research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of tri­chlorido­(4-methyl­piperidine)gold(III) and two polymorphs of tri­bromido(4-methyl­piperidine)­gold(III)

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by S. Parkin, University of Kentucky, USA (Received 25 March 2024; accepted 29 March 2024; online 18 April 2024)

Gold complexes with amine ligands, Part 15. Part 14: Döring & Jones (2023b).

Tri­chlorido­(4-methyl­piperidine)­gold(III), [AuCl3(C6H13N)], 1, crystallizes in Pbca with Z = 8. Tri­bromido­(4-methyl­piperidine)­gold(III), [AuBr3(C6H13N)], 2, crystallizes as two polymorphs, 2a in Pnma with Z = 4 (imposed mirror symmetry) and 2b, which is isotypic to 1. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. The methyl and AuX3 groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of mol­ecules with offset stacking of the AuX3 moieties associated with short Au⋯X contacts; for 1 and 2b these are reinforced by N—H⋯X hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are inter­connected by Br⋯Br contacts.

1. Chemical context

We have published a series of articles describing the structures of amine complexes of gold. The three most recent, Parts 12–14 in the series, concerned gold(I) and gold(III) derivatives of piperidine and pyrrolidine (Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]), gold(I) complexes of morpholine (Döring & Jones, 2023b[Döring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161-1165.]) and gold(I) complexes of methyl­piperidine (Döring & Jones, 2024[Döring, C. & Jones, P. G. (2024). Acta Cryst. E80, 157-165.]). An extensive introduction, with details of previous results, may be found in Part 12 and will not be repeated here. Here we present the structures of the two 4-methyl­piperidine complexes of gold(III) trihalides, namely tri­chlorido­(4-methyl­piperidine)­gold(III) 1 and tri­bromido­(4-methyl­piperidine)­gold(III) 2. The ligands piperidine and 4-methyl­piperidine are henceforth abbreviated to `pip' and `4-Me-pip'.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1, 2a and 2b are shown in Figs. 1[link]–3[link][link]. Compound 2 crystallized as two polymorphs in the space groups Pnma (2a) and Pbca (2b); the former displays crystallographic mirror symmetry, whereby the mirror plane contains the gold and bromine atoms, the NH group, the carbon at C-4 and the methyl carbon (these atoms are numbered for 2a as C14 and C15). For all three structures, the halogen atoms are numbered such that X1 (X = halogen) is trans to the ligand nitro­gen atom N11. Structures 1 and 2b are isotypic. The geometry at the gold atoms is as expected square planar. Bond lengths and angles (Tables 1[link]–3[link][link]) may be considered normal. The Au—N bonds trans to Cl are somewhat shorter than those trans to Br, and the Au—Cl bonds trans to N are longer than those cis to N, whereas the Au—Br bonds trans to N are slightly shorter than the cis bonds. Similar trends were observed for (pip)AuCl3 and (pip)AuBr3 (Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Au1—N11 2.070 (3) Au1—Cl2 2.2832 (10)
Au1—Cl3 2.2826 (10) Au1—Cl1 2.3006 (10)
       
N11—Au1—Cl3 93.13 (11) Cl2—Au1—Cl1 91.18 (4)
N11—Au1—Cl2 85.80 (11) C16—N11—C12 110.6 (3)
Cl3—Au1—Cl2 178.07 (4) C16—N11—Au1 117.8 (3)
N11—Au1—Cl1 176.94 (11) C12—N11—Au1 111.0 (3)
Cl3—Au1—Cl1 89.90 (4)    
       
Cl3—Au1—N11—C16 −30.0 (3) Au1—N11—C12—C13 169.1 (3)
Cl2—Au1—N11—C16 151.6 (3) C12—C13—C14—C17 179.8 (4)
Cl3—Au1—N11—C12 98.8 (3) C17—C14—C15—C16 179.4 (4)
Cl2—Au1—N11—C12 −79.6 (3) Au1—N11—C16—C15 −172.6 (3)

Table 2
Selected geometric parameters (Å, °) for 2a[link]

Au1—N11 2.096 (5) Au1—Br3 2.4110 (7)
Au1—Br1 2.4066 (7) Au1—Br2 2.4273 (6)
       
N11—Au1—Br1 179.50 (15) Br1—Au1—Br2 91.68 (2)
N11—Au1—Br3 91.78 (15) Br3—Au1—Br2 179.60 (2)
Br1—Au1—Br3 88.72 (2) C12i—N11—C12 111.2 (5)
N11—Au1—Br2 87.82 (15) C12i—N11—Au1 113.4 (3)
       
Br3—Au1—N11—C12 −64.1 (3) Au1—N11—C12—C13 −174.4 (3)
Br2—Au1—N11—C12 115.9 (3) C12—C13—C14—C15 −179.7 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Table 3
Selected geometric parameters (Å, °) for 2b[link]

Au1—N11 2.094 (4) Au1—Br2 2.4244 (5)
Au1—Br1 2.4187 (5) Au1—Br3 2.4246 (5)
       
N11—Au1—Br1 176.50 (11) Br2—Au1—Br3 177.736 (17)
N11—Au1—Br2 86.00 (11) C12—N11—C16 110.9 (4)
Br1—Au1—Br2 90.665 (18) C12—N11—Au1 111.6 (3)
N11—Au1—Br3 93.62 (11) C16—N11—Au1 117.8 (3)
Br1—Au1—Br3 89.751 (18)    
       
Br2—Au1—N11—C12 −78.0 (3) Au1—N11—C12—C13 168.1 (3)
Br3—Au1—N11—C12 99.8 (3) C12—C13—C14—C17 −179.2 (4)
Br2—Au1—N11—C16 152.0 (3) C17—C14—C15—C16 178.9 (4)
Br3—Au1—N11—C16 −30.2 (3) Au1—N11—C16—C15 −171.6 (3)
[Figure 1]
Figure 1
The structure of compound 1 in the crystal. Ellipsoids correspond to 50% probability levels.
[Figure 2]
Figure 2
The structure of compound 2a in the crystal. Ellipsoids correspond to 50% probability levels. Only the asymmetric unit is numbered.
[Figure 3]
Figure 3
The structure of compound 2b in the crystal. Ellipsoids correspond to 50% probability levels.

The relative orientation of the ligand and the AuX3 unit is described by the torsion angles Xn—Au1—N11—H01 and Xn—Au1—N11—C, where n = 2 or 3 (torsion angles for n = 1 are meaningless because the sequence X1—Au1—N1 is linear). We observe two distinct types: either one angle Xn—Au1—N11—H01 is approximately zero, corresponding to a short H01⋯Xn contact that might be considered an intra­molecular hydrogen bond, and the smallest absolute Xn—Au1—N11—C angle is around 60°, or the angle Xn—Au1—N11—H01 is approximately 30–40° and the smallest absolute Xn—Au1—N11—C angle is around 30°. The former type applies to (pip)AuCl3 and 2a [where Br2—Au1—N11—H01 is exactly zero by symmetry and H01⋯Br2 is 2.71 (6) Å], and the latter to (pip)AuBr3, 1 and 2b.

As would be expected for bulky substituents attached to cyclo­hexane-type rings, the methyl groups and the AuX3 moieties occupy equatorial positions, with torsion angles C—C—N—Au and C—C—C—Cmeth­yl around ±180°. Our previous two papers however include several structures where a gold(I) atom occupies an axial position in similar mol­ecules. The `normal' equatorial positions observed for 1, 2a and 2b may be associated with steric effects, which should be greater for the larger AuX3 moieties compared to the linear gold(I) centres.

3. Supra­molecular features

For compound 1, the main inter­molecular contacts are the hydrogen bond N1—H01⋯Cl1([{1\over 2}] − x, [{1\over 2}] + y, z, the b glide operator) and the two Au⋯Cl contacts Au1⋯Cl3 (same operator) = 3.2980 (10) Å and Au1⋯Cl2([{1\over 2}] − x, −[{1\over 2}] + y, z) = 3.3604 (10) Å that correspond to an offset stacking of the AuCl3 moieties. These combine to form chains of mol­ecules parallel to the b axis (Fig. 4[link]). In the isotypic 2b, the corresponding Au⋯Br distances are 3.4060 (5) and 3.5018 (5) Å.

[Figure 4]
Figure 4
Packing diagram of compound 1 viewed approximately parallel to the c axis (but rotated by ca 15° around the horizontal axis for clarity) in the region z ≃ 0.125, showing two chains of mol­ecules parallel to the b axis. Dashed lines indicate H⋯Cl hydrogen bonds (thick) or Au⋯Cl contacts (thin). Hydrogen atoms not involved in hydrogen bonding are omitted. Atom labels indicate the asymmetric unit. Similar chains are formed in the regions z ≃ 0.375, 0.625 and 0.875.

Compound 2a forms chains analogous to those of 1, with Au1⋯Br2(−x, 1 − y, −z and −x, 2 − y, −z) = 3.5847 (2) Å; these run parallel to the b axis (Fig. 5[link]). The chains are crosslinked by short Br⋯Br contacts involving one cis (to N) and the trans Br atom, with Br1⋯Br3(−[{1\over 2}] + x, y, [{1\over 2}] − z, the a glide operator) = 3.3686 (6) Å and angles Au1—Br1⋯Br3′ = 166.26 (3) and Au1—Br3⋯Br1′ = 162.77 (3)°. These contacts are indicated in Fig. 5[link] but are shown more clearly in Fig. 6[link]; they link the mol­ecules to form chains parallel to the b axis. The NH group is not involved in inter­molecular hydrogen bonding.

[Figure 5]
Figure 5
Packing diagram of compound 2a viewed aproximately parallel to the c axis (but rotated by ca 10° about the vertical axis for clarity), showing three chains of mol­ecules parallel to the b axis. The chains are centred on the regions (x, z) = (0, 0), (1, 0) and (1/2, 1/2). Dashed lines indicated Au⋯Br contacts (thick) or Br⋯Br contacts (thin); the latter are shown more clearly in Fig. 6[link]. Atom labels indicate the asymmetric unit.
[Figure 6]
Figure 6
Packing diagram of compound 2a showing two zigzag chains of mol­ecules parallel to the b axis; the lower chain is centred in the mirror plane at y = 0.75 and the upper chain in the plane at y = 0.25. Dashed lines indicated Br⋯Br contacts (or, just visible, Au⋯Br contacts linking the two chains in the direction into the paper). Atom labels indicate the asymmetric unit.

All three structures also display C—H⋯ X contacts that might be inter­preted as `weak' hydrogen bonds (Tables 4[link]–6[link][link]), but none of these is strikingly short. These (and other) weak inter­actions might well contribute significantly to the packing energy, but it is difficult to incorporate them in easily inter­pretable packing diagrams.

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl1i 0.93 (4) 2.64 (4) 3.535 (4) 163 (4)
C15—H15B⋯Cl1i 0.99 2.97 3.804 (4) 143
C13—H13B⋯Cl2ii 0.99 2.82 3.798 (4) 171
C15—H15A⋯Cl3iii 0.99 2.95 3.610 (4) 125
C15—H15A⋯Cl3iv 0.99 2.99 3.728 (4) 132
C16—H16B⋯Cl3i 0.99 2.91 3.656 (5) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for 2a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Br2 0.89 (6) 2.71 (6) 3.146 (5) 111 (5)
C12—H12B⋯Br1ii 0.99 2.94 3.786 (5) 145
C12—H12B⋯Br2ii 0.99 2.99 3.798 (4) 139
C15—H15A⋯Br2iii 0.97 2.98 3.936 (7) 169
C12—H12A⋯Br3 0.99 2.96 3.526 (4) 118
C13—H13A⋯Br3iv 0.99 3.09 4.002 (4) 154
C15—H15B⋯Br3iv 0.98 3.05 3.965 (3) 155
Symmetry codes: (ii) [-x, -y+2, -z]; (iii) [x+{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, -z].

Table 6
Hydrogen-bond geometry (Å, °) for 2b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Br1i 0.97 (4) 2.81 (4) 3.759 (4) 164 (4)
C12—H12A⋯Br2 0.99 2.99 3.542 (5) 116
C13—H13B⋯Br2ii 0.99 2.93 3.903 (5) 169
C16—H16B⋯Br3i 0.99 2.99 3.750 (5) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2023.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for short Cl⋯Cl contacts between mol­ecules LAuCl3 (L = any atom) gave 51 hits (59 independent mol­ecules) with contact distances from 3.086 to 3.37 Å and an average Au—Cl⋯Cl angle of 152.9°. A similar search for LAuBr3 (L = any atom) gave 28 hits (36 independent mol­ecules) with contact distances from 3.26 to 3.67 Å and an average Au—Br⋯Br angle of 150.7°. The upper bounds for the contact distances in both cases correspond to the double van der Waals radii as stored in the CCDC. For both sets of results, the cis (to L) halogen atoms were more often involved than the trans halogen atoms (the latter corresponding to X1 in the structures presented here); for X = Cl there were 9 contacts of the form trans/trans, 5 cis/trans and 37 cis/cis, and the corresponding values for X = Br were 4, 7 and 25. In many cases, the Au—XX angles were equal by symmetry, and both values were used to calculate the average values.

5. Synthesis and crystallization

The starting materials of choice would be the gold(I) complexes (4-Me-pip)AuX, but these exist in the ionic form [(4-Me-pip)2Au][AuX2] rather than as neutral mol­ecules (Döring & Jones, 2024[Döring, C. & Jones, P. G. (2024). Acta Cryst. E80, 157-165.]).

Tri­chlorido­(4-methyl­piperidine)­gold(III) (1)

A solution of bis­(4-methyl­piperidine)­gold(I) di­chlorido­aurate(I) (310 mg, 0.454 mmol) in 4 mL of di­chloro­methane was added to a solution of PhICl2 (125 mg, 0.454 mmol) in 3 mL of di­chloro­methane. 2 mL of the mixed solution were divided amongst five small test-tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K. The measured crystal was obtained using diisopropyl ether as precipitant. Elemental analysis [%]: calc. C 17.91, H 3.26, N 3.48; found C 17.64, H 3.30, N 3.65.

Tri­bromido­(4-methyl­piperidine)­gold(III) (2)

Polymorph 2a: Bis(4-methyl­piperidinium) bromide tetra­bromido­aurate(III), {(4-Me-pip)H}2·Br·[AuBr4] (Döring, 2016[Döring, C. (2016). Halogen(I)-Aminkomplexe und ihre Oxidations­produkte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.]) (26 mg, 0.0327 mmol) was dissolved in 1.5 mL of di­chloro­methane. The solution was divided amongst three small test tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K. Using diisopropyl ether as precipitant, a mixture of crystals of the starting material (structure to be reported elsewhere) and of 2a was obtained.

Polymorph 2b: Bis(4-methyl­piperidine)­gold(I) di­bromido­aurate(I), [(4-Me-pip)2Au][AuBr2], (90 mg, 0.239 mmol) was dissolved in 2 mL of di­chloro­methane and two drops of elemental bromine were added. The solution was overlayered with diisopropyl ether and stored in a refrigerator at 276 K, whereby crystals of 2b formed.

6. Refinement

Details of the measurements and refinements are given in Table 7[link]. Structures were refined anisotropically on F2. For all compounds, the NH hydrogen atoms were refined freely. Methyl­ene hydrogens were included at calculated positions and refined using a riding model with C—H = 0.99 Å and H—C—H = 109.5°. Methine hydrogens were included similarly, but with C—H = 0.99 Å. Methyl groups were included as idealized rigid groups with C—H 0.98 Å and H—C—H 109.5°, and were allowed to rotate but not to tip (command `AFIX 137'). U values of the hydrogen atoms were fixed at 1.5 × Ueq of the parent carbon atoms for methyl groups and 1.2 × Ueq of the parent carbon atoms for other hydrogens. For compound 2a, an extinction correction was performed; the extinction parameter (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) refined to 0.00051 (4).

Table 7
Experimental details

  1 2a 2b
Crystal data
Chemical formula [AuCl3(C6H13N)] [AuBr3(C6H13N)] [AuBr3(C6H13N)]
Mr 402.49 535.87 535.87
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pnma Orthorhombic, Pbca
Temperature (K) 100 100 100
a, b, c (Å) 12.5716 (6), 8.3940 (3), 20.3319 (7) 9.9871 (5), 7.1505 (4), 15.7160 (8) 12.6471 (5), 8.7247 (3), 21.0262 (7)
V3) 2145.53 (14) 1122.32 (10) 2320.07 (15)
Z 8 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 14.40 23.74 22.96
Crystal size (mm) 0.22 × 0.03 × 0.01 0.27 × 0.06 × 0.03 0.14 × 0.04 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.702, 1.000 0.240, 1.000 0.380, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 53277, 2887, 2134 28605, 1864, 1581 38297, 3371, 2495
Rint 0.080 0.070 0.074
θ values (°) θmax = 29.1, θmin = 2.6 θmax = 31.1, θmin = 2.4 θmax = 30.0, θmin = 2.5
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.042, 1.05 0.030, 0.050, 1.11 0.029, 0.043, 1.04
No. of reflections 2887 1864 3371
No. of parameters 105 65 105
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.86 1.56, −1.19 0.99, −0.99
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP, (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Trichlorido(4-methylpiperidine)gold(III) (1) top
Crystal data top
[AuCl3(C6H13N)]Dx = 2.492 Mg m3
Mr = 402.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7041 reflections
a = 12.5716 (6) Åθ = 2.6–30.3°
b = 8.3940 (3) ŵ = 14.40 mm1
c = 20.3319 (7) ÅT = 100 K
V = 2145.53 (14) Å3Needle, yellow
Z = 80.22 × 0.03 × 0.01 mm
F(000) = 1488
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2887 independent reflections
Radiation source: Enhance (Mo) X-ray Source2134 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.080
ω scanθmax = 29.1°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1717
Tmin = 0.702, Tmax = 1.000k = 1111
53277 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0105P)2 + 2.0478P]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max = 0.001
105 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.86 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.24309 (2)0.30864 (2)0.12540 (2)0.01126 (5)
Cl10.06218 (8)0.27039 (12)0.11903 (6)0.0183 (2)
Cl20.23963 (8)0.47300 (12)0.03594 (5)0.0152 (2)
Cl30.25068 (9)0.13911 (12)0.21305 (5)0.0163 (2)
N110.4051 (3)0.3526 (4)0.12740 (19)0.0140 (7)
H010.413 (3)0.459 (5)0.116 (2)0.016 (12)*
C120.4627 (4)0.2518 (5)0.0768 (2)0.0164 (10)
H12A0.4618940.1387530.0906520.020*
H12B0.4260950.2600300.0338630.020*
C130.5764 (3)0.3084 (5)0.0700 (2)0.0172 (9)
H13A0.5767490.4188180.0529400.021*
H13B0.6139780.2401270.0377810.021*
C140.6356 (3)0.3033 (5)0.1356 (2)0.0171 (9)
H140.6372760.1901750.1509870.020*
C150.5748 (4)0.4004 (5)0.1862 (2)0.0167 (9)
H15A0.6108930.3919130.2292850.020*
H15B0.5751310.5138670.1729130.020*
C160.4608 (3)0.3441 (5)0.1930 (2)0.0183 (10)
H16A0.4598120.2330020.2094200.022*
H16B0.4229490.4117710.2253350.022*
C170.7505 (3)0.3604 (5)0.1278 (2)0.0226 (9)
H17A0.7507760.4720730.1137020.034*
H17B0.7865460.2950360.0946200.034*
H17C0.7877350.3506210.1699070.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01234 (7)0.00980 (8)0.01163 (7)0.00022 (6)0.00052 (7)0.00063 (6)
Cl10.0153 (5)0.0172 (5)0.0225 (6)0.0036 (4)0.0014 (5)0.0009 (5)
Cl20.0187 (5)0.0130 (5)0.0139 (5)0.0011 (4)0.0021 (4)0.0019 (4)
Cl30.0227 (5)0.0127 (5)0.0135 (4)0.0006 (4)0.0019 (5)0.0015 (4)
N110.0121 (16)0.0110 (17)0.0189 (18)0.0001 (13)0.0004 (16)0.0011 (16)
C120.014 (2)0.021 (3)0.015 (2)0.0004 (17)0.0039 (19)0.0070 (17)
C130.013 (2)0.023 (3)0.016 (2)0.001 (2)0.0022 (17)0.0025 (19)
C140.013 (2)0.020 (2)0.019 (2)0.0010 (18)0.0001 (17)0.0024 (19)
C150.018 (2)0.019 (2)0.013 (2)0.0014 (18)0.0065 (18)0.0034 (17)
C160.018 (2)0.025 (3)0.012 (2)0.0002 (19)0.0024 (17)0.0042 (18)
C170.019 (2)0.026 (2)0.022 (2)0.0043 (18)0.004 (2)0.007 (2)
Geometric parameters (Å, º) top
Au1—N112.070 (3)C13—H13B0.9900
Au1—Cl32.2826 (10)C14—C151.518 (6)
Au1—Cl22.2832 (10)C14—C171.531 (6)
Au1—Cl12.3006 (10)C14—H141.0000
N11—C161.509 (5)C15—C161.515 (6)
N11—C121.516 (5)C15—H15A0.9900
N11—H010.93 (4)C15—H15B0.9900
C12—C131.512 (6)C16—H16A0.9900
C12—H12A0.9900C16—H16B0.9900
C12—H12B0.9900C17—H17A0.9800
C13—C141.528 (6)C17—H17B0.9800
C13—H13A0.9900C17—H17C0.9800
N11—Au1—Cl393.13 (11)C15—C14—C13109.4 (3)
N11—Au1—Cl285.80 (11)C15—C14—C17112.2 (4)
Cl3—Au1—Cl2178.07 (4)C13—C14—C17111.1 (3)
N11—Au1—Cl1176.94 (11)C15—C14—H14108.0
Cl3—Au1—Cl189.90 (4)C13—C14—H14108.0
Cl2—Au1—Cl191.18 (4)C17—C14—H14108.0
C16—N11—C12110.6 (3)C16—C15—C14111.8 (3)
C16—N11—Au1117.8 (3)C16—C15—H15A109.3
C12—N11—Au1111.0 (3)C14—C15—H15A109.3
C16—N11—H01103 (3)C16—C15—H15B109.3
C12—N11—H01108 (3)C14—C15—H15B109.3
Au1—N11—H01106 (3)H15A—C15—H15B107.9
C13—C12—N11109.8 (3)N11—C16—C15110.0 (3)
C13—C12—H12A109.7N11—C16—H16A109.7
N11—C12—H12A109.7C15—C16—H16A109.7
C13—C12—H12B109.7N11—C16—H16B109.7
N11—C12—H12B109.7C15—C16—H16B109.7
H12A—C12—H12B108.2H16A—C16—H16B108.2
C12—C13—C14111.8 (3)C14—C17—H17A109.5
C12—C13—H13A109.3C14—C17—H17B109.5
C14—C13—H13A109.3H17A—C17—H17B109.5
C12—C13—H13B109.3C14—C17—H17C109.5
C14—C13—H13B109.3H17A—C17—H17C109.5
H13A—C13—H13B107.9H17B—C17—H17C109.5
Cl3—Au1—N11—C1630.0 (3)C12—C13—C14—C1555.8 (5)
Cl2—Au1—N11—C16151.6 (3)C12—C13—C14—C17179.8 (4)
Cl3—Au1—N11—C1298.8 (3)C13—C14—C15—C1655.7 (5)
Cl2—Au1—N11—C1279.6 (3)C17—C14—C15—C16179.4 (4)
C16—N11—C12—C1358.4 (4)C12—N11—C16—C1558.4 (4)
Au1—N11—C12—C13169.1 (3)Au1—N11—C16—C15172.6 (3)
N11—C12—C13—C1457.4 (5)C14—C15—C16—N1157.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl1i0.93 (4)2.64 (4)3.535 (4)163 (4)
C15—H15B···Cl1i0.992.973.804 (4)143
C13—H13B···Cl2ii0.992.823.798 (4)171
C15—H15A···Cl3iii0.992.953.610 (4)125
C15—H15A···Cl3iv0.992.993.728 (4)132
C16—H16B···Cl3i0.992.913.656 (5)133
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y, z+1/2.
Tribromido(4-methylpiperidine)gold(III) (2a) top
Crystal data top
[AuBr3(C6H13N)]Dx = 3.171 Mg m3
Mr = 535.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4663 reflections
a = 9.9871 (5) Åθ = 3.1–30.3°
b = 7.1505 (4) ŵ = 23.74 mm1
c = 15.7160 (8) ÅT = 100 K
V = 1122.32 (10) Å3Needle, orange
Z = 40.27 × 0.06 × 0.03 mm
F(000) = 960
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
1864 independent reflections
Radiation source: fine-focus sealed X-ray tube1581 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.070
ω scanθmax = 31.1°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1414
Tmin = 0.240, Tmax = 1.000k = 1010
28605 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0121P)2 + 3.4353P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1864 reflectionsΔρmax = 1.56 e Å3
65 parametersΔρmin = 1.18 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00051 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.09315 (2)0.7500000.04663 (2)0.01176 (7)
Br10.07000 (6)0.7500000.15933 (4)0.01882 (14)
Br20.08081 (6)0.7500000.06122 (4)0.01351 (13)
Br30.26712 (6)0.7500000.15298 (4)0.02039 (15)
N110.2339 (5)0.7500000.0523 (3)0.0161 (11)
H010.184 (7)0.7500000.099 (4)0.013 (17)*
C120.3183 (4)0.9225 (6)0.0547 (3)0.0182 (9)
H12A0.3737670.9286840.0025740.022*
H12B0.2596171.0340890.0557510.022*
C130.4087 (4)0.9241 (6)0.1324 (3)0.0193 (9)
H13A0.4658791.0372370.1310980.023*
H13B0.3531440.9295620.1845420.023*
C140.4975 (6)0.7500000.1354 (4)0.0152 (12)
H140.5549710.7500020.0833210.018*
C150.5896 (7)0.7500000.2129 (4)0.0253 (16)
H15A0.5348290.7500000.2640180.038*
H15B0.6476170.8604430.2111450.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01034 (11)0.01467 (12)0.01027 (12)0.0000.00112 (9)0.000
Br10.0180 (3)0.0253 (3)0.0132 (3)0.0000.0057 (2)0.000
Br20.0113 (3)0.0163 (3)0.0129 (3)0.0000.0005 (2)0.000
Br30.0172 (3)0.0304 (4)0.0135 (3)0.0000.0042 (2)0.000
N110.011 (2)0.027 (3)0.010 (3)0.0000.000 (2)0.000
C120.018 (2)0.016 (2)0.021 (2)0.0031 (17)0.0090 (18)0.0020 (19)
C130.016 (2)0.022 (2)0.020 (2)0.0009 (19)0.0067 (19)0.005 (2)
C140.013 (3)0.016 (3)0.017 (3)0.0000.007 (2)0.000
C150.017 (3)0.033 (4)0.026 (4)0.0000.009 (3)0.000
Geometric parameters (Å, º) top
Au1—N112.096 (5)C12—H12B0.9900
Au1—Br12.4066 (7)C13—C141.529 (5)
Au1—Br32.4110 (7)C13—H13A0.9900
Au1—Br22.4273 (6)C13—H13B0.9900
N11—C12i1.494 (5)C14—C151.526 (8)
N11—C121.494 (5)C14—H141.0000
N11—H010.89 (6)C15—H15A0.9713
C12—C131.520 (6)C15—H15B0.9800
C12—H12A0.9900C15—H15Bi0.9800
N11—Au1—Br1179.50 (15)C12—C13—C14111.3 (4)
N11—Au1—Br391.78 (15)C12—C13—H13A109.4
Br1—Au1—Br388.72 (2)C14—C13—H13A109.4
N11—Au1—Br287.82 (15)C12—C13—H13B109.4
Br1—Au1—Br291.68 (2)C14—C13—H13B109.4
Br3—Au1—Br2179.60 (2)H13A—C13—H13B108.0
C12i—N11—C12111.2 (5)C15—C14—C13i111.9 (3)
C12i—N11—Au1113.4 (3)C15—C14—C13111.9 (3)
C12—N11—Au1113.4 (3)C13i—C14—C13109.0 (5)
C12i—N11—H01107 (2)C15—C14—H14107.9
C12—N11—H01107 (2)C13i—C14—H14107.9
Au1—N11—H01104 (4)C13—C14—H14107.9
N11—C12—C13111.2 (4)C14—C15—H15A108.7
N11—C12—H12A109.4C14—C15—H15B109.5
C13—C12—H12A109.4H15A—C15—H15B110.9
N11—C12—H12B109.4C14—C15—H15Bi109.48 (19)
C13—C12—H12B109.4H15A—C15—H15Bi110.9
H12A—C12—H12B108.0H15B—C15—H15Bi107.4
Br3—Au1—N11—C12i64.1 (3)Au1—N11—C12—C13174.4 (3)
Br2—Au1—N11—C12i115.9 (3)N11—C12—C13—C1456.8 (5)
Br3—Au1—N11—C1264.1 (3)C12—C13—C14—C15179.7 (4)
Br2—Au1—N11—C12115.9 (3)C12—C13—C14—C13i55.9 (6)
C12i—N11—C12—C1356.4 (6)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Br20.89 (6)2.71 (6)3.146 (5)111 (5)
C12—H12B···Br1ii0.992.943.786 (5)145
C12—H12B···Br2ii0.992.993.798 (4)139
C15—H15A···Br2iii0.972.983.936 (7)169
C12—H12A···Br30.992.963.526 (4)118
C13—H13A···Br3iv0.993.094.002 (4)154
C15—H15B···Br3iv0.983.053.965 (3)155
Symmetry codes: (ii) x, y+2, z; (iii) x+1/2, y, z1/2; (iv) x+1, y+2, z.
Tribromido(4-methylpiperidine)gold(III) (2b) top
Crystal data top
[AuBr3(C6H13N)]Dx = 3.068 Mg m3
Mr = 535.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5682 reflections
a = 12.6471 (5) Åθ = 3.2–29.7°
b = 8.7247 (3) ŵ = 22.96 mm1
c = 21.0262 (7) ÅT = 100 K
V = 2320.07 (15) Å3Needle, red
Z = 80.14 × 0.04 × 0.03 mm
F(000) = 1920
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3371 independent reflections
Radiation source: Enhance (Mo) X-ray Source2495 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.074
ω scanθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1717
Tmin = 0.380, Tmax = 1.000k = 1112
38297 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0081P)2 + 2.1449P]
where P = (Fo2 + 2Fc2)/3
3371 reflections(Δ/σ)max = 0.001
105 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.99 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.24373 (2)0.30618 (2)0.12636 (2)0.01070 (5)
Br10.05410 (4)0.27328 (5)0.12037 (2)0.01833 (11)
Br20.24027 (4)0.47282 (5)0.03411 (2)0.01409 (10)
Br30.24951 (4)0.13133 (5)0.21592 (2)0.01560 (10)
N110.4069 (3)0.3465 (4)0.12801 (19)0.0115 (8)
H010.416 (4)0.454 (5)0.116 (2)0.019 (14)*
C120.4638 (4)0.2527 (5)0.0784 (2)0.0169 (11)
H12A0.4266830.2617470.0371400.020*
H12B0.4638100.1434430.0910660.020*
C130.5769 (4)0.3088 (6)0.0714 (2)0.0201 (11)
H13A0.5762590.4156300.0555400.024*
H13B0.6138890.2447250.0395990.024*
C140.6373 (4)0.3028 (5)0.1341 (2)0.0162 (10)
H140.6407780.1933620.1480910.019*
C150.5762 (4)0.3927 (5)0.1845 (2)0.0154 (11)
H15A0.6127510.3824980.2259000.018*
H15B0.5758490.5025880.1728130.018*
C160.4628 (4)0.3372 (5)0.1914 (2)0.0180 (11)
H16A0.4624340.2299400.2067730.022*
H16B0.4252610.4012760.2229850.022*
C170.7504 (4)0.3616 (6)0.1266 (2)0.0253 (11)
H17A0.7489800.4711440.1164510.038*
H17B0.7854910.3055150.0922170.038*
H17C0.7891410.3456930.1664480.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01025 (9)0.00994 (8)0.01190 (8)0.00053 (7)0.00084 (8)0.00021 (7)
Br10.0108 (2)0.0184 (2)0.0259 (3)0.00129 (18)0.0015 (2)0.0018 (2)
Br20.0151 (2)0.0137 (2)0.0135 (2)0.0008 (2)0.0013 (2)0.00201 (17)
Br30.0207 (3)0.0128 (2)0.0133 (2)0.0001 (2)0.0017 (2)0.00118 (17)
N110.011 (2)0.0125 (19)0.011 (2)0.0006 (15)0.0018 (17)0.0001 (16)
C120.016 (3)0.021 (3)0.013 (2)0.001 (2)0.003 (2)0.0075 (19)
C130.015 (3)0.025 (3)0.021 (3)0.002 (2)0.000 (2)0.001 (2)
C140.011 (2)0.018 (2)0.020 (3)0.002 (2)0.002 (2)0.002 (2)
C150.013 (3)0.016 (2)0.017 (3)0.003 (2)0.008 (2)0.002 (2)
C160.016 (3)0.021 (3)0.017 (3)0.001 (2)0.002 (2)0.003 (2)
C170.018 (3)0.034 (3)0.024 (3)0.006 (2)0.003 (3)0.007 (2)
Geometric parameters (Å, º) top
Au1—N112.094 (4)C13—H13B0.9900
Au1—Br12.4187 (5)C14—C151.527 (6)
Au1—Br22.4244 (5)C14—C171.527 (6)
Au1—Br32.4246 (5)C14—H141.0000
N11—C121.508 (6)C15—C161.520 (7)
N11—C161.511 (6)C15—H15A0.9900
N11—H010.97 (4)C15—H15B0.9900
C12—C131.518 (7)C16—H16A0.9900
C12—H12A0.9900C16—H16B0.9900
C12—H12B0.9900C17—H17A0.9800
C13—C141.524 (7)C17—H17B0.9800
C13—H13A0.9900C17—H17C0.9800
N11—Au1—Br1176.50 (11)C13—C14—C15109.2 (4)
N11—Au1—Br286.00 (11)C13—C14—C17111.6 (4)
Br1—Au1—Br290.665 (18)C15—C14—C17111.9 (4)
N11—Au1—Br393.62 (11)C13—C14—H14108.0
Br1—Au1—Br389.751 (18)C15—C14—H14108.0
Br2—Au1—Br3177.736 (17)C17—C14—H14108.0
C12—N11—C16110.9 (4)C16—C15—C14112.3 (4)
C12—N11—Au1111.6 (3)C16—C15—H15A109.1
C16—N11—Au1117.8 (3)C14—C15—H15A109.1
C12—N11—H01107 (3)C16—C15—H15B109.1
C16—N11—H01102 (3)C14—C15—H15B109.1
Au1—N11—H01106 (3)H15A—C15—H15B107.9
N11—C12—C13110.0 (4)N11—C16—C15109.9 (4)
N11—C12—H12A109.7N11—C16—H16A109.7
C13—C12—H12A109.7C15—C16—H16A109.7
N11—C12—H12B109.7N11—C16—H16B109.7
C13—C12—H12B109.7C15—C16—H16B109.7
H12A—C12—H12B108.2H16A—C16—H16B108.2
C12—C13—C14112.2 (4)C14—C17—H17A109.5
C12—C13—H13A109.2C14—C17—H17B109.5
C14—C13—H13A109.2H17A—C17—H17B109.5
C12—C13—H13B109.2C14—C17—H17C109.5
C14—C13—H13B109.2H17A—C17—H17C109.5
H13A—C13—H13B107.9H17B—C17—H17C109.5
Br2—Au1—N11—C1278.0 (3)C12—C13—C14—C1555.0 (5)
Br3—Au1—N11—C1299.8 (3)C12—C13—C14—C17179.2 (4)
Br2—Au1—N11—C16152.0 (3)C13—C14—C15—C1654.8 (5)
Br3—Au1—N11—C1630.2 (3)C17—C14—C15—C16178.9 (4)
C16—N11—C12—C1358.4 (5)C12—N11—C16—C1558.0 (5)
Au1—N11—C12—C13168.1 (3)Au1—N11—C16—C15171.6 (3)
N11—C12—C13—C1457.4 (5)C14—C15—C16—N1156.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Br1i0.97 (4)2.81 (4)3.759 (4)164 (4)
C12—H12A···Br20.992.993.542 (5)116
C13—H13B···Br2ii0.992.933.903 (5)169
C16—H16B···Br3i0.992.993.750 (5)135
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. (2016). Halogen(I)-Aminkomplexe und ihre Oxidations­produkte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161–1165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024). Acta Cryst. E80, 157–165.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds