) | −0.0004 (14) |
C7A | 0.0470 (13) | 0.0486 (12) | 0.0440 (14) | 0.0162 (10) | 0.0031 (10) | 0.0043 (10) |
C7 | 0.0771 (18) | 0.0578 (14) | 0.0537 (17) | 0.0250 (13) | 0.0048 (14) | −0.0032 (13) |
C11 | 0.0491 (13) | 0.0439 (11) | 0.0344 (12) | 0.0075 (10) | 0.0067 (10) | 0.0075 (9) |
C12 | 0.0490 (13) | 0.0414 (10) | 0.0356 (12) | 0.0090 (10) | 0.0088 (10) | 0.0082 (9) |
C13 | 0.0633 (15) | 0.0535 (12) | 0.0488 (15) | 0.0192 (12) | 0.0022 (12) | 0.0097 (11) |
C14 | 0.0716 (17) | 0.0466 (12) | 0.0604 (16) | 0.0185 (12) | 0.0070 (13) | 0.0048 (11) |
C15 | 0.0676 (16) | 0.0461 (12) | 0.0449 (14) | 0.0082 (11) | 0.0034 (12) | 0.0025 (10) |
C21 | 0.119 (3) | 0.0541 (15) | 0.060 (2) | 0.0158 (16) | −0.0188 (19) | −0.0045 (15) |
C22 | 0.091 (2) | 0.0615 (15) | 0.0466 (16) | 0.0204 (14) | −0.0031 (14) | 0.0054 (12) |
C23 | 0.0765 (18) | 0.0586 (14) | 0.0455 (16) | 0.0042 (13) | −0.0044 (13) | 0.0097 (12) |
C24 | 0.0632 (15) | 0.0500 (13) | 0.0474 (15) | 0.0120 (12) | −0.0043 (12) | 0.0070 (11) |
C31 | 0.0476 (13) | 0.0441 (11) | 0.0350 (12) | 0.0171 (10) | −0.0016 (10) | 0.0041 (9) |
C32 | 0.0549 (15) | 0.0567 (13) | 0.0479 (14) | 0.0254 (12) | 0.0006 (12) | 0.0062 (11) |
C33 | 0.0462 (14) | 0.0824 (18) | 0.0582 (17) | 0.0130 (13) | 0.0005 (12) | 0.0180 (14) |
C34 | 0.075 (2) | 0.0585 (16) | 0.0597 (18) | −0.0027 (14) | −0.0144 (15) | 0.0168 (13) |
C35 | 0.095 (2) | 0.0478 (14) | 0.0624 (18) | 0.0272 (15) | −0.0095 (16) | 0.0012 (12) |
C36 | 0.0627 (15) | 0.0587 (14) | 0.0608 (16) | 0.0286 (13) | 0.0033 (13) | 0.0051 (12) |
S1—C2 | 1.725 (2) | C11—C15 | 1.505 (3) |
S1—C7A | 1.728 (2) | C12—C13 | 1.512 (3) |
O21—C21 | 1.210 (3) | C13—C14 | 1.529 (3) |
O28—C24 | 1.247 (3) | C13—H13A | 0.9700 |
O29—C21 | 1.305 (4) | C13—H13B | 0.9700 |
O29—H29 | 0.93 (4) | C14—C15 | 1.522 (3) |
N5—C24 | 1.338 (3) | C14—H14A | 0.9700 |
N5—C31 | 1.443 (3) | C14—H14B | 0.9700 |
N5—C1 | 1.478 (3) | C15—H15A | 0.9700 |
C1—C11 | 1.495 (3) | C15—H15B | 0.9700 |
C1—H1A | 0.9700 | C21—C22 | 1.468 (4) |
C1—H1B | 0.9700 | C22—C23 | 1.329 (3) |
C2—C3 | 1.352 (3) | C22—H22A | 0.9300 |
C2—H2A | 0.9300 | C23—C24 | 1.476 (3) |
C3A—C4 | 1.399 (3) | C23—H23A | 0.9300 |
C3A—C7A | 1.406 (3) | C31—C36 | 1.367 (3) |
C3A—C3 | 1.439 (3) | C31—C32 | 1.375 (3) |
C3—C12 | 1.482 (3) | C32—C33 | 1.382 (3) |
C4—C5 | 1.370 (3) | C32—H32A | 0.9300 |
C4—H4A | 0.9300 | C33—C34 | 1.362 (3) |
C5—C6 | 1.391 (3) | C33—H33A | 0.9300 |
C5—H5A | 0.9300 | C34—C35 | 1.363 (4) |
C6—C7 | 1.361 (4) | C34—H34A | 0.9300 |
C6—H6A | 0.9300 | C35—C36 | 1.380 (4) |
C7A—C7 | 1.389 (3) | C35—H35A | 0.9300 |
C7—H7A | 0.9300 | C36—H36A | 0.9300 |
C11—C12 | 1.326 (3) | ||
C2—S1—C7A | 90.81 (10) | C14—C13—H13B | 111.1 |
C21—O29—H29 | 116 (2) | H13A—C13—H13B | 109.0 |
C24—N5—C31 | 123.48 (18) | C15—C14—C13 | 105.85 (18) |
C24—N5—C1 | 120.39 (19) | C15—C14—H14A | 110.6 |
C31—N5—C1 | 116.08 (16) | C13—C14—H14A | 110.6 |
N5—C1—C11 | 112.78 (18) | C15—C14—H14B | 110.6 |
N5—C1—H1A | 109.0 | C13—C14—H14B | 110.6 |
C11—C1—H1A | 109.0 | H14A—C14—H14B | 108.7 |
N5—C1—H1B | 109.0 | C11—C15—C14 | 103.55 (17) |
C11—C1—H1B | 109.0 | C11—C15—H15A | 111.1 |
H1A—C1—H1B | 107.8 | C14—C15—H15A | 111.1 |
C3—C2—S1 | 114.34 (17) | C11—C15—H15B | 111.1 |
C3—C2—H2A | 122.8 | C14—C15—H15B | 111.1 |
S1—C2—H2A | 122.8 | H15A—C15—H15B | 109.0 |
C4—C3A—C7A | 118.37 (19) | O21—C21—O29 | 121.5 (3) |
C4—C3A—C3 | 129.57 (19) | O21—C21—C22 | 118.3 (3) |
C7A—C3A—C3 | 112.06 (18) | O29—C21—C22 | 120.2 (2) |
C2—C3—C3A | 111.32 (18) | C23—C22—C21 | 133.7 (3) |
C2—C3—C12 | 123.2 (2) | C23—C22—H22A | 113.2 |
C3A—C3—C12 | 125.29 (18) | C21—C22—H22A | 113.2 |
C5—C4—C3A | 119.1 (2) | C22—C23—C24 | 129.1 (2) |
C5—C4—H4A | 120.5 | C22—C23—H23A | 115.5 |
C3A—C4—H4A | 120.5 | C24—C23—H23A | 115.5 |
C4—C5—C6 | 121.6 (2) | O28—C24—N5 | 120.6 (2) |
C4—C5—H5A | 119.2 | O28—C24—C23 | 122.1 (2) |
C6—C5—H5A | 119.2 | N5—C24—C23 | 117.3 (2) |
C7—C6—C5 | 120.7 (2) | C36—C31—C32 | 120.5 (2) |
C7—C6—H6A | 119.7 | C36—C31—N5 | 118.8 (2) |
C5—C6—H6A | 119.7 | C32—C31—N5 | 120.68 (18) |
C7—C7A—C3A | 121.8 (2) | C31—C32—C33 | 119.0 (2) |
C7—C7A—S1 | 126.71 (17) | C31—C32—H32A | 120.5 |
C3A—C7A—S1 | 111.46 (16) | C33—C32—H32A | 120.5 |
C6—C7—C7A | 118.5 (2) | C34—C33—C32 | 120.6 (2) |
C6—C7—H7A | 120.8 | C34—C33—H33A | 119.7 |
C7A—C7—H7A | 120.8 | C32—C33—H33A | 119.7 |
C12—C11—C1 | 126.95 (18) | C33—C34—C35 | 119.9 (2) |
C12—C11—C15 | 112.06 (18) | C33—C34—H34A | 120.1 |
C1—C11—C15 | 120.81 (18) | C35—C34—H34A | 120.1 |
C11—C12—C3 | 127.71 (18) | C34—C35—C36 | 120.3 (2) |
C11—C12—C13 | 111.02 (17) | C34—C35—H35A | 119.8 |
C3—C12—C13 | 121.27 (17) | C36—C35—H35A | 119.8 |
C12—C13—C14 | 103.43 (17) | C31—C36—C35 | 119.6 (2) |
C12—C13—H13A | 111.1 | C31—C36—H36A | 120.2 |
C14—C13—H13A | 111.1 | C35—C36—H36A | 120.2 |
C12—C13—H13B | 111.1 | ||
C24—N5—C1—C11 | 102.2 (2) | C2—C3—C12—C13 | 115.1 (2) |
C31—N5—C1—C11 | −80.0 (2) | C3A—C3—C12—C13 | −59.9 (3) |
C7A—S1—C2—C3 | −0.32 (18) | C11—C12—C13—C14 | 13.8 (3) |
S1—C2—C3—C3A | 0.4 (2) | C3—C12—C13—C14 | −165.47 (19) |
S1—C2—C3—C12 | −175.16 (15) | C12—C13—C14—C15 | −19.8 (2) |
C4—C3A—C3—C2 | −179.9 (2) | C12—C11—C15—C14 | −10.9 (3) |
C7A—C3A—C3—C2 | −0.4 (2) | C1—C11—C15—C14 | 173.7 (2) |
C4—C3A—C3—C12 | −4.4 (3) | C13—C14—C15—C11 | 18.7 (2) |
C7A—C3A—C3—C12 | 175.13 (19) | O21—C21—C22—C23 | −179.9 (3) |
C7A—C3A—C4—C5 | −0.9 (3) | O29—C21—C22—C23 | 0.3 (5) |
C3—C3A—C4—C5 | 178.6 (2) | C21—C22—C23—C24 | 0.9 (5) |
C3A—C4—C5—C6 | 0.1 (4) | C31—N5—C24—O28 | 179.9 (2) |
C4—C5—C6—C7 | 0.5 (4) | C1—N5—C24—O28 | −2.5 (3) |
C4—C3A—C7A—C7 | 1.3 (3) | C31—N5—C24—C23 | 0.6 (3) |
C3—C3A—C7A—C7 | −178.3 (2) | C1—N5—C24—C23 | 178.22 (19) |
C4—C3A—C7A—S1 | 179.73 (15) | C22—C23—C24—O28 | 3.1 (4) |
C3—C3A—C7A—S1 | 0.1 (2) | C22—C23—C24—N5 | −177.6 (2) |
C2—S1—C7A—C7 | 178.4 (2) | C24—N5—C31—C36 | 102.1 (2) |
C2—S1—C7A—C3A | 0.09 (16) | C1—N5—C31—C36 | −75.6 (2) |
C5—C6—C7—C7A | −0.1 (4) | C24—N5—C31—C32 | −79.3 (3) |
C3A—C7A—C7—C6 | −0.8 (3) | C1—N5—C31—C32 | 103.1 (2) |
S1—C7A—C7—C6 | −178.9 (2) | C36—C31—C32—C33 | −1.8 (3) |
N5—C1—C11—C12 | 117.2 (2) | N5—C31—C32—C33 | 179.64 (19) |
N5—C1—C11—C15 | −68.1 (3) | C31—C32—C33—C34 | 1.8 (3) |
C1—C11—C12—C3 | −7.6 (4) | C32—C33—C34—C35 | −0.4 (4) |
C15—C11—C12—C3 | 177.3 (2) | C33—C34—C35—C36 | −1.0 (4) |
C1—C11—C12—C13 | 173.2 (2) | C32—C31—C36—C35 | 0.4 (3) |
C15—C11—C12—C13 | −1.9 (3) | N5—C31—C36—C35 | 179.0 (2) |
C2—C3—C12—C11 | −64.0 (3) | C34—C35—C36—C31 | 1.0 (4) |
C3A—C3—C12—C11 | 121.0 (2) |
Cg3 and Cg4 are the centroids of the benzene ring (C3A/C4–C7/C7A) of the nine-membered ring system (S1/C2-C3/C3A/C4–C7/C7A) and the phenyl ring (C31–C36), respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O29—H29···O28 | 0.93 (4) | 1.60 (4) | 2.510 (3) | 164 (4) |
C32—H32A···O21i | 0.93 | 2.63 | 3.556 (3) | 171 |
C2—H2A···Cg4 | 0.93 | 2.72 | 3.579 (2) | 154 |
C33—H33A···Cg3ii | 0.93 | 2.54 | 3.408 (3) | 155 |
C33—H33A···Cg5ii | 0.93 | 2.64 | 3.353 (3) | 133 |
C36—H36A···Cg3iii | 0.93 | 2.79 | 3.535 (3) | 138 |
C36—H36A···Cg5iii | 0.93 | 2.75 | 3.623 (3) | 157 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-23-00179/). This work has also been supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. EDY and ERS thank the Common Use Center `Physical and Chemical Research of New Materials, Substances and Catalytic Systems'. The contributions of the authors are as follows: conceptualization, MA and AB; synthesis, EDY and ERS; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) EDY, ERS, MSG, KIH and NDS; funding acquisition, EY and ES; supervision, MA and AB.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501. Web of Science CSD CrossRef CAS Google Scholar
Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106. Web of Science CSD CrossRef CAS Google Scholar
Inaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952. CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764–773. Web of Science CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863. CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. A Eur. J. 27, 14370–14389. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Nadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196–2223. CAS Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o550–o551. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643–2653. CSD CrossRef CAS PubMed Google Scholar
Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.