research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thio­phen-3-yl)cyclo­pent-1-en-1-yl]meth­yl}(phen­yl)amino)-4-oxobut-2-enoic acid

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 8 April 2024; accepted 15 April 2024; online 26 April 2024)

In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons along the a axis. Inter­molecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0[\overline{1}]1) plane. The mol­ecular packing is strengthened by van der Waals inter­actions between the layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.

1. Chemical context

Of particular practical value in chemistry are multicomponent approaches based on cyclo­addition reactions, which make it possible to selectively increase the functional periphery around a heterocyclic scaffold in two to four simple steps while achieving high structural and stereochemical diversity of the products. At the same time, of additional inter­est is the strategy of the method for preparing heterocyclic assemblies based on the intra­molecular cyclo­condensation of 3-(hetar­yl)allyl­amines under the action of unsaturated acid anhydrides – the IMDAV reaction (the IntraMolecular Diels–Alder reaction in Vinyl­arenes) (Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]). This work is a continuation of studies on the mechanism of the tandem acyl­ation/[4 + 2]-cyclo­addition reaction between 3-(hetar­yl)allyl­amines and maleic anhydride as an example of the IMDAV approach (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.], 2017[Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103-4106.]; Nadirova et al., 2020[Nadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196-2223.]; Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]; Yakovleva et al., 2024[Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643-2653.]). On the other hand, functionalization of amines with multiple coordination centres can be used as an important synthetic strategy for the preparation of new functional materials (Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). In fact, those substituents or functional groups can participate in various sorts of inter­molecular inter­actions (Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.], 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764-773.],c[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175-180.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. A Eur. J. 27, 14370-14389.]), which improve the function of supra­molecular networks. The co-operation of weak inter­actions with the coordination bond in N-donating ligands can be used in the crystal engineering of tectons (Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]). Benzothienyl­allyl­amine 1 (Yakovleva et al., 2024[Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643-2653.]) is able to readily react with maleic anhydride providing a mixture of products 2 and 3 in nearly qu­anti­tative yield. The synthesis and spectral data for the major adduct 3 have been published previously (Yakovleva et al., 2024[Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643-2653.]), but the minor amide 2 could not be isolated and characterized because of its high tendency to spontaneously cyclize with the formation of 3 (Fig. 1[link]). In this work, under mild reaction conditions, we successfully isolated and characterized the inter­mediate maleic amide 2. Detection of amide 2 confirms directly an assumption that the IMDAV reaction begins with an acyl­ation step followed by an intra­molecular [4 + 2]-cyclo­addition.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 2.

2. Structural commentary

As can be seen in Fig. 2[link], the nine-membered ring system (S1/C2/C3/C3A/C4-C7/C7A) of the mol­ecule is essentially planar (r.m.s. deviation = 0.002 Å), while the cyclopentene ring (C11–C15) adopts an envelope conformation, with the C14 atom as the flap [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are Q(2) = 0.200 (3) Å and φ(2) = 103.3 (7)°]. The nine-membered ring system makes an angle of 66.00 (11)° with the r.m.s. plane of the cyclopentene ring. These planes make angles of 61.68 (10) and 64.83 (12)° with the phenyl ring, respectively. The C12—C11—C1—N5, C11—C1—N5—C24, C11—C1—N5—C31, N5—C24—C23—C22, O28—C24—C23—C22, C23—C22—C21—O2 and C23—C22—C21—O29 torsion angles are 117.2 (2), 102.2 (2), −80.0 (2), −177.6 (2), 3.1 (4), −179.9 (3) and 0.3 (5)°, respectively. The bond length and angle values of the title mol­ecule are comparable to those of the mol­ecules in the Database survey section.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The mol­ecular conformation remains stable via an intra­molecular O29—H29⋯O28 hydrogen bond, which forms a ring with an S(7) motif, and an intra­molecular C2—H2ACg4 inter­action (Table 1[link] and Fig. 2[link]) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Cg4 is the centroid of the C31–C36 ring). In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons along the a axis. Inter­molecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0[\overline{1}]1) plane. The mol­ecular packing is strengthened by van der Waals inter­actions between the layers (Table 1[link] and Figs. 3[link], 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the benzene ring (C3A/C4–C7/C7A) of the nine-membered ring system (S1/C2-C3/C3A/C4–C7/C7A) and the phenyl ring (C31–C36), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O29—H29⋯O28 0.93 (4) 1.60 (4) 2.510 (3) 164 (4)
C32—H32A⋯O21i 0.93 2.63 3.556 (3) 171
C2—H2ACg4 0.93 2.72 3.579 (2) 154
C33—H33ACg3ii 0.93 2.54 3.408 (3) 155
C36—H36ACg3iii 0.93 2.79 3.535 (3) 138
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
The crystal packing along the a axis, showing O—H⋯O, C—H⋯O and C—H⋯π inter­actions.
[Figure 4]
Figure 4
The crystal packing along the b axis, showing the O—H⋯O, C—H⋯O and C—H⋯π inter­actions.
[Figure 5]
Figure 5
The crystal packing along the c axis, showing the O—H⋯O, C—H⋯O and C—H⋯π inter­actions.

CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to compute the Hirshfeld surfaces and the two-dimensional fingerprints of the title mol­ecule. The dnorm mappings were performed in the range from −0.1088 (red) to +1.5482 (blue) a.u., on the dnorm surfaces, allowing the location of the C—H⋯O and C—H⋯π inter­actions (Table 1[link] and Fig. 6[link]).

[Figure 6]
Figure 6
Front (a) and back (b) views of the three-dimensional Hirshfeld surface, with some C—H⋯O, O—H⋯O and C—H⋯π inter­actions shown.

The fingerprint plots (Fig. 7[link]) show that H⋯H [Fig. 7[link](b); 46.0%], C⋯H/H⋯C [Fig. 7[link](c); 21.1%], O⋯H/H⋯O [Fig. 7[link](d); 20.6%] and S⋯H/H⋯S [Fig. 7[link](e); 9.0%] inter­actions have the greatest contributions to the surface contacts. The crystal packing is additionally influenced by C⋯C (2.2%), O⋯O (0.4%), O⋯C/C⋯O (0.3%), N⋯C/C⋯C (0.2%), S⋯C/C⋯S (0.1%) and S⋯O/O⋯S (0.1%) inter­actions. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S inter­actions indicates that van der Waals inter­actions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 7]
Figure 7
The two-dimensional fingerprint plots for the title mol­ecules showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) S⋯H/H⋯S inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-benzo­thio­phene unit yielded three compounds related to the title compound, viz. CSD refcode WOJBII (Kaur et al., 2014[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951-o952.]), GAPZOO (Inaç et al., 2012[Inaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.]) and EYISEK (Sonar et al., 2004[Sonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o550-o551.]).

In WOJBII, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, very weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.9009 (10) Å] are observed. In GAPZOO, the mol­ecular conformation features a short C—H⋯N contact. There are no significant inter­molecular contacts. In EYISEK, inter­molecular hydrogen bonding exists between the imino H atom and the Cl atoms, and gives rise to chains of mol­ecules extending in the c direction. Van der Waals forces contribute to the stabilization of the crystal structure.

5. Synthesis and crystallization

Maleic anhydride (0.12 g, 1.3 mmol) was added to a solution of the corresponding allyl­amine 1 (0.37 g, 1.2 mmol) in benzene (10 ml). The resulting mixture was stirred for 6 h at room temperature. The resulting precipitate was filtered off, washed with benzene (5 ml), diethyl ether (2 × 5 ml) and air dried to give acid 3 (0.27 g, 74%) as a colourless solid (for full characteristics, see Yakovleva et al., 2024[Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643-2653.]). The mother liquor was mixed with C2H5OH (5 ml) and the precipitate was filtered off, washed with benzene (5 ml), diethyl ether (2 × 5 ml) and air dried to give the title compound 2 as a colourless powder (yield 18%, 0.09 g; m.p. 400–402 K). IR (KBr), ν (cm−1): 3032 (OH), 1734 (CO2), 1669 (N—C=O). 1H NMR (600.2 MHz, DMSO-d6, 298 K): δ (J, Hz) 12.71 (s, 1H, CO2H), 7.93 (d, J = 8.1, 1H, H-Ar), 7.35–7.09 (m, 8H, H-Ar), 6.84 (s, 1H, H-2 benzo­thio­phene), 6.37 (d, J = 12.1, 1H, H-2 CH=CH), 5.71 (d, J = 12.1, 1H, H-2 CH=CH), 4.36 (br s, 2H, NCH2), 2.66–2.62 (m, 4H, H-3, H-5), 1.93 (pent, J = 7.6, 2H, H-4). 13C {1H} NMR (150.9 MHz, DMSO-d6, 298 K): δ 166.0, 162.0, 140.4, 139.1, 138.5, 136.2, 135.2, 133.3, 132.1, 128.9 (2C), 128.0, 124.4, 124.3, 123.2, 122.8, 122.2, 119.0, 118.0 (2C), 52.9, 34.0, 31.7, 21.1. MS (ESI) m/z: [M + H]+ 404. Elemental analysis calculated (%) for C24H21NO3S: C 71.44, H 5.25, N 3.47, S 7.95; found: C 71.40, H 5.35, N 3.55, S, 7.91.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The O-bound H atom was located in difference Fourier maps [O29—H29 = 0.93 (4) Å] and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C24H21NO3S
Mr 403.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.4270 (5), 9.4386 (4), 12.3849 (7)
α, β, γ (°) 95.392 (3), 96.849 (3), 106.512 (3)
V3) 1039.49 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.32 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.882, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 13624, 4758, 2579
Rint 0.046
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 0.99
No. of reflections 4758
No. of parameters 266
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24
Computer programs: APEX4 and SAINT (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(Z)-4-({[2-(Benzo[b]thiophen-3-yl)cyclopent-1-en-1-yl]methyl}(phenyl)amino)-4-oxobut-2-enoic acid top
Crystal data top
C24H21NO3SZ = 2
Mr = 403.48F(000) = 424
Triclinic, P1Dx = 1.289 Mg m3
a = 9.4270 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4386 (4) ÅCell parameters from 2139 reflections
c = 12.3849 (7) Åθ = 2.7–21.1°
α = 95.392 (3)°µ = 0.18 mm1
β = 96.849 (3)°T = 296 K
γ = 106.512 (3)°Fragment, colourless
V = 1039.49 (9) Å30.32 × 0.26 × 0.22 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
2579 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 27.5°, θmin = 4.3°
Tmin = 0.882, Tmax = 0.961h = 1212
13624 measured reflectionsk = 1212
4758 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1315P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4758 reflectionsΔρmax = 0.21 e Å3
266 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87037 (7)0.68170 (6)0.61573 (5)0.0594 (2)
O210.1824 (3)0.0483 (2)0.14619 (18)0.1267 (9)
O280.3378 (2)0.04844 (18)0.20444 (14)0.0791 (6)
O290.1793 (3)0.0840 (2)0.0262 (2)0.1150 (9)
H290.224 (5)0.045 (4)0.098 (3)0.158 (16)*
N50.51977 (19)0.26204 (18)0.26864 (14)0.0485 (5)
C10.5116 (2)0.2342 (2)0.38357 (17)0.0521 (6)
H1A0.4155840.1630720.3869150.063*
H1B0.5175490.3265620.4280830.063*
C20.8233 (2)0.5180 (2)0.52668 (18)0.0512 (6)
H2A0.8300320.5157460.4522740.061*
C3A0.7750 (2)0.4286 (2)0.68961 (17)0.0406 (5)
C30.7756 (2)0.3932 (2)0.57416 (17)0.0424 (5)
C40.7341 (2)0.3332 (2)0.76803 (19)0.0500 (6)
H4A0.6994520.2304720.7478350.060*
C50.7460 (3)0.3934 (3)0.8750 (2)0.0671 (7)
H5A0.7189920.3302310.9272720.080*
C60.7974 (3)0.5468 (3)0.9073 (2)0.0763 (8)
H6A0.8050460.5843410.9806120.092*
C7A0.8246 (2)0.5832 (2)0.72381 (18)0.0466 (5)
C70.8367 (3)0.6423 (3)0.8327 (2)0.0630 (7)
H7A0.8709530.7448240.8541840.076*
C110.6337 (2)0.1755 (2)0.43046 (17)0.0436 (5)
C120.7407 (2)0.2407 (2)0.51466 (16)0.0426 (5)
C130.8318 (3)0.1381 (2)0.54573 (19)0.0552 (6)
H13A0.8069120.0980310.6126960.066*
H13B0.9381740.1898920.5556520.066*
C140.7866 (3)0.0148 (2)0.4478 (2)0.0598 (6)
H14A0.8617550.0313630.3994350.072*
H14B0.7752190.0818120.4724220.072*
C150.6382 (3)0.0221 (2)0.38884 (19)0.0554 (6)
H15A0.6354180.0099460.3098990.066*
H15B0.5548360.0542190.4073580.066*
C210.2336 (4)0.0081 (3)0.0502 (3)0.0835 (9)
C220.3591 (3)0.1295 (3)0.0208 (2)0.0683 (7)
H22A0.3885560.1748480.0813610.082*
C230.4395 (3)0.2030 (3)0.07372 (19)0.0645 (7)
H23A0.5135330.2903490.0684070.077*
C240.4279 (3)0.1656 (2)0.18604 (19)0.0556 (6)
C310.6267 (2)0.3994 (2)0.25315 (16)0.0423 (5)
C320.7609 (3)0.3991 (2)0.22026 (18)0.0520 (6)
H32A0.7845070.3103320.2079930.062*
C330.8601 (3)0.5327 (3)0.2057 (2)0.0636 (7)
H33A0.9499570.5333540.1814910.076*
C340.8276 (3)0.6634 (3)0.2264 (2)0.0708 (8)
H34A0.8953680.7528050.2167950.085*
C350.6957 (4)0.6629 (3)0.2613 (2)0.0696 (8)
H35A0.6743170.7523240.2765320.083*
C360.5938 (3)0.5303 (2)0.2740 (2)0.0593 (6)
H36A0.5031310.5300020.2966940.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0715 (4)0.0433 (3)0.0593 (4)0.0106 (3)0.0078 (3)0.0104 (3)
O210.177 (2)0.0925 (15)0.0651 (15)0.0041 (15)0.0275 (15)0.0161 (12)
O280.0936 (13)0.0594 (10)0.0586 (12)0.0113 (10)0.0108 (10)0.0158 (9)
O290.155 (2)0.0688 (13)0.0749 (16)0.0215 (13)0.0289 (15)0.0109 (12)
N50.0521 (11)0.0506 (10)0.0382 (11)0.0113 (9)0.0011 (9)0.0063 (8)
C10.0502 (14)0.0593 (13)0.0408 (14)0.0087 (11)0.0033 (11)0.0057 (11)
C20.0588 (14)0.0500 (12)0.0416 (13)0.0111 (11)0.0064 (11)0.0088 (10)
C3A0.0347 (11)0.0445 (11)0.0423 (13)0.0121 (9)0.0037 (9)0.0067 (9)
C30.0408 (12)0.0462 (11)0.0382 (13)0.0111 (10)0.0022 (10)0.0069 (9)
C40.0525 (14)0.0518 (12)0.0486 (15)0.0157 (11)0.0138 (11)0.0124 (11)
C50.0861 (19)0.0754 (17)0.0500 (17)0.0312 (15)0.0246 (14)0.0196 (13)
C60.106 (2)0.0870 (19)0.0440 (16)0.0427 (18)0.0152 (15)0.0004 (14)
C7A0.0470 (13)0.0486 (12)0.0440 (14)0.0162 (10)0.0031 (10)0.0043 (10)
C70.0771 (18)0.0578 (14)0.0537 (17)0.0250 (13)0.0048 (14)0.0032 (13)
C110.0491 (13)0.0439 (11)0.0344 (12)0.0075 (10)0.0067 (10)0.0075 (9)
C120.0490 (13)0.0414 (10)0.0356 (12)0.0090 (10)0.0088 (10)0.0082 (9)
C130.0633 (15)0.0535 (12)0.0488 (15)0.0192 (12)0.0022 (12)0.0097 (11)
C140.0716 (17)0.0466 (12)0.0604 (16)0.0185 (12)0.0070 (13)0.0048 (11)
C150.0676 (16)0.0461 (12)0.0449 (14)0.0082 (11)0.0034 (12)0.0025 (10)
C210.119 (3)0.0541 (15)0.060 (2)0.0158 (16)0.0188 (19)0.0045 (15)
C220.091 (2)0.0615 (15)0.0466 (16)0.0204 (14)0.0031 (14)0.0054 (12)
C230.0765 (18)0.0586 (14)0.0455 (16)0.0042 (13)0.0044 (13)0.0097 (12)
C240.0632 (15)0.0500 (13)0.0474 (15)0.0120 (12)0.0043 (12)0.0070 (11)
C310.0476 (13)0.0441 (11)0.0350 (12)0.0171 (10)0.0016 (10)0.0041 (9)
C320.0549 (15)0.0567 (13)0.0479 (14)0.0254 (12)0.0006 (12)0.0062 (11)
C330.0462 (14)0.0824 (18)0.0582 (17)0.0130 (13)0.0005 (12)0.0180 (14)
C340.075 (2)0.0585 (16)0.0597 (18)0.0027 (14)0.0144 (15)0.0168 (13)
C350.095 (2)0.0478 (14)0.0624 (18)0.0272 (15)0.0095 (16)0.0012 (12)
C360.0627 (15)0.0587 (14)0.0608 (16)0.0286 (13)0.0033 (13)0.0051 (12)
Geometric parameters (Å, º) top
S1—C21.725 (2)C11—C151.505 (3)
S1—C7A1.728 (2)C12—C131.512 (3)
O21—C211.210 (3)C13—C141.529 (3)
O28—C241.247 (3)C13—H13A0.9700
O29—C211.305 (4)C13—H13B0.9700
O29—H290.93 (4)C14—C151.522 (3)
N5—C241.338 (3)C14—H14A0.9700
N5—C311.443 (3)C14—H14B0.9700
N5—C11.478 (3)C15—H15A0.9700
C1—C111.495 (3)C15—H15B0.9700
C1—H1A0.9700C21—C221.468 (4)
C1—H1B0.9700C22—C231.329 (3)
C2—C31.352 (3)C22—H22A0.9300
C2—H2A0.9300C23—C241.476 (3)
C3A—C41.399 (3)C23—H23A0.9300
C3A—C7A1.406 (3)C31—C361.367 (3)
C3A—C31.439 (3)C31—C321.375 (3)
C3—C121.482 (3)C32—C331.382 (3)
C4—C51.370 (3)C32—H32A0.9300
C4—H4A0.9300C33—C341.362 (3)
C5—C61.391 (3)C33—H33A0.9300
C5—H5A0.9300C34—C351.363 (4)
C6—C71.361 (4)C34—H34A0.9300
C6—H6A0.9300C35—C361.380 (4)
C7A—C71.389 (3)C35—H35A0.9300
C7—H7A0.9300C36—H36A0.9300
C11—C121.326 (3)
C2—S1—C7A90.81 (10)C14—C13—H13B111.1
C21—O29—H29116 (2)H13A—C13—H13B109.0
C24—N5—C31123.48 (18)C15—C14—C13105.85 (18)
C24—N5—C1120.39 (19)C15—C14—H14A110.6
C31—N5—C1116.08 (16)C13—C14—H14A110.6
N5—C1—C11112.78 (18)C15—C14—H14B110.6
N5—C1—H1A109.0C13—C14—H14B110.6
C11—C1—H1A109.0H14A—C14—H14B108.7
N5—C1—H1B109.0C11—C15—C14103.55 (17)
C11—C1—H1B109.0C11—C15—H15A111.1
H1A—C1—H1B107.8C14—C15—H15A111.1
C3—C2—S1114.34 (17)C11—C15—H15B111.1
C3—C2—H2A122.8C14—C15—H15B111.1
S1—C2—H2A122.8H15A—C15—H15B109.0
C4—C3A—C7A118.37 (19)O21—C21—O29121.5 (3)
C4—C3A—C3129.57 (19)O21—C21—C22118.3 (3)
C7A—C3A—C3112.06 (18)O29—C21—C22120.2 (2)
C2—C3—C3A111.32 (18)C23—C22—C21133.7 (3)
C2—C3—C12123.2 (2)C23—C22—H22A113.2
C3A—C3—C12125.29 (18)C21—C22—H22A113.2
C5—C4—C3A119.1 (2)C22—C23—C24129.1 (2)
C5—C4—H4A120.5C22—C23—H23A115.5
C3A—C4—H4A120.5C24—C23—H23A115.5
C4—C5—C6121.6 (2)O28—C24—N5120.6 (2)
C4—C5—H5A119.2O28—C24—C23122.1 (2)
C6—C5—H5A119.2N5—C24—C23117.3 (2)
C7—C6—C5120.7 (2)C36—C31—C32120.5 (2)
C7—C6—H6A119.7C36—C31—N5118.8 (2)
C5—C6—H6A119.7C32—C31—N5120.68 (18)
C7—C7A—C3A121.8 (2)C31—C32—C33119.0 (2)
C7—C7A—S1126.71 (17)C31—C32—H32A120.5
C3A—C7A—S1111.46 (16)C33—C32—H32A120.5
C6—C7—C7A118.5 (2)C34—C33—C32120.6 (2)
C6—C7—H7A120.8C34—C33—H33A119.7
C7A—C7—H7A120.8C32—C33—H33A119.7
C12—C11—C1126.95 (18)C33—C34—C35119.9 (2)
C12—C11—C15112.06 (18)C33—C34—H34A120.1
C1—C11—C15120.81 (18)C35—C34—H34A120.1
C11—C12—C3127.71 (18)C34—C35—C36120.3 (2)
C11—C12—C13111.02 (17)C34—C35—H35A119.8
C3—C12—C13121.27 (17)C36—C35—H35A119.8
C12—C13—C14103.43 (17)C31—C36—C35119.6 (2)
C12—C13—H13A111.1C31—C36—H36A120.2
C14—C13—H13A111.1C35—C36—H36A120.2
C12—C13—H13B111.1
C24—N5—C1—C11102.2 (2)C2—C3—C12—C13115.1 (2)
C31—N5—C1—C1180.0 (2)C3A—C3—C12—C1359.9 (3)
C7A—S1—C2—C30.32 (18)C11—C12—C13—C1413.8 (3)
S1—C2—C3—C3A0.4 (2)C3—C12—C13—C14165.47 (19)
S1—C2—C3—C12175.16 (15)C12—C13—C14—C1519.8 (2)
C4—C3A—C3—C2179.9 (2)C12—C11—C15—C1410.9 (3)
C7A—C3A—C3—C20.4 (2)C1—C11—C15—C14173.7 (2)
C4—C3A—C3—C124.4 (3)C13—C14—C15—C1118.7 (2)
C7A—C3A—C3—C12175.13 (19)O21—C21—C22—C23179.9 (3)
C7A—C3A—C4—C50.9 (3)O29—C21—C22—C230.3 (5)
C3—C3A—C4—C5178.6 (2)C21—C22—C23—C240.9 (5)
C3A—C4—C5—C60.1 (4)C31—N5—C24—O28179.9 (2)
C4—C5—C6—C70.5 (4)C1—N5—C24—O282.5 (3)
C4—C3A—C7A—C71.3 (3)C31—N5—C24—C230.6 (3)
C3—C3A—C7A—C7178.3 (2)C1—N5—C24—C23178.22 (19)
C4—C3A—C7A—S1179.73 (15)C22—C23—C24—O283.1 (4)
C3—C3A—C7A—S10.1 (2)C22—C23—C24—N5177.6 (2)
C2—S1—C7A—C7178.4 (2)C24—N5—C31—C36102.1 (2)
C2—S1—C7A—C3A0.09 (16)C1—N5—C31—C3675.6 (2)
C5—C6—C7—C7A0.1 (4)C24—N5—C31—C3279.3 (3)
C3A—C7A—C7—C60.8 (3)C1—N5—C31—C32103.1 (2)
S1—C7A—C7—C6178.9 (2)C36—C31—C32—C331.8 (3)
N5—C1—C11—C12117.2 (2)N5—C31—C32—C33179.64 (19)
N5—C1—C11—C1568.1 (3)C31—C32—C33—C341.8 (3)
C1—C11—C12—C37.6 (4)C32—C33—C34—C350.4 (4)
C15—C11—C12—C3177.3 (2)C33—C34—C35—C361.0 (4)
C1—C11—C12—C13173.2 (2)C32—C31—C36—C350.4 (3)
C15—C11—C12—C131.9 (3)N5—C31—C36—C35179.0 (2)
C2—C3—C12—C1164.0 (3)C34—C35—C36—C311.0 (4)
C3A—C3—C12—C11121.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the benzene ring (C3A/C4–C7/C7A) of the nine-membered ring system (S1/C2-C3/C3A/C4–C7/C7A) and the phenyl ring (C31–C36), respectively.
D—H···AD—HH···AD···AD—H···A
O29—H29···O280.93 (4)1.60 (4)2.510 (3)164 (4)
C32—H32A···O21i0.932.633.556 (3)171
C2—H2A···Cg40.932.723.579 (2)154
C33—H33A···Cg3ii0.932.543.408 (3)155
C33—H33A···Cg5ii0.932.643.353 (3)133
C36—H36A···Cg3iii0.932.793.535 (3)138
C36—H36A···Cg5iii0.932.753.623 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This publication was supported by the Russian Science Foundation (https://rscf.ru/project/22-23-00179/). This work has also been supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. EDY and ERS thank the Common Use Center `Physical and Chemical Research of New Materials, Substances and Catalytic Systems'. The contributions of the authors are as follows: conceptualization, MA and AB; synthesis, EDY and ERS; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) EDY, ERS, MSG, KIH and NDS; funding acquisition, EY and ES; supervision, MA and AB.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106.  Web of Science CSD CrossRef CAS Google Scholar
First citationInaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaur, M., Jasinski, J. P., Yathirajan, H. S., Yamuna, T. S. & Byrappa, K. (2014). Acta Cryst. E70, o951–o952.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. A Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationNadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196–2223.  CAS Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o550–o551.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem. 22, 2643–2653.  CSD CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds