research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(car­bamo­thioyl­amino)­imino]­eth­yl}phenyl propano­ate

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110029, India, cDepartment of Food Quality & Safety, Institute for Postharvest and Food Sciences, Volcani Center, ARO, Rishon LeZion 7528809, Israel, and dDepartment of Chemistry, Asthagiri Herbal Research Foundation, Perungudi Industrial Estate, Chennai 600 096, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 March 2024; accepted 12 April 2024; online 18 April 2024)

The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an anti­periplanar (ap) conformation. There are short intra­molecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, mol­ecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S inter­actions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S inter­actions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains.

1. Chemical context

Thio­semicarbazone derivatives have found applications in drug development for the treatment of central nervous system disorders and bacterial infection, as well as analgesic and anti-allergic agents. They are inhibitors of DNA replication and are effective against proteases. This inhibitory activity explains the level of attention given to them in the fight against microbial and parasitic diseases (Mani et al., 2015[Mani, K. A., Viswanathan, V., Narasimhan, S. & Velmurugan, D. (2015). Acta Cryst. E71, o43-o44.]). Moreover, thio­semicarbazones have many biological activities, such as anti­parasital (Du et al., 2002[Du, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695-2707.]), anti­bacterial, anti­tumour (Papa­georgiou et al., 1997[Papageorgiou, A., Iakovidou, Z., Mourelatos, D., Mioglou, E., Boutis, L., Kotsis, A., Kovala-Demertzi, D., Domopoulou, A., West, D. X. & Dermetzis, M. A. (1997). Anticancer Res. 17, 247-251.]), anti-African trypanosome (Fatondji et al., 2013[Fatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151-2162.]), anti­microbial, sodium channel blocker, anti­malarial, anti­tubercular (Khanye et al., 2011[Khanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392-3396.]), anti­viral (Venkatesh et al., 2016[Venkatesh, K., Rayam, P., Sekhar, K. P. C. & Mukkanti, K. (2016). Int. J. Appl. Biol. Pharm. Tech. 7, 258-266.]), anti­fungal and locomotor activity (Singh et al., 2011[Singh, R., Mishra, P. S. & Mishra, R. (2011). Inter. J. Pharm Tech. Res. 3, 1625-1629.]), and they are used as a cure for leprosy, rheumatism and trypanosomiasis (Parul et al., 2012[Parul, N., Subhangkar, N. & Arun, M. (2012). Inter. Res. J. Phar. 3, 350-363.]). They are also important inter­mediates in organic synthesis, mainly for obtaining heterocyclic rings, such as thia­zolidones, oxa­diazo­les, pyrazolidones and thia­diazo­les (Greenbaum et al., 2004[Greenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P. S., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.]). Thio­semicarbazones have also received considerable attention in view of their simplicity of preparation and various complexing abilities that can be used in analytical applications (Garg & Jain, 1988[Garg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144-169.]; Casas et al., 2000[Casas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). They are well known as N,S-donors, with a wide range of coordination modes (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]).

In view of such important applications, we herein report the crystal structure determination and Hirshfeld surface analysis of the title thio­semicarbazone derivative, namely, 4-{(1E)-1-[(carbamo­thioyl­amino)­imino]­eth­yl}phenyl propano­ate, (I)[link].

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. It adopts an E configuration with respect to the C10=N1 bond (Fig. 1[link]), showing a C10—N1—N2—C12 torsion angle of 175.4 (2)°. The N1—N2—C12—S1 torsion angle of −171.5 (1)° suggests that the thionyl S1 atom is located trans to the azomethine N1 atom. The C10=N1 bond length [1.285 (6) Å] is close to that of a formal C=N double bond [1.284 (3) Å; Seena et al., 2006[Seena, E. B., Manoj, E. & Kurup, M. R. P. (2006). Acta Cryst. C62, o486-o488.]]. Similarly, the C12=S1 bond length [1.679 (4) Å] is close to that of formal C=S bond [1.685 (3) Å; Jacob & Kurup, 2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]], and the N1—N2 bond length of 1.369 (5) Å is similar to those found in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for thio­semicarbazone systems (371 hits, mean N—N distance is 1.374 Å). All other bond lengths and angles are normal and correspond well to those observed in the crystal structures of related semicarbazone and thio­semicarbazone derivatives (Carballo et al., 2014[Carballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular contacts are shown as dashed lines.

The propionate group adopts an anti­periplanar (ap) conformation, as can be seen from the C1—C2—C3—O2 torsion angle of −176.3 (2)°. The semicarbazone unit is nearly planar, showing an N3—C12—N2—N1 torsion angle of 7.4 (2)°. The maximum deviation from the mean plane of the non-H atoms of the C10/C11/C12/N1/N2/N3 fragment is −0.037 (5) Å for the N2 atom. The dihedral angle between this mean plane and the plane of the aromatic ring is 25.3 (1)°. Intra­molecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs (Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), respectively, lead to the stabilization of the mol­ecular conformation (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1 0.80 (3) 2.27 (5) 2.588 (6) 104 (4)
C5—H5⋯O1B 0.93 2.32 2.812 (7) 113
N2—H2⋯S1i 0.84 (3) 2.69 (3) 3.525 (4) 173 (4)
N3—H3A⋯S1ii 0.85 (3) 2.55 (3) 3.402 (5) 177 (5)
C11—H11B⋯S1i 0.96 2.77 3.452 (5) 128
Symmetry codes: (i) [-x-1, -y+1, -z]; (ii) [-x-1, -y+2, -z].

3. Supra­molecular features

Several supra­molecular hydrogen-bonding inter­actions are observed in (I)[link]. In the crystal, individual mol­ecules are connected by pairs of N—H⋯S inter­actions, forming ribbons extending parallel to [010], where rings with [R_{2}^{2}](8) graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) are formed (N2—H2⋯S1 and N3—H3A⋯S1), and by pairs of C11—H11B⋯S1 inter­actions, where rings with the graph-set motif [R_{2}^{1}](7) are observed (Fig. 2[link]). C—H⋯π and ππ inter­molecular inter­actions are not present in the crystal.

[Figure 2]
Figure 2
A view along the a axis of the crystal structure of (I)[link]. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent review by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) describes the use and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) for analysis of inter­molecular contacts in crystals. Corresponding calculations were performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The Hirshfeld surface of compound (I)[link] mapped over dnorm is given in Fig. 3[link], and the inter­molecular contacts are illustrated in Fig. 4[link](a). They are colour mapped with the nor­ma­lized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.469 (red) to 1.632 (blue) for (I)[link], where the red spots indicate the inter­molecular contacts involved in hydrogen-bonding inter­actions. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.]). The presence of inter­actions is indicated by a red and blue colour on the shape-index surface [Fig. 4[link](b)]. Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighbouring mol­ecule. The number of inter­acting mol­ecules around a central mol­ecule in the crystal correlates with the curvedness of the Hirshfeld surface [Fig. 4[link](c)]. The nearest-neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules [Fig. 4[link](d)].

[Figure 3]
Figure 3
The Hirshfeld surface of (I)[link], mapped over dnorm.
[Figure 4]
Figure 4
The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound (I)[link]: (a) dnorm with various inter­molecular contacts in the crystal, (b) shape index, (c) curvedness and (d) fragment patches.

The fingerprint plots of (I)[link] are given in Fig. 5[link]. They reveal that the principal inter­molecular contacts are H⋯H contacts with a 42.0% contribution [Fig. 5[link](b)], followed by H⋯C/C⋯H contacts with a 16.5% contribution (Fig. 5[link]c), S⋯H/H⋯S with 15.7% [Fig. 5[link](d)], O⋯·H/H⋯O with 13.1% [Fig. 5[link](e)] and N⋯H/H⋯N with 7.1% [Fig. 5[link](f)]. O⋯O contacts with a contribution of 2.0% [Fig. 5[link](g)], S⋯C/C⋯S with 1.3% [Fig. 5[link](h)], O⋯C/C⋯O with 1.1% [Fig. 5[link](i)], C⋯C with 0.7% [Fig. 5[link](j)], N⋯N with 0.3% [Fig. 5[link](k)], N⋯C/C⋯N with 0.2% [Fig. 5[link](l)] and S⋯N/N⋯S with 0.1% [Fig. 5[link](m)] contribute less to the packing.

[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot for title compound and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) O⋯H/H⋯O, (f) N⋯H/H⋯N, (g) O⋯O, (h) S⋯C/C⋯S, (i) O⋯C/C⋯O, (j) C⋯C, (k) N⋯N, (l) N⋯C/C⋯N and (m) S⋯N/N⋯S contacts.

5. Database survey

Given the inter­est in semi­thio­carbazones owing to their biological potential, it is not surprising that a search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed almost 100 hits for the CC(H)=NN(H)C(=S)N(H2) fragment. The only re­striction in the search was that the heaviest atom was sulfur. In the absence of this restriction, there were nearly 400 hits. All bond lengths and angles are normal and correspond well to those observed in the crystal structures of related semicar­ba­zone and thio­semicarbazone derivatives (Naik & Palenik, 1974[Naik, D. V. & Palenik, G. J. (1974). Acta Cryst. B30, 2396-2401.]; Wang et al., 2004[Wang, J.-L., Jia, Y.-J. & Yu, M. (2004). Acta Cryst. E60, o662-o663.]; Pelosi et al., 2005[Pelosi, G., Pelizzi, C., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Vieito, C. & Sanmartín, J. (2005). Acta Cryst. C61, o589-o592.]; Yathirajan et al., 2006[Yathirajan, H. S., Bindya, S., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5925-o5926.]; Sarojini et al., 2007[Sarojini, B. K., Narayana, B., Bindya, S., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o2946.]; Reddy et al., 2014[Reddy, M. S., Sarala, Y., Jagadeesh, M., Das, S. K. & Ammireddy, V. R. (2014). Acta Cryst. E70, o846.]; Carballo et al., 2014[Carballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.])

6. Synthesis and crystallization

To 4-hy­droxy­aceto­phenone (0.5 mol) were added 200 ml of chloro­form under continuous stirring and cooling to 288–293 K. Propanoyl chloride (0.5 mol) was added dropwise to the reaction mixture and stirring continued for another 15 min, when 0.5 mol of potassium carbonate were added slowly. The reaction was continued for another 4 h and was monitored using thin-layer chromatography (TLC). The reaction mass was then washed twice with water (2 × 250 ml). The chloro­form layer was separated and washed with 10 wt% NaOH solution (2 × 250 ml). The aqueous phase was separated, dried with anhydrous sodium sulfate, followed by concentration under reduced pressure using a rotary vacuum system, and cooled before hexane was added.

Thio­semicarbazide (0.91 g, 0.01 mole) was added to 50 ml of an ethano­lic solution of 4-acetyl­phenyl propionate (0.01 mol) with continuous stirring for 4–5 h. The resulting mixture was refluxed at 333 K and the purity of the products, as well as the composition of the reaction mixture, was monitored by TLC using ethyl acetate–hexane (3:7 v:v). The reaction mixture was cooled to room temperature and the separated product was filtered, dried and finally recrystallized from chloro­form solution, yielding colourless crystals of (I)[link].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.96 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The N-bound H atoms were located in a difference Fourier map and freely refined. The O1 atom of the carbonyl group was found to be disordered over two positions, with a refined occupancy ratio of 0.73 (2):0.27 (2). The C=O bond length and ADPs were subjected to restraints to yield sensible geometrical parameters. The crystal under investigation consists of two domains. The crystal structure was refined using HKLF5-type data with all reflections of component 1 (including the overlapping ones) resulting in a BASF value of 0.3587 (2).

Table 2
Experimental details

Crystal data
Chemical formula C12H15N3O2S
Mr 265.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.7700 (1), 8.3069 (2), 14.6243 (5)
α, β, γ (°) 82.891 (2), 87.004 (4), 74.172 (2)
V3) 669.07 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.29 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE diffrac­tometer with PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.723, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 8530, 8530, 6376
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.219, 1.09
No. of reflections 8530
No. of parameters 188
No. of restraints 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.26
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

4-[(1E)-1-[(Carbamothioylamino)imino]ethyl]phenyl propanoate top
Crystal data top
C12H15N3O2SZ = 2
Mr = 265.33F(000) = 280
Triclinic, P1Dx = 1.317 Mg m3
a = 5.7700 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3069 (2) ÅCell parameters from 8530 reflections
c = 14.6243 (5) Åθ = 1.4–25.0°
α = 82.891 (2)°µ = 0.24 mm1
β = 87.004 (4)°T = 296 K
γ = 74.172 (2)°Block, colourless
V = 669.07 (3) Å30.29 × 0.24 × 0.20 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
6376 reflections with I > 2σ(I)
ω and φ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.723, Tmax = 0.863k = 99
8530 measured reflectionsl = 1717
8530 independent reflections
Refinement top
Refinement on F2197 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.1179P)2 + 0.1922P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8530 reflectionsΔρmax = 0.26 e Å3
188 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0534 (11)0.1766 (9)0.6695 (4)0.0748 (18)
H1A1.1776820.2066050.6991220.112*
H1B1.1055080.0594930.6605600.112*
H1C0.9097020.1969510.7073620.112*
C21.0027 (10)0.2796 (8)0.5790 (3)0.0627 (16)
H2A0.9590900.3977890.5884040.075*
H2B1.1486130.2577220.5411230.075*
C30.8076 (11)0.2464 (8)0.5289 (4)0.0605 (15)
C40.6029 (8)0.3302 (7)0.3831 (3)0.0460 (12)
C50.4929 (9)0.2042 (7)0.3839 (3)0.0553 (14)
H50.5279700.1129430.4294100.066*
C60.3285 (9)0.2129 (7)0.3165 (3)0.0518 (13)
H60.2571150.1252080.3160870.062*
C70.2684 (8)0.3510 (6)0.2492 (3)0.0392 (11)
C80.3902 (8)0.4745 (7)0.2493 (3)0.0443 (12)
H80.3594270.5657700.2036990.053*
C90.5552 (8)0.4633 (7)0.3159 (3)0.0463 (12)
H90.6346130.5469950.3151120.056*
C100.0799 (8)0.3681 (6)0.1809 (3)0.0402 (11)
C110.0131 (9)0.2144 (7)0.1596 (3)0.0538 (14)
H11A0.1385620.1155390.1794830.081*
H11B0.0071650.2205840.0943840.081*
H11C0.1349480.2086930.1912890.081*
C120.3239 (8)0.7118 (6)0.0597 (3)0.0414 (11)
N10.0217 (6)0.5204 (5)0.1479 (2)0.0407 (10)
N20.2082 (7)0.5502 (5)0.0885 (3)0.0420 (10)
N30.2309 (9)0.8273 (6)0.0830 (4)0.0623 (13)
O20.7779 (6)0.3338 (5)0.4461 (2)0.0654 (12)
S10.5771 (2)0.75787 (17)0.00106 (11)0.0586 (5)
O1A0.829 (7)0.0938 (10)0.527 (2)0.114 (13)0.27 (2)
O1B0.6526 (17)0.1802 (15)0.5647 (4)0.084 (4)0.73 (2)
H20.271 (7)0.483 (5)0.067 (3)0.035 (13)*
H3A0.280 (9)0.930 (5)0.061 (3)0.071 (18)*
H3B0.105 (6)0.803 (6)0.109 (3)0.051 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.085 (4)0.079 (5)0.060 (3)0.012 (4)0.028 (3)0.013 (3)
C20.058 (3)0.080 (5)0.052 (3)0.020 (3)0.016 (3)0.001 (3)
C30.071 (4)0.059 (4)0.053 (3)0.020 (3)0.021 (3)0.003 (3)
C40.039 (2)0.059 (3)0.040 (3)0.015 (2)0.007 (2)0.001 (3)
C50.058 (3)0.048 (3)0.054 (3)0.010 (3)0.019 (3)0.012 (3)
C60.056 (3)0.043 (3)0.055 (3)0.015 (3)0.021 (2)0.010 (3)
C70.035 (2)0.037 (3)0.042 (2)0.004 (2)0.0033 (19)0.002 (2)
C80.040 (2)0.046 (3)0.043 (3)0.008 (2)0.004 (2)0.004 (2)
C90.044 (3)0.047 (3)0.050 (3)0.017 (2)0.002 (2)0.001 (3)
C100.038 (2)0.041 (3)0.038 (2)0.006 (2)0.002 (2)0.002 (2)
C110.062 (3)0.042 (3)0.056 (3)0.010 (3)0.021 (3)0.001 (3)
C120.040 (2)0.039 (3)0.045 (3)0.013 (2)0.008 (2)0.004 (2)
N10.039 (2)0.043 (3)0.038 (2)0.0112 (18)0.0095 (16)0.0066 (19)
N20.043 (2)0.033 (2)0.049 (2)0.0095 (19)0.0146 (18)0.005 (2)
N30.067 (3)0.039 (3)0.081 (3)0.017 (3)0.044 (3)0.012 (3)
O20.064 (2)0.084 (3)0.055 (2)0.037 (2)0.0220 (18)0.015 (2)
S10.0527 (8)0.0359 (8)0.0871 (10)0.0128 (6)0.0365 (7)0.0107 (7)
O1A0.15 (3)0.056 (13)0.14 (2)0.027 (13)0.08 (2)0.014 (12)
O1B0.087 (6)0.125 (9)0.058 (4)0.065 (6)0.017 (4)0.011 (4)
Geometric parameters (Å, º) top
C1—C21.480 (7)C7—C81.393 (6)
C1—H1A0.9600C7—C101.482 (6)
C1—H1B0.9600C8—C91.375 (6)
C1—H1C0.9600C8—H80.9300
C2—C31.479 (7)C9—H90.9300
C2—H2A0.9700C10—N11.285 (6)
C2—H2B0.9700C10—C111.502 (7)
C3—O1B1.234 (8)C11—H11A0.9600
C3—O1A1.242 (2)C11—H11B0.9600
C3—O21.327 (6)C11—H11C0.9600
C4—C91.363 (7)C12—N31.305 (6)
C4—C51.362 (7)C12—N21.351 (6)
C4—O21.410 (5)C12—S11.679 (4)
C5—C61.386 (6)N1—N21.369 (5)
C5—H50.9300N2—H20.84 (3)
C6—C71.394 (7)N3—H3A0.85 (3)
C6—H60.9300N3—H3B0.80 (3)
C2—C1—H1A109.5C6—C7—C10121.7 (4)
C2—C1—H1B109.5C9—C8—C7120.9 (5)
H1A—C1—H1B109.5C9—C8—H8119.6
C2—C1—H1C109.5C7—C8—H8119.6
H1A—C1—H1C109.5C4—C9—C8120.4 (5)
H1B—C1—H1C109.5C4—C9—H9119.8
C3—C2—C1113.6 (5)C8—C9—H9119.8
C3—C2—H2A108.8N1—C10—C7114.6 (4)
C1—C2—H2A108.8N1—C10—C11125.6 (4)
C3—C2—H2B108.8C7—C10—C11119.7 (4)
C1—C2—H2B108.8C10—C11—H11A109.5
H2A—C2—H2B107.7C10—C11—H11B109.5
O1B—C3—O2121.3 (5)H11A—C11—H11B109.5
O1A—C3—O2113.3 (14)C10—C11—H11C109.5
O1B—C3—C2124.9 (5)H11A—C11—H11C109.5
O1A—C3—C2113.1 (12)H11B—C11—H11C109.5
O2—C3—C2111.6 (5)N3—C12—N2116.7 (4)
C9—C4—C5120.6 (4)N3—C12—S1122.8 (4)
C9—C4—O2114.3 (4)N2—C12—S1120.6 (4)
C5—C4—O2125.1 (5)C10—N1—N2119.1 (4)
C4—C5—C6119.7 (5)C12—N2—N1118.2 (4)
C4—C5—H5120.2C12—N2—H2111 (3)
C6—C5—H5120.2N1—N2—H2131 (3)
C5—C6—C7121.0 (5)C12—N3—H3A122 (4)
C5—C6—H6119.5C12—N3—H3B121 (4)
C7—C6—H6119.5H3A—N3—H3B115 (4)
C8—C7—C6117.4 (4)C3—O2—C4124.5 (4)
C8—C7—C10120.9 (4)
C1—C2—C3—O1B20.2 (11)C6—C7—C10—N1154.4 (4)
C1—C2—C3—O1A47 (2)C8—C7—C10—C11158.8 (4)
C1—C2—C3—O2176.3 (5)C6—C7—C10—C1122.2 (6)
C9—C4—C5—C60.9 (8)C7—C10—N1—N2176.1 (3)
O2—C4—C5—C6178.1 (5)C11—C10—N1—N20.3 (7)
C4—C5—C6—C71.8 (8)N3—C12—N2—N17.4 (7)
C5—C6—C7—C83.6 (7)S1—C12—N2—N1171.5 (3)
C5—C6—C7—C10175.4 (4)C10—N1—N2—C12175.4 (4)
C6—C7—C8—C92.8 (7)O1B—C3—O2—C414.7 (11)
C10—C7—C8—C9176.3 (4)O1A—C3—O2—C452 (2)
C5—C4—C9—C81.8 (8)C2—C3—O2—C4178.9 (5)
O2—C4—C9—C8179.2 (4)C9—C4—O2—C3161.2 (5)
C7—C8—C9—C40.2 (7)C5—C4—O2—C321.5 (8)
C8—C7—C10—N124.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N10.80 (3)2.27 (5)2.588 (6)104 (4)
C5—H5···O1B0.932.322.812 (7)113
N2—H2···S1i0.84 (3)2.69 (3)3.525 (4)173 (4)
N3—H3A···S1ii0.85 (3)2.55 (3)3.402 (5)177 (5)
C11—H11B···S1i0.962.773.452 (5)128
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+2, z.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.  CSD CrossRef IUCr Journals Google Scholar
First citationCasas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationDu, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695–2707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151–2162.  Web of Science CrossRef CAS Google Scholar
First citationGarg, B. S. & Jain, V. K. (1988). Microchem. J. 38, 144–169.  CrossRef CAS Web of Science Google Scholar
First citationGreenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P. S., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212–3219.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/Google Scholar
First citationKhanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392–3396.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMani, K. A., Viswanathan, V., Narasimhan, S. & Velmurugan, D. (2015). Acta Cryst. E71, o43–o44.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaik, D. V. & Palenik, G. J. (1974). Acta Cryst. B30, 2396–2401.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPapageorgiou, A., Iakovidou, Z., Mourelatos, D., Mioglou, E., Boutis, L., Kotsis, A., Kovala-Demertzi, D., Domopoulou, A., West, D. X. & Dermetzis, M. A. (1997). Anticancer Res. 17, 247–251.  CAS PubMed Google Scholar
First citationParul, N., Subhangkar, N. & Arun, M. (2012). Inter. Res. J. Phar. 3, 350–363.  Google Scholar
First citationPelosi, G., Pelizzi, C., Belicchi Ferrari, M., Rodríguez-Argüelles, M. C., Vieito, C. & Sanmartín, J. (2005). Acta Cryst. C61, o589–o592.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, M. S., Sarala, Y., Jagadeesh, M., Das, S. K. & Ammireddy, V. R. (2014). Acta Cryst. E70, o846.  CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Bindya, S., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o2946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeena, E. B., Manoj, E. & Kurup, M. R. P. (2006). Acta Cryst. C62, o486–o488.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R., Mishra, P. S. & Mishra, R. (2011). Inter. J. Pharm Tech. Res. 3, 1625–1629.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVenkatesh, K., Rayam, P., Sekhar, K. P. C. & Mukkanti, K. (2016). Int. J. Appl. Biol. Pharm. Tech. 7, 258–266.  CAS Google Scholar
First citationWang, J.-L., Jia, Y.-J. & Yu, M. (2004). Acta Cryst. E60, o662–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5925–o5926.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds