research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(4-hy­dr­oxy­phen­yl)amino]-5,5-di­phenyl-1H-imidazol-4(5H)-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 April 2024; accepted 18 April 2024; online 26 April 2024)

In the title mol­ecule, C21H17N3O2, the five-membered ring is slightly ruffled and dihedral angles between the pendant six-membered rings and the central, five-membered ring vary between 50.78 (4) and 86.78 (10)°. The exocyclic nitro­gen lone pair is involved in conjugated π bonding to the five-membered ring. In the crystal, a layered structure is generated by O—H⋯N and N—H⋯O hydrogen bonds plus C—H⋯π(ring) and weak π-stacking inter­actions.

1. Chemical context

Hydantoins or imidazolidine-2,4-diones are heterocyclic compounds characterized by the presence of an imidazole ring and keto groups in positions 2 and 4. Hydantoin-containing compounds exhibit a broad spectrum of pharmacological and biological activities such as an anti­cancer (Cao et al., 2022[Cao, Y., Awwad, N. S., Ibrahium, H. A., Sarkar, A., Ali, H. E. & Menazea, A. A. (2022). J. Biotechnol. 345, 40-46.]), anti­bacterial (Ghasempour et al., 2021[Ghasempour, L., Asghari, S., Tajbakhsh, M. & Mohseni, M. (2021). Chem. Biodivers. 18, e2100197.]; El Moutaouakil Ala Allah et al., 2024[El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1310, 138324.]), anti­diabetic (Sergent et al., 2008[Sergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332-4335.]), anti-inflammatory (Lin et al., 2021[Lin, X., Tago, K., Okazaki, N., So, T., Takahashi, K., Mashino, T., Tamura, H. & Funakoshi-Tago, M. (2021). Int. Immunopharmacol. 100, 108092.]), anti­microbial (Shaala & Youssef, 2021[Shaala, L. A. & Youssef, D. T. A. (2021). Marine Drugs 19, 691.]), anti­convulsant (Byrtus et al., 2011[Byrtus, H., Obniska, J., Czopek, A. & Kamiński, K. (2011). Arch. Pharm. 344, 231-241.]) and anti-HIV (Romine et al., 2011[Romine, J. L., St, , Laurent, D. R., Leet, J. E., Martin, S. W., Serrano-Wu, M. H., Yang, F., Gao, M., O'Boyle, D. R. I., Lemm, J. A., Sun, J.-H., Nower, P. T., Huang, X. S., Deshpande, M. S., Meanwell, N. A. & Snyder, L. B. (2011). ACS Med. Chem. Lett. 2, 224-229.]) activities. Thio­hydantoins, sulfur analogues of hydantoins, undergo replacement of one or both carbonyl groups with thio­carbonyl groups (Johnson & Scott, 1913[Johnson, T. B. & Scott, W. M. (1913). J. Am. Chem. Soc. 35, 1136-1143.]; Wyzlic et al., 1996[Wyzlic, I. M., Tjarks, W., Soloway, A. H., Perkins, D. J., Burgos, M. & O'Reilly, K. P. (1996). Inorg. Chem. 35, 4541-4547.]; Cromwell & Stark, 1969[Cromwell, L. D. & Stark, G. R. (1969). Biochemistry, 8, 4735-4740.]). This substitution enables versatile structural modifications, facilitating the customization of thio­hydantoins to preferentially adopt specific structural types. Such modifications, achieved by introducing steric bulk, altering hydro­philic or hydro­phobic inter­actions, or promoting ππ stacking, afford control over the mol­ecule's ability to form hydrogen-bonded arrays in the solid state. Hence, the capacity to manipulate the formation of hydrogen-bonded arrays in the solid state is of vital importance in the pharmaceutical field (Lu & Rohani, 2009[Lu, J. & Rohani, S. (2009). Curr. Med. Chem. 16, 884-905.]).

[Scheme 1]

In this study, we present the synthesis, detailed examination of the mol­ecular and crystal structures, and Hirshfeld surface analysis of the title compound, 2-[(4-hy­droxy­phen­yl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one (Fig. 1[link]), a new hydantoin derived from thio­hydantoin by a nucleophilic substitution reaction.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with labelling scheme and 50% probability ellipsoids.

2. Structural commentary

The mean planes of the C4–C9, C10–C15 and C16–C21 benzene rings are inclined to that of the C1/C2/N1/C3/N2 ring by 73.33 (9), 50.78 (11) and 86.78 (10)°, respectively. The C16—N3—C3—N1 torsion angle is −7.2 (5)° indicating that the N3—C16 bond lies close to the plane of the C1/C2/N1/C3/N2 ring. This latter ring is slightly ruffled with N2 0.031 (2) Å at one side of the mean plane (r.m.s. deviation of the fitted atoms = 0.002 Å) and C1 0.027 (3) Å at the opposite side. The sum of the angles around N3 is 359.4 (13)° implying that its lone pair is involved in N→C π bonding. This occurs primarily with C3 as the C3—N3 distance is 1.329 (3) Å while the C16—N3 distance is 1.439 (3) Å indicating some degree of conjugation with the di­hydro­imidazolone ring.

3. Supra­molecular features

In the crystal, paired O2—H2A⋯N1 hydrogen bonds (Table 1[link]) and weak, offset π-stacking inter­actions between C16–C21 rings [centroid–centroid distance = 3.9814 (19) Å, offset = 2.23 Å] form inversion dimers, which are connected into chains extending along the c-axis direction by N2—H2⋯O1 and N3—H3⋯O2 hydrogen bonds (Table 1[link] and Fig. 2[link]). These are linked into layers parallel to the bc plane by C17—H17⋯Cg4 and C21—H21⋯Cg3 inter­actions (Table 1[link] and Fig. 3[link]; Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 benzene rings, respectively).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and the C16–C21 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.86 (1) 1.93 (2) 2.763 (3) 163 (4)
N2—H2⋯O1ii 0.90 (1) 1.92 (1) 2.814 (3) 176 (3)
N3—H3⋯O2iii 0.89 (1) 2.34 (2) 3.104 (4) 143 (2)
C17—H17⋯Cg4iii 0.95 2.92 3.831 (4) 162
C21—H21⋯Cg3iv 0.95 2.93 3.822 (4) 157
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, y+1, z].
[Figure 2]
Figure 2
A portion of one chain of mol­ecules viewed along the b-axis direction. O—H⋯N and N—H⋯O hydrogen bonds are depicted, respectively, by pink and violet dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction with inter­molecular hydrogen bonds depicted as in Fig. 2[link]. C—H⋯π(ring) inter­actions are depicted by green dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.45, updated to March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment A (Fig. 4[link], R = C) gave three hits, one with R = CH2COOEt (refcode REFREB; Karolak-Wojciechowska et al., 1998[Karolak-Wojciechowska, J., Mrozek, A., Kwiatkowski, W., Ksiażek, W., Kieć-Kononowicz, K. & Handzlik, J. (1998). J. Mol. Struct. 447, 89-96.]) and the others with R = C(=NH)OMe (XASGOO; Bishop et al., 2005[Bishop, M. M., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 2563-2571.]) and R = C(=NH)OBun (XEVZEE; Bishop et al., 2007[Bishop, M. M., Lindoy, L. F., McPartlin, M., Parkin, A., Thorn-Seshold, O. T. & Turner, P. (2007). Polyhedron, 26, 415-429.]). The latter two were reported as complexes with CuII and so are not directly comparable to the title mol­ecule because of the constraints imposed by coordination to the metal. In REFREB, the five-membered ring adopts an envelope conformation with C4 at the tip of the flap and 0.044 (6) Å from the mean plane (r.m.s. deviation of the fitted atoms = 0.003 Å) with the mean planes of the attached phenyl rings inclined to the above plane by 63.3 (2) and 82.9 (2)°, respectively, which are similar to the corresponding angles in the title mol­ecule. Also, the torsion angle corresponding to the C16—N3—C3—N1 angle in the title mol­ecule is for REFREB −8.0 (5)°, which is again comparable to that cited above although the remainder of the ester chain is pointed away from the plane of the five-membered ring.

[Figure 4]
Figure 4
Fragment used in the CSD search.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer21 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia.]) to evaluate the relative contributions of the inter­molecular inter­actions in the crystal. Additional details of the plots produced and their inter­pretation have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 5[link] presents two views of the surface mapped over dnorm together with four neighbouring mol­ecules showing the inter­molecular N—H⋯O and O—H⋯N hydrogen bonds as well as one of the C—H⋯π(ring) inter­actions. From the 2D fingerprint plots, the major inter­molecular inter­actions, comprising 48.7% of the total, are H⋯H contacts (Fig. 6[link]b), appearing as a broad central peak and which are presumed to be van der Waals contacts. At 28.9% of the total are the C⋯H/H⋯C contacts (Fig. 6[link]c), shown as two broad peaks at de + di = 3.14 Å, which are primarily the two sets of C—H⋯π(ring) inter­actions (Table 1[link]) with the width of the peaks due to the range of H⋯C distances from the hydrogen atom in question to the several carbon atoms of the ring. The O⋯H/H⋯O (Fig. 6[link]d) and N⋯H/H⋯N (Fig. 6[link]e) contacts appear as sharp spikes at de + di = 2.16 and 2.20 Å, respectively, contributing 13.3% and 6.9%, respectively.

[Figure 5]
Figure 5
Front and back views of the Hirshfeld surface for the title mol­ecule mapped over dnorm.
[Figure 6]
Figure 6
The 2-D fingerprint plots for the title mol­ecule; (a) all inter­actions and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N contacts.

6. Synthesis and crystallization

The synthesis of the title compound is shown in Fig. 7[link]. 2-(Methyl­thio)-5,5-diphenyl-3,5-di­hydro-4H-imidazol-4-one (0.5 g, 1.78 mmol) and 4-amino­phenol (0.2 g, 1.80 mmol) were dissolved in 30 ml of glacial acetic acid. The reaction mixture was heated under reflux for 24 h and the reaction progress was monitored with thin-layer chromatography (TLC). The precipitated solid was filtered, washed with water, dried and purified by recrystallization from ethanol to afford colourless crystals.

[Figure 7]
Figure 7
Synthesis of the title compound.

Yield = 68%, m.p. = 424-425 K. FT–IR (ATR, υ, cm−1): 3385 (OH), 3200 (NH), 1740 (C=O); 1H NMR (500 MHz, CDCl3): δ ppm 7.26–7.62 (m, 14H, Ar-H), 9.17 (s, 1H, NHimidazole), 9.95 (s, 1H, NHamine), 10.11 (s, 1H, OH); 13C NMR: 78.53 (C-2Ph); 116.00, 116.18, 123.89, 127.62, 128.02, 128.74, 130.57, 135.00 (C–-Ar); 141.36 (C=N); 168.32 (C=O). HRMS (ESI): calculated for C21H17N3O2 [M - H]+ 344.1321; found 344.1520.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Analysis of 185 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.]) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c*-axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. The final refinement used the full twinned dataset. H atoms attached to carbon were placed in calculated positions and were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. Those attached to nitro­gen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively. One reflection affected by the beamstop was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C21H17N3O2
Mr 343.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 17.764 (3), 8.4429 (12), 11.6601 (16)
β (°) 100.948 (4)
V3) 1716.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.38 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.97, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 16776, 5347, 3329
Rint 0.045
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.132, 1.04
No. of reflections 5347
No. of parameters 248
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

2-[(4-Hydroxyphenyl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one top
Crystal data top
C21H17N3O2F(000) = 720
Mr = 343.38Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.764 (3) ÅCell parameters from 3889 reflections
b = 8.4429 (12) Åθ = 2.3–26.2°
c = 11.6601 (16) ŵ = 0.09 mm1
β = 100.948 (4)°T = 150 K
V = 1716.9 (4) Å3Plate, colourless
Z = 40.38 × 0.21 × 0.02 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
5347 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.3910 pixels mm-1θmax = 26.5°, θmin = 2.3°
ω scansh = 2221
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 010
Tmin = 0.97, Tmax = 1.00l = 014
16776 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: mixed
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5709P]
where P = (Fo2 + 2Fc2)/3
5347 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.23 e Å3
3 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames 0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used. Analysis of 185 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively. Refined as a 2-component twin. One reflection affected by the beamstop was omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76440 (12)0.1256 (2)0.59260 (16)0.0529 (6)
O20.43772 (15)0.8230 (3)0.4878 (2)0.0664 (7)
H2A0.4033 (16)0.767 (4)0.444 (3)0.092 (14)*
N10.68601 (13)0.2980 (3)0.66727 (18)0.0409 (6)
N20.73357 (13)0.2658 (3)0.86027 (18)0.0386 (6)
H20.7453 (16)0.303 (3)0.9339 (13)0.047 (9)*
N30.63328 (14)0.4450 (3)0.8052 (2)0.0440 (6)
H30.6262 (16)0.448 (3)0.8788 (13)0.057 (10)*
C10.78406 (15)0.1675 (3)0.8050 (2)0.0342 (6)
C20.74437 (17)0.1927 (3)0.6755 (2)0.0385 (7)
C30.68300 (16)0.3401 (3)0.7783 (2)0.0368 (7)
C40.86637 (16)0.2335 (3)0.8283 (2)0.0394 (7)
C50.91538 (19)0.1953 (5)0.9308 (3)0.0669 (11)
H50.8987810.1241910.9840000.080*
C60.9881 (2)0.2584 (5)0.9574 (3)0.0864 (13)
H61.0206910.2317651.0291920.104*
C71.0135 (2)0.3585 (5)0.8820 (4)0.0766 (12)
H71.0637080.4018010.9005590.092*
C80.9667 (2)0.3961 (5)0.7801 (4)0.0749 (11)
H80.9843110.4656100.7267830.090*
C90.8931 (2)0.3340 (4)0.7526 (3)0.0610 (9)
H90.8609490.3613130.6806530.073*
C100.78376 (15)0.0048 (3)0.8413 (2)0.0366 (7)
C110.75374 (17)0.0543 (4)0.9371 (3)0.0491 (8)
H110.7284880.0194250.9784100.059*
C120.7607 (2)0.2115 (4)0.9723 (3)0.0657 (10)
H120.7401320.2449071.0377710.079*
C130.7969 (2)0.3190 (4)0.9136 (4)0.0671 (11)
H130.8016410.4263440.9384230.081*
C140.8263 (2)0.2712 (4)0.8188 (3)0.0626 (9)
H140.8511840.3455530.7773770.075*
C150.81995 (18)0.1159 (4)0.7836 (3)0.0499 (8)
H150.8408710.0840810.7180380.060*
C160.58283 (16)0.5387 (3)0.7202 (2)0.0410 (7)
C170.50842 (17)0.4918 (4)0.6807 (3)0.0538 (8)
H170.4904810.3949550.7070810.065*
C180.45952 (18)0.5859 (4)0.6024 (3)0.0558 (9)
H180.4078910.5539350.5757210.067*
C190.48536 (18)0.7249 (4)0.5634 (2)0.0484 (8)
C200.56002 (19)0.7722 (4)0.6020 (3)0.0575 (9)
H200.5781930.8679150.5741520.069*
C210.60862 (18)0.6788 (4)0.6820 (3)0.0536 (8)
H210.6598580.7120930.7104470.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0689 (15)0.0619 (14)0.0268 (11)0.0189 (11)0.0064 (10)0.0030 (10)
O20.0690 (17)0.0577 (15)0.0600 (15)0.0140 (13)0.0199 (13)0.0000 (13)
N10.0428 (15)0.0502 (15)0.0270 (12)0.0084 (12)0.0001 (11)0.0012 (11)
N20.0424 (14)0.0476 (15)0.0232 (12)0.0101 (12)0.0003 (11)0.0007 (12)
N30.0446 (15)0.0533 (16)0.0336 (14)0.0150 (13)0.0059 (12)0.0031 (13)
C10.0370 (16)0.0391 (16)0.0255 (13)0.0074 (13)0.0036 (12)0.0007 (12)
C20.0424 (17)0.0420 (17)0.0295 (15)0.0038 (14)0.0031 (13)0.0027 (13)
C30.0336 (16)0.0436 (17)0.0320 (15)0.0014 (13)0.0035 (13)0.0018 (13)
C40.0423 (17)0.0398 (16)0.0367 (16)0.0017 (14)0.0091 (14)0.0017 (14)
C50.052 (2)0.095 (3)0.049 (2)0.020 (2)0.0041 (17)0.0157 (19)
C60.056 (2)0.126 (4)0.068 (2)0.025 (2)0.013 (2)0.014 (3)
C70.045 (2)0.102 (3)0.082 (3)0.016 (2)0.011 (2)0.011 (3)
C80.062 (2)0.085 (3)0.082 (3)0.019 (2)0.026 (2)0.011 (2)
C90.056 (2)0.072 (2)0.055 (2)0.0032 (19)0.0103 (17)0.0117 (19)
C100.0313 (15)0.0444 (17)0.0310 (15)0.0004 (13)0.0014 (12)0.0018 (13)
C110.0445 (18)0.057 (2)0.0450 (18)0.0009 (16)0.0062 (15)0.0088 (16)
C120.064 (2)0.072 (3)0.059 (2)0.010 (2)0.0065 (19)0.027 (2)
C130.062 (2)0.048 (2)0.080 (3)0.0079 (19)0.017 (2)0.013 (2)
C140.061 (2)0.049 (2)0.073 (2)0.0080 (17)0.0010 (19)0.001 (2)
C150.0507 (19)0.049 (2)0.0496 (19)0.0065 (15)0.0081 (16)0.0004 (16)
C160.0404 (18)0.0432 (18)0.0381 (16)0.0096 (14)0.0038 (14)0.0025 (14)
C170.0455 (19)0.054 (2)0.060 (2)0.0005 (16)0.0034 (17)0.0101 (17)
C180.0372 (17)0.065 (2)0.061 (2)0.0037 (17)0.0025 (16)0.0025 (18)
C190.0473 (19)0.049 (2)0.0432 (17)0.0110 (16)0.0048 (15)0.0037 (16)
C200.056 (2)0.0481 (19)0.063 (2)0.0011 (16)0.0019 (18)0.0074 (17)
C210.0401 (18)0.059 (2)0.056 (2)0.0008 (17)0.0052 (16)0.0045 (17)
Geometric parameters (Å, º) top
O1—C21.230 (3)C8—H80.9500
O2—C191.377 (3)C9—H90.9500
O2—H2A0.859 (12)C10—C151.383 (4)
N1—C31.354 (3)C10—C111.390 (4)
N1—C21.355 (3)C11—C121.388 (4)
N2—C31.337 (3)C11—H110.9500
N2—C11.459 (3)C12—C131.369 (5)
N2—H20.899 (12)C12—H120.9500
N3—C31.329 (3)C13—C141.370 (5)
N3—C161.439 (3)C13—H130.9500
N3—H30.892 (12)C14—C151.372 (4)
C1—C101.515 (4)C14—H140.9500
C1—C41.540 (4)C15—H150.9500
C1—C21.555 (4)C16—C171.373 (4)
C4—C91.373 (4)C16—C211.373 (4)
C4—C51.376 (4)C17—C181.385 (4)
C5—C61.377 (5)C17—H170.9500
C5—H50.9500C18—C191.369 (4)
C6—C71.358 (5)C18—H180.9500
C6—H60.9500C19—C201.376 (4)
C7—C81.352 (5)C20—C211.390 (4)
C7—H70.9500C20—H200.9500
C8—C91.388 (5)C21—H210.9500
C19—O2—H2A109 (2)C8—C9—H9119.6
C3—N1—C2105.9 (2)C15—C10—C11118.1 (3)
C3—N2—C1109.7 (2)C15—C10—C1119.3 (3)
C3—N2—H2121.4 (18)C11—C10—C1122.4 (3)
C1—N2—H2124.7 (18)C12—C11—C10119.9 (3)
C3—N3—C16124.0 (2)C12—C11—H11120.0
C3—N3—H3117.9 (19)C10—C11—H11120.0
C16—N3—H3117.5 (19)C13—C12—C11120.7 (3)
N2—C1—C10112.8 (2)C13—C12—H12119.7
N2—C1—C4111.0 (2)C11—C12—H12119.7
C10—C1—C4110.6 (2)C12—C13—C14119.7 (3)
N2—C1—C298.5 (2)C12—C13—H13120.2
C10—C1—C2112.2 (2)C14—C13—H13120.2
C4—C1—C2111.3 (2)C13—C14—C15120.0 (3)
O1—C2—N1125.3 (2)C13—C14—H14120.0
O1—C2—C1123.7 (2)C15—C14—H14120.0
N1—C2—C1111.0 (2)C14—C15—C10121.5 (3)
N3—C3—N2122.1 (3)C14—C15—H15119.2
N3—C3—N1123.3 (2)C10—C15—H15119.2
N2—C3—N1114.6 (3)C17—C16—C21119.9 (3)
C9—C4—C5117.6 (3)C17—C16—N3120.4 (3)
C9—C4—C1122.9 (2)C21—C16—N3119.6 (3)
C5—C4—C1119.5 (3)C16—C17—C18120.0 (3)
C4—C5—C6121.1 (3)C16—C17—H17120.0
C4—C5—H5119.4C18—C17—H17120.0
C6—C5—H5119.4C19—C18—C17120.2 (3)
C7—C6—C5120.5 (3)C19—C18—H18119.9
C7—C6—H6119.7C17—C18—H18119.9
C5—C6—H6119.7C18—C19—C20120.2 (3)
C8—C7—C6119.4 (3)C18—C19—O2121.6 (3)
C8—C7—H7120.3C20—C19—O2118.1 (3)
C6—C7—H7120.3C19—C20—C21119.5 (3)
C7—C8—C9120.6 (4)C19—C20—H20120.3
C7—C8—H8119.7C21—C20—H20120.3
C9—C8—H8119.7C16—C21—C20120.2 (3)
C4—C9—C8120.8 (3)C16—C21—H21119.9
C4—C9—H9119.6C20—C21—H21119.9
C3—N2—C1—C10123.8 (2)C1—C4—C9—C8177.0 (3)
C3—N2—C1—C4111.5 (3)C7—C8—C9—C40.1 (6)
C3—N2—C1—C25.3 (3)N2—C1—C10—C15170.7 (2)
C3—N1—C2—O1179.0 (3)C4—C1—C10—C1564.3 (3)
C3—N1—C2—C11.4 (3)C2—C1—C10—C1560.5 (3)
N2—C1—C2—O1176.3 (3)N2—C1—C10—C1114.7 (3)
C10—C1—C2—O157.4 (4)C4—C1—C10—C11110.3 (3)
C4—C1—C2—O167.1 (4)C2—C1—C10—C11124.8 (3)
N2—C1—C2—N14.1 (3)C15—C10—C11—C120.1 (4)
C10—C1—C2—N1123.0 (3)C1—C10—C11—C12174.6 (3)
C4—C1—C2—N1112.5 (3)C10—C11—C12—C130.0 (5)
C16—N3—C3—N2173.9 (3)C11—C12—C13—C140.3 (5)
C16—N3—C3—N17.2 (5)C12—C13—C14—C150.5 (5)
C1—N2—C3—N3175.7 (3)C13—C14—C15—C100.4 (5)
C1—N2—C3—N15.3 (3)C11—C10—C15—C140.1 (4)
C2—N1—C3—N3178.7 (3)C1—C10—C15—C14175.0 (3)
C2—N1—C3—N22.3 (3)C3—N3—C16—C1797.0 (4)
N2—C1—C4—C994.0 (3)C3—N3—C16—C2185.6 (4)
C10—C1—C4—C9140.0 (3)C21—C16—C17—C180.0 (5)
C2—C1—C4—C914.6 (4)N3—C16—C17—C18177.5 (3)
N2—C1—C4—C583.9 (3)C16—C17—C18—C190.6 (5)
C10—C1—C4—C542.0 (4)C17—C18—C19—C200.2 (5)
C2—C1—C4—C5167.4 (3)C17—C18—C19—O2178.4 (3)
C9—C4—C5—C61.4 (5)C18—C19—C20—C210.9 (5)
C1—C4—C5—C6176.7 (3)O2—C19—C20—C21177.4 (3)
C4—C5—C6—C71.0 (6)C17—C16—C21—C201.1 (5)
C5—C6—C7—C80.1 (6)N3—C16—C21—C20178.6 (3)
C6—C7—C8—C90.3 (6)C19—C20—C21—C161.5 (5)
C5—C4—C9—C81.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and the C16–C21 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.86 (1)1.93 (2)2.763 (3)163 (4)
N2—H2···O1ii0.90 (1)1.92 (1)2.814 (3)176 (3)
N3—H3···O2iii0.89 (1)2.34 (2)3.104 (4)143 (2)
C17—H17···Cg4iii0.952.923.831 (4)162
C21—H21···Cg3iv0.952.933.822 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, YR; methodology, WG and AS; investigation, AEMAA; writing (original draft), JTM and AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR; crystal structure determination and validation, JTM; resources, AYAA.

References

First citationBishop, M. M., Lindoy, L. F., McPartlin, M., Parkin, A., Thorn-Seshold, O. T. & Turner, P. (2007). Polyhedron, 26, 415–429.  CSD CrossRef CAS Google Scholar
First citationBishop, M. M., Lindoy, L. F., Parkin, A. & Turner, P. (2005). Dalton Trans. pp. 2563–2571.  CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationByrtus, H., Obniska, J., Czopek, A. & Kamiński, K. (2011). Arch. Pharm. 344, 231–241.  CrossRef CAS Google Scholar
First citationCao, Y., Awwad, N. S., Ibrahium, H. A., Sarkar, A., Ali, H. E. & Menazea, A. A. (2022). J. Biotechnol. 345, 40–46.  CrossRef CAS PubMed Google Scholar
First citationCromwell, L. D. & Stark, G. R. (1969). Biochemistry, 8, 4735–4740.  CrossRef CAS PubMed Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1310, 138324.  CrossRef Google Scholar
First citationGhasempour, L., Asghari, S., Tajbakhsh, M. & Mohseni, M. (2021). Chem. Biodivers. 18, e2100197.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJohnson, T. B. & Scott, W. M. (1913). J. Am. Chem. Soc. 35, 1136–1143.  CrossRef CAS Google Scholar
First citationKarolak-Wojciechowska, J., Mrozek, A., Kwiatkowski, W., Ksiażek, W., Kieć-Kononowicz, K. & Handzlik, J. (1998). J. Mol. Struct. 447, 89–96.  CAS Google Scholar
First citationLin, X., Tago, K., Okazaki, N., So, T., Takahashi, K., Mashino, T., Tamura, H. & Funakoshi-Tago, M. (2021). Int. Immunopharmacol. 100, 108092.  CrossRef PubMed Google Scholar
First citationLu, J. & Rohani, S. (2009). Curr. Med. Chem. 16, 884–905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRomine, J. L., St, , Laurent, D. R., Leet, J. E., Martin, S. W., Serrano-Wu, M. H., Yang, F., Gao, M., O'Boyle, D. R. I., Lemm, J. A., Sun, J.-H., Nower, P. T., Huang, X. S., Deshpande, M. S., Meanwell, N. A. & Snyder, L. B. (2011). ACS Med. Chem. Lett. 2, 224–229.  Google Scholar
First citationSergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332–4335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaala, L. A. & Youssef, D. T. A. (2021). Marine Drugs 19, 691.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia.  Google Scholar
First citationWyzlic, I. M., Tjarks, W., Soloway, A. H., Perkins, D. J., Burgos, M. & O'Reilly, K. P. (1996). Inorg. Chem. 35, 4541–4547.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds