research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of fourteen halochalcogenylphos­pho­nium tetra­halogenidoaurates(III)

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 13 March 2024; accepted 27 March 2024; online 23 April 2024)

Phosphane chalcogenides and their metal complexes, Part 8. For Part 7, see Upmann et al. (2024).

The structures of fourteen halochalcogenyl­phospho­nium tetra­halogen­ido­aurates(III), phosphane chalcogenide derivatives with general formula [R13–nR2nPEX][AuX4] (R1 = t-butyl; R2 = isopropyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 17a, n = 3, E = S; 18a, n = 2, E = S; 19a, n = 1, E = S; 20a, n = 0, E = S; 21a, n = 3, E = Se; 22a, n = 2, E = Se; 23a, n = 1, E = Se; and 24a, n = 0, E = Se, and the corresponding bromido derivatives are 17b24b in the same order. Structures were obtained for all compounds except for the tri-t-butyl derivatives 24a and 24b. Isotypy is observed for 18a/18b/22a/22b, 19a/23a, 17b/21b and 19b/23b. In eleven of the compounds, XX contacts (mostly very short) are observed between the cation and anion, whereby the EXX groups are approximately linear and the XX—Au angles approximately 90°. The exceptions are 17a, 19a and 23a, which instead display short EX contacts. Bond lengths in the cations correspond to single bonds P—E and EX. For each group with constant E and X, the P—EX bond-angle values increase monotonically with the steric bulk of the alkyl groups. The packing is analysed in terms of EX, XX (some between anions alone), H⋯X and H⋯Au contacts. Even for isotypic compounds, some significant differences can be discerned.

1. Chemical context

Some years ago, in Part 3 of this series (Taouss et al., 2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.]), we investigated the oxidation of the phosphane chalcogenide gold(I) complexes Ph3PEAuX (E = S or Se, X = Cl or Br) with iodo­benzene dichloride PhICl2 (as a more controllable substitute for elemental chlorine) or elemental bromine. We were expecting to obtain the corresponding Ph3PEAuX3 complexes, and these were indeed formed, but excess halogen led to the unexpected doubly oxidized ionic products [Ph3PEX][AuX4] (for E = S, X = Cl and Br and E = Se, X = Br), involving halochalcogenyl­phospho­nium cations, previously unknown for X = Cl or Br (but known for X = I; du Mont et al. (2008[Mont, W.-W. du, Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562-4577.]) and references therein). The combination E = Se, X = Cl led instead to [Ph3PSeCl]2[Au4Se2Cl10]. We also obtained one structure of a similar compound with [2.2]para­cyclo­phanyldiiso­propyl­phosphane and E = Se, X = Cl (Upmann et al., 2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.]).

We then extended our studies to phosphane chalcogenides involving alkyl groups. In Part 6 of this series (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]) we presented the structures of sixteen halogenido-gold(I) complexes of various tri­alkyl­phosphane chalcogenides, and in Part 7 (Upmann et al., 2024b[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.]) the structures of ten corresponding trihalogenido-gold(III) complexes. Further background material, including a more extensive summary of our previous results, can be found in Part 6 and is not repeated here.

[Scheme 1]

In this paper, we report the structures of fourteen (halochalcogenyl)tri­alkyl­phospho­nium tetra­halogenido­aurates(III) of general formula [tBu3–niPrnPEX][AuX4]. In total there are sixteen possible permutations of n (0–3), the chalcogenide E (S or Se) and the halogen X (Cl or Br), but the two compounds with n = 0 and E = Se were not obtained. The chlorine derivatives are numbered 17a23a and the bromine derivatives 17b23b, following on from the gold(I) complexes 18 and the gold(III) complexes 916 in the previous papers (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.],b[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.]). Details of the composition of each compound studied are given in Table 1[link]. The structures of 18a, 19a, 22a and 23a were briefly presented in a preliminary communication (Upmann & Jones, 2013[Upmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526-7528.]), but have been re-refined using a much more recent version of SHELXL (2019 rather than 1997; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and are discussed in more detail here. We abstain from giving the systematic names for all these compounds; compound 21a, for instance, is (chloro­selan­yl)triiso­propyl­phospho­nium tetra­chlorido­aurate(III), 18b is (bromo­sulfanyl)(tert-but­yl)diiso­propyl­phospho­nium tetra­chlorido­aurate(III), and the others may be named analogously.

Table 1
Compositions of the [R1R2R3PEX][AuX4] structures presented in this paper (see Scheme)

Compound R1 R2 R3 E X
17a iPr iPr iPr S Cl
18a iPr iPr tBu S Cl
19a iPr tBu tBu S Cl
20a tBu tBu tBu S Cl
21a iPr iPr iPr Se Cl
22a iPr iPr tBu Se Cl
23a iPr tBu tBu Se Cl
17b iPr iPr iPr S Br
18b iPr iPr tBu S Br
19b iPr tBu tBu S Br
20b tBu tBu tBu S Br
21b iPr iPr iPr Se Br
22b iPr iPr tBu Se Br
23b iPr tBu tBu Se Br

2. Structural commentary

General comments: All compounds crystallized solvent-free and with Z′ = 1 (although all structures except 17a contain two independent [AuX4] anions, each with crystallographic symmetry). The mol­ecular structures are shown in Figs. 1[link]–14[link][link][link][link][link][link][link][link][link][link][link][link][link], with selected bond lengths and angles in Tables 2[link]–15[link][link][link][link][link][link][link][link][link][link][link][link][link].

Table 2
Selected geometric parameters (Å, °) for 17a[link]

P1—S1 2.091 (2) Au1—Cl3 2.2789 (16)
S1—Cl1 2.023 (3) Au1—Cl5 2.2797 (16)
Au1—Cl2 2.2745 (17) Au1—Cl4 2.2884 (17)
       
Cl1—S1—P1 99.25 (11)    
       
C1—P1—S1—Cl1 164.4 (2)    

Table 3
Selected geometric parameters (Å, °) for 18a[link]

P1—S1 2.0970 (7) Au1—Cl2 2.2847 (5)
S1—Cl1 2.0316 (7) Au2—Cl4 2.2753 (5)
Au1—Cl3 2.2744 (5) Au2—Cl5 2.2801 (5)
       
Cl1—S1—P1 101.57 (3)    
       
C1—P1—S1—Cl1 164.48 (7)    

Table 4
Selected geometric parameters (Å, °) for 19a[link]

P1—S1 2.1035 (16) Au1—Cl3 2.274 (2)
S1—Cl1 2.0310 (19) Au2—Cl6 2.2738 (11)
Au1—Cl4 2.269 (2) Au2—Cl5 2.2796 (12)
       
Cl1—S1—P1 103.06 (7)    
       
C1—P1—S1—Cl1 −160.17 (16)    

Table 5
Selected geometric parameters (Å, °) for 20a[link]

P1—S1 2.0983 (13) Au1—Cl2 2.2850 (10)
S1—Cl1 2.0307 (13) Au2—Cl5 2.2821 (11)
Au1—Cl3 2.2818 (10) Au2—Cl4 2.2860 (11)
       
Cl1—S1—P1 104.74 (5)    
       
C1—P1—S1—Cl1 163.38 (16)    

Table 6
Selected geometric parameters (Å, °) for 21a[link]

P1—Se1 2.2488 (5) Au1—Cl3 2.2838 (5)
Se1—Cl1 2.1736 (5) Au2—Cl4 2.2795 (5)
Au1—Cl2 2.2778 (5) Au2—Cl5 2.2836 (5)
       
Cl1—Se1—P1 98.381 (19)    
       
C1—P1—Se1—Cl1 161.60 (7)    

Table 7
Selected geometric parameters (Å, °) for 22a[link]

P1—Se1 2.2467 (7) Au1—Cl2 2.2842 (7)
Se1—Cl1 2.1654 (7) Au2—Cl4 2.2781 (7)
Au1—Cl3 2.2736 (7) Au2—Cl5 2.2823 (6)
       
Cl1—Se1—P1 98.35 (3)    
       
C1—P1—Se1—Cl1 163.52 (9)    

Table 8
Selected geometric parameters (Å, °) for 23a[link]

P1—Se1 2.2557 (6) Au1—Cl2 2.2833 (6)
Se1—Cl1 2.1645 (7) Au2—Cl6 2.2735 (6)
Au1—Cl4 2.2681 (13) Au2—Cl5 2.2784 (6)
Au1—Cl3 2.2765 (12)    
       
Cl1—Se1—P1 100.40 (3)    
       
C1—P1—Se1—Cl1 −159.50 (8)    

Table 9
Selected geometric parameters (Å, °) for 17b[link]

P1—S1 2.0852 (10) Au1—Br3 2.4308 (3)
S1—Br1 2.1977 (8) Au2—Br4 2.4259 (3)
Au1—Br2 2.4201 (3) Au2—Br5 2.4265 (3)
       
P1—S1—Br1 99.46 (4)    
       
C1—P1—S1—Br1 174.93 (9)    

Table 10
Selected geometric parameters (Å, °) for 18b[link]

P1—S1 2.0902 (12) Au1—Br2 2.4287 (4)
S1—Br1 2.2028 (10) Au2—Br4 2.4154 (4)
Au1—Br3 2.4180 (4) Au2—Br5 2.4199 (4)
       
P1—S1—Br1 102.51 (5)    
       
C1—P1—S1—Br1 162.05 (13)    

Table 11
Selected geometric parameters (Å, °) for 19b[link]

P1—S1 2.0992 (16) Au1—Br2 2.4247 (5)
S1—Br1 2.2077 (12) Au2—Br5 2.4207 (4)
Au1—Br3 2.4179 (5) Au2—Br4 2.4228 (4)
       
P1—S1—Br1 104.48 (6)    
       
C1—P1—S1—Br1 −160.33 (16)    

Table 12
Selected geometric parameters (Å, °) for 20b[link]

S1—P1 2.0973 (16) Au1—Br3 2.4257 (5)
Br1—S1 2.1934 (13) Au2—Br4 2.4171 (5)
Au1—Br2 2.4178 (5) Au2—Br5 2.4234 (5)
       
P1—S1—Br1 105.70 (6)    
       
Br1—S1—P1—C1 161.63 (16)    

Table 13
Selected geometric parameters (Å, °) for 21b[link]

P1—Se1 2.2364 (9) Au1—Br3 2.4264 (4)
Se1—Br1 2.3179 (5) Au2—Br4 2.4230 (4)
Au1—Br2 2.4162 (4) Au2—Br5 2.4258 (3)
       
P1—Se1—Br1 96.32 (3)    
       
C1—P1—Se1—Br1 174.59 (11)    

Table 14
Selected geometric parameters (Å, °) for 22b[link]

P1—Se1 2.2453 (10) Au1—Br2 2.4287 (4)
Se1—Br1 2.3237 (5) Au2—Br4 2.4178 (4)
Au1—Br3 2.4162 (4) Au2—Br5 2.4202 (4)
       
P1—Se1—Br1 99.52 (3)    
       
C1—P1—Se1—Br1 161.21 (13)    

Table 15
Selected geometric parameters (Å, °) for 23b[link]

P1—Se1 2.2534 (19) Au1—Br2 2.4249 (8)
Se1—Br1 2.3255 (10) Au2—Br5 2.4201 (7)
Au1—Br3 2.4142 (8) Au2—Br4 2.4221 (7)
       
P1—Se1—Br1 101.91 (6)    
       
C1—P1—Se1—Br1 −160.4 (2)    
[Figure 1]
Figure 1
The structure of compound 17a in the crystal. Ellipsoids represent 30% probability levels.
[Figure 2]
Figure 2
The structure of compound 18a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 3]
Figure 3
The structure of compound 19a in the crystal. Ellipsoids represent 50% probability levels. Only one position of the disordered atoms Cl3 and Cl4 is shown.
[Figure 4]
Figure 4
The structure of compound 20a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 5]
Figure 5
The structure of compound 21a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 6]
Figure 6
The structure of compound 22a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 7]
Figure 7
The structure of compound 23a in the crystal. Ellipsoids represent 50% probability levels. Only one position of the disordered atoms Cl3 and Cl4 is shown.
[Figure 8]
Figure 8
The structure of compound 17b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 9]
Figure 9
The structure of compound 18b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 10]
Figure 10
The structure of compound 19b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 11]
Figure 11
The structure of compound 20b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 12]
Figure 12
The structure of compound 21b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 13]
Figure 13
The structure of compound 22b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 14]
Figure 14
The structure of compound 23c in the crystal. Ellipsoids represent 50% probability levels.

Isotypy: The four structures 18a, 22a, 18b and 22b form an isotypic set; the pairs 19a/23a, 17b/21b, and 19b/23b are also isotypic. Within each set of isotypic structures, the n value is the same.

Bond lengths and angles (1). [AuX4] anions: For 17a, the anion lies on a general position. For 19a and 23a, Au1 lies on a twofold axis and Au2 on an inversion centre, and the chlorine atoms at Au1 are disordered (with the atoms Cl3 and Cl4 being slightly displaced from the ideal positions on the twofold axis). All other anions lie with the gold atoms on inversion centres. The local symmetry approximates closely to the ideal 4/mmm, and there are no clear trends in the influence of the short XX contacts on the Au—X bond lengths (see Supra­molecular features).

Bond lengths and angles (2). (Halochalcogenyl)tri­alkyl­phospho­nium cations: The P—S bond lengths lie in the range 2.0852–2.1035 Å, av. 2.0952 Å; the P—Se bond lengths are 2.2364–2.2557 Å, av. 2.2477 Å. These averages are slightly larger than in the trihalogenido-gold(III) complexes (2.0602 and 2.2183 Å), and may reasonably be regarded as corresponding to essentially single P—E bonds (for the mild controversy about the P—E bond order in phosphane chalcogenides, see e.g. Schmøkel et al., 2012[Schmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607-8616.]). The EX bond lengths are: S—Cl = 2.023–2.0316 Å, av. 2.0291 Å; Se—Cl = 2.1645–2.1736 Å, av. 2.1678 Å; S—Br = 2.1934–2.2077 Å, av. 2.2004 Å; Se—Br = 2.3179–2.3255 Å, av. 2.3224 Å. For CCDC results on related bond lengths, see the Database survey below.

For each group of P—EX bond angles, the values increase monotonically (with one extremely slight exception) with the steric bulk of the alkyl groups (P—S—Cl = 99.25–104.74°, P—Se—Cl = 98.38–100.40°, P—S—Br = 99.46–105.70°, P—Se—Br = 96.32–101.91°). For analogous S/Se pairs, the angles at Se are consistently smaller than those at S. For each cation, one of the alkyl groups (always a t-butyl group, if present) lies approximately anti­periplanar (‘trans’) to X in the atom sequence C—P—EX; the central carbon atom of this group is consistently labelled C1. This behaviour, for which we see no clear explanation, contrasts with that of the gold(I) derivatives in Part 6, where the isopropyl group (where present, with two exceptions) occupied the trans position, and also with that of the gold(III) derivatives in Part 7, where the tendency of the isopropyl group to lie trans to X was overridden in all the tBu2iPrPE derivatives; we inter­preted this in terms of a greater importance of intra­molecular hydrogen bonds C—HmethineX. Selected dimensions of previously published halochalcogenyl­phospho­nium cations are shown in Table 16[link]. There are some differences, e.g. the somewhat shorter Se—Cl bonds in this paper compared to the previous values, for which we also see no obvious explanation.

Table 16
Selected dimensions (Å, °) of published structures of halochalcogenyl­phospho­nium cations

Compound P—E EX P—EX Reference
[Ph3PSCl][AuCl4] 2.0912 (12) 2.2278 (13) 99.87 (5) Taouss et al. (2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.])
[Ph3PSBr][AuBr4] 2.0854 (16) 2.2023 (14) 101.31 (6) Taouss et al. (2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.])
[Ph3PSeBr][AuBr4] 2.2250 (7) 2.3121 (4) 97.10 (2) Taouss et al. (2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.])
[Ph3PSeCl]2[Au4Se2Cl10] 2.216 (2) 2.222 (3) 96.83 (9) Taouss et al. (2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.])
[(PCP)iPr2PSeCl][AuCl4]a 2.257 (2) 2.207 (2) 94.69 (9) Upmann et al. (2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.])
Note: (a) PCP = [2.2]para­cyclo­phanyl.

Contacts between the anion and cation of the asymmetric unit, as shown in Figs. 1[link]–14[link][link][link][link][link][link][link][link][link][link][link][link][link], are discussed in the next section.

3. Supra­molecular features

For general aspects of packing and types of secondary inter­action, as applied to these compounds, a series of general articles are cited in our previous paper (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]). Details of contacts are given in Tables 16[link]–18[link][link], while hydrogen bonds are given in Tables 19[link]–32[link][link][link][link][link][link][link][link][link][link][link][link][link]; these include intra­molecular contacts (see above) and several borderline cases, and not all of them will be discussed. The corresponding symmetry operators, not given explicitly in the following discussion, may also be found in those Tables. In all packing diagrams presented here, hydrogen atoms not involved in hydrogen bonding are omitted for clarity, and the atom labels indicate the asymmetric unit. It is worth repeating the caveat that X-ray methods reveal short inter­molecular contacts, but not the corresponding energies, so that descriptions of mol­ecular packing in terms of particular secondary contacts must to some extent be subjective. Furthermore, there is no clear objective judgement, on the basis of contact lengths and angles, as to which contacts should be regarded as more important or less important for the packing. Finally, the exposed nature of the one-coordinate halogen atoms, taken together with the large number of hydrogen atoms, means that some short H⋯X contacts are inevitable. Nevertheless, it is possible to provide informative packing diagrams.

Table 17
Dimensions (Å, °) of halogen⋯halogen contacts between cations and anions

The halogen atoms are numbered such that the contact is always X1⋯X2. For references, see Table 16[link].

Compound XX EXX XX—Au XX—Au—Xcisb
18a (X = Cl) 3.3964 (8) 171.74 (3) 75.21 (2) 86.61 (2)
20a (X = Cl) 3.2652 (14) 159.83 (6) 115.19 (4) 8.88 (5)
21a (X = Cl) 3.6071 (5) 164.28 (2) 72.72 (2) 74.65 (2)
22a (X = Cl) 3.4465 (10) 171.45 (3) 73.52 (2) 85.07 (3)
17b (X = Br) 3.3206 (5) 165.22 (2) 86.52 (1) 69.07 (1)
18b (X = Br) 3.2874 (6) 174.89 (3) 78.06 (1) 89.71 (1)
19b (X = Br) 3.2696 (7) 173.07 (4) 84.19 (2) 76.31 (2)
20b (X = Br) 3.3465 (7) 157.33 (3) 112.62 (2) 9.80 (2)
21b (X = Br) 3.3445 (6) 166.59 (2) 85.49 (1) 69.34 (1)
22b (X = Br) 3.3687 (6) 175.31 (2) 75.54 (1) 88.46 (1)
23b (X = Br) 3.3416 (11) 172.85 (4) 82.51 (3) 77.96 (3)
[Ph3PSCl][AuCl4] 3.2489 (13) 169.81 (5) 105.99 (4) 79.74 (4)
[(PCP)iPr2PSeCl][AuCl4]a 3.696 (3) 162.71 (11) 72.40 (4) 87.76 (9)
[Ph3PSBr][AuBr4] 3.1509 (7) 174.79 (4) 99.41 (2) 80.04 (2)
[Ph3PSeBr][AuBr4] 3.4009 (5) 160.89 (1) 98.79 (1) 48.32 (1)
Notes: (a) PCP = [2.2]para­cyclo­phanyl; (b) the smaller absolute torsion angle (of two) is shown; the value to the other Xcis is the complementary angle (exactly or approximately, depending on the symmetry) with the opposite sign.

Table 18
Dimensions (Å, °) of chalcogen⋯chlorine contacts between cations and anions

Compound E⋯Cl P—E⋯Cl E⋯Cl—Au E⋯Cl—Au—Clcisb
17a (E = S) S1⋯Cl5 3.553 (3) 152.59 (11) 109.61 (7) 26.54 (8)
19a (E = S)a S1⋯Cl2 3.3240 (17) 162.69 (7) 95.10 (4) 61.7 (2)
23a (E = Se)a Se1⋯Cl2 3.3052 (6) 164.50 (2) 95.40 (6) 59.37 (2)
[Ph3PSeCl]2[Au4Se2Cl10]c Se1⋯Cl6 3.308 (3) 158.99 (9) 116.86 (9) 55.06 (10)
Notes: (a) Compounds 19a and 23a are isotypic. In both structures, the cis chlorines are disordered. (b) The smaller absolute torsion angle (of two) is shown; the value to the other Clcis is the complementary angle (exactly or approximately, depending on the symmetry) with the opposite sign. (c) Upmann et al. (2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.]).

Table 19
Hydrogen-bond geometry (Å, °) for 17a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 1.00 2.86 3.343 (7) 110
C32—H32C⋯Cl1 0.98 2.83 3.527 (7) 129
C12—H12B⋯S1 0.98 2.57 3.069 (9) 111
C21—H21B⋯S1 0.98 2.88 3.415 (8) 115
C22—H22C⋯Cl3i 0.98 2.89 3.843 (7) 164
C1—H1⋯Cl4i 1.00 2.83 3.721 (7) 149
C32—H32A⋯Cl4ii 0.98 2.88 3.731 (7) 145
C3—H3⋯Cl5ii 1.00 2.72 3.701 (7) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 20
Hydrogen-bond geometry (Å, °) for 18a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯S1 0.98 2.63 3.073 (2) 107
C2—H2⋯Cl1 1.00 2.95 3.383 (2) 107
C32—H32C⋯Cl1 0.98 2.90 3.635 (2) 133
C21—H21C⋯Cl3 0.98 2.93 3.705 (2) 137
C11—H11A⋯Cl5 0.98 2.97 3.742 (2) 136
C3—H3⋯Au2 1.00 2.75 3.693 (2) 158
C2—H2⋯Cl2i 1.00 2.93 3.688 (2) 133
C22—H22A⋯Cl3ii 0.98 2.82 3.642 (2) 142
C12—H12B⋯Cl3iii 0.98 2.91 3.754 (2) 145
C13—H13B⋯Cl3iii 0.98 2.98 3.876 (2) 153
C12—H12A⋯Cl4iv 0.98 2.78 3.699 (2) 157
C13—H13A⋯Cl4v 0.98 2.93 3.760 (2) 143
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [x+1, y-1, z]; (v) [x, y-1, z].

Table 21
Hydrogen-bond geometry (Å, °) for 19a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Au2 1.00 2.93 3.786 (5) 144
C3—H3⋯Cl6 1.00 2.90 3.751 (5) 143
C13—H13A⋯S1 0.98 2.46 3.049 (5) 118
C23—H23B⋯Cl1 0.98 2.74 3.305 (5) 117
C31—H31B⋯Cl1 0.98 2.66 3.393 (5) 132
C23—H23A⋯Cl6i 0.98 2.74 3.713 (5) 173
C21—H21C⋯Cl6ii 0.98 2.90 3.672 (5) 137
C13—H13B⋯Cl3iii 0.98 2.81 3.536 (8) 131
C22—H22B⋯Cl2iv 0.98 2.87 3.783 (5) 156
C13—H13C⋯Cl4v 0.98 2.89 3.677 (19) 138
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, -z+1]; (v) [-x+1, -y+1, -z+1].

Table 22
Hydrogen-bond geometry (Å, °) for 20a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯Cl1 0.98 2.71 3.522 (4) 141
C22—H22B⋯Cl1 0.98 2.68 3.497 (4) 141
C33—H33B⋯Cl1 0.98 2.82 3.401 (4) 118
C13—H13A⋯Cl5i 0.98 2.88 3.796 (4) 156
C12—H12C⋯Cl5 0.98 2.92 3.810 (4) 151
C31—H31C⋯Cl5ii 0.98 2.84 3.763 (4) 158
C12—H12C⋯S1 0.98 2.44 3.027 (4) 118
C22—H22B⋯S1 0.98 2.92 3.370 (4) 109
C33—H33B⋯S1 0.98 2.92 3.424 (4) 113
C21—H21A⋯Cl4iii 0.98 2.77 3.708 (4) 161
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 23
Hydrogen-bond geometry (Å, °) for 21a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯Cl1 0.98 2.84 3.545 (2) 129
C32—H32C⋯Cl1 0.98 2.95 3.712 (2) 135
C1—H1⋯Cl5 1.00 2.93 3.8615 (19) 156
C2—H2⋯Cl2i 1.00 2.82 3.6147 (19) 137
C3—H3⋯Cl2ii 1.00 2.94 3.5249 (19) 118
C31—H31C⋯Cl2ii 0.98 2.98 3.626 (2) 125
C21—H21C⋯Cl2iii 0.98 2.98 3.868 (2) 151
C11—H11C⋯Cl4iii 0.98 2.87 3.828 (2) 166
C1—H1⋯Cl4iv 1.00 2.78 3.5341 (19) 133
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [x, y+1, z]; (iii) [x-1, y, z]; (iv) [-x+2, -y+2, -z+1].

Table 24
Hydrogen-bond geometry (Å, °) for 22a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Se1 0.98 2.65 3.142 (3) 111
C2—H2⋯Cl1 1.00 2.99 3.454 (3) 110
C3—H3⋯Au2 1.00 2.75 3.690 (3) 157
C32—H32C⋯Cl1 0.98 2.92 3.682 (3) 135
C21—H21C⋯Cl3 0.98 2.99 3.774 (3) 138
C11—H11A⋯Cl5 0.98 2.97 3.741 (3) 137
C2—H2⋯Cl2i 1.00 2.87 3.629 (3) 133
C22—H22A⋯Cl3ii 0.98 2.79 3.629 (3) 144
C12—H12B⋯Cl3iii 0.98 2.95 3.783 (3) 143
C13—H13B⋯Cl3iii 0.98 3.01 3.902 (3) 152
C12—H12A⋯Cl4iv 0.98 2.80 3.721 (3) 156
C13—H13A⋯Cl4v 0.98 2.94 3.751 (3) 141
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [x+1, y-1, z]; (v) [x, y-1, z].

Table 25
Hydrogen-bond geometry (Å, °) for 23a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Au2 1.00 2.95 3.805 (2) 144
C3—H3⋯Cl6 1.00 2.88 3.730 (2) 143
C13—H13A⋯Se1 0.98 2.52 3.110 (3) 119
C23—H23B⋯Cl1 0.98 2.81 3.385 (3) 118
C31—H31B⋯Cl1 0.98 2.66 3.451 (3) 138
C23—H23A⋯Cl6i 0.98 2.76 3.736 (2) 173
C21—H21C⋯Cl6ii 0.98 2.90 3.674 (2) 137
C13—H13B⋯Cl3iii 0.98 2.80 3.498 (4) 129
C22—H22B⋯Cl2iv 0.98 2.86 3.787 (3) 157
C13—H13C⋯Cl4v 0.98 2.85 3.685 (15) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, -z+1]; (v) [-x+1, -y+1, -z+1].

Table 26
Hydrogen-bond geometry (Å, °) for 17b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯Br1 0.98 3.28 3.864 (3) 120
C3—H3⋯Br2i 1.00 3.29 3.792 (3) 113
C31—H31C⋯Br2i 0.98 3.00 3.787 (3) 138
C32—H32A⋯Br2i 0.98 2.98 3.763 (3) 137
C1—H1⋯Br4i 1.00 3.15 3.997 (3) 144
C21—H21C⋯Br4ii 0.98 3.06 3.943 (3) 151
C31—H31B⋯Br4i 0.98 3.04 3.983 (3) 162
C1—H1⋯Br5i 1.00 2.98 3.802 (3) 140
C22—H22C⋯Br5iii 0.98 3.11 3.911 (3) 140
Symmetry codes: (i) [x, y+1, z]; (ii) [x-1, y, z]; (iii) [x-1, y+1, z].

Table 27
Hydrogen-bond geometry (Å, °) for 18b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯S1 0.98 2.66 3.095 (4) 107
C2—H2⋯Br1 1.00 2.99 3.459 (4) 110
C3—H3⋯Au2 1.00 2.89 3.828 (4) 156
C32—H32C⋯Br1 0.98 3.01 3.739 (4) 132
C21—H21C⋯Br3 0.98 2.98 3.814 (4) 143
C11—H11A⋯Br5 0.98 3.07 3.778 (4) 130
C2—H2⋯Br2i 1.00 3.28 4.017 (4) 132
C22—H22A⋯Br3ii 0.98 2.95 3.771 (4) 142
C12—H12B⋯Br3iii 0.98 2.93 3.832 (4) 154
C13—H13B⋯Br3iii 0.98 3.18 4.075 (4) 152
C12—H12A⋯Br4iv 0.98 2.80 3.747 (4) 163
C13—H13A⋯Br4v 0.98 3.07 3.776 (4) 130
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [x+1, y-1, z]; (v) [x, y-1, z].

Table 28
Hydrogen-bond geometry (Å, °) for 19b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯S1 0.98 2.59 3.089 (5) 112
C31—H31B⋯Br1 0.98 2.72 3.487 (5) 135
C23—H23B⋯Br1 0.98 2.91 3.407 (6) 112
C3—H3⋯Br3 1.00 3.04 4.007 (5) 164
C23—H23C⋯Br3 0.98 3.09 4.040 (5) 165
C11—H11C⋯Br4 0.98 3.11 4.084 (5) 171
C31—H31C⋯Br2i 0.98 3.06 3.781 (5) 132
C23—H23A⋯Br4ii 0.98 2.90 3.824 (5) 157
C13—H13C⋯Br4iii 0.98 3.08 4.024 (5) 162
C32—H32C⋯Br4i 0.98 3.03 3.814 (5) 138
C11—H11A⋯Br5iii 0.98 3.06 3.846 (5) 138
C32—H32C⋯Br5iv 0.98 3.00 3.864 (5) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y, -z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 29
Hydrogen-bond geometry (Å, °) for 20b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯S1 0.98 2.53 3.036 (5) 112
C22—H22B⋯Br1 0.98 2.74 3.569 (5) 143
C23—H23A⋯Br1 0.98 2.80 3.617 (5) 142
C22—H22A⋯Br2i 0.98 2.97 3.739 (5) 137
C13—H13C⋯Br4ii 0.98 2.95 3.859 (5) 154
C21—H21A⋯Br4iii 0.98 2.85 3.785 (5) 160
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x, y-1, z].

Table 30
Hydrogen-bond geometry (Å, °) for 21b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯Br1 0.98 3.34 3.927 (4) 120
C3—H3⋯Br2i 1.00 3.27 3.788 (3) 114
C31—H31C⋯Br2i 0.98 3.08 3.836 (3) 135
C32—H32A⋯Br2i 0.98 2.96 3.740 (3) 137
C1—H1⋯Br4i 1.00 3.18 4.045 (3) 145
C21—H21C⋯Br4ii 0.98 3.08 3.953 (3) 149
C31—H31B⋯Br4i 0.98 3.03 3.972 (4) 162
C1—H1⋯Br5i 1.00 2.93 3.756 (4) 140
C22—H22C⋯Br5iii 0.98 3.15 3.893 (4) 134
Symmetry codes: (i) [x, y+1, z]; (ii) [x-1, y, z]; (iii) [x-1, y+1, z].

Table 31
Hydrogen-bond geometry (Å, °) for 22b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Se1 0.98 2.70 3.167 (4) 109
C2—H2⋯Br1 1.00 3.05 3.540 (4) 112
C3—H3⋯Au2 1.00 2.85 3.783 (4) 155
C32—H32C⋯Br1 0.98 3.05 3.788 (4) 134
C21—H21C⋯Br3 0.98 3.03 3.848 (4) 142
C11—H11A⋯Br5 0.98 3.05 3.787 (4) 133
C2—H2⋯Br2i 1.00 3.17 3.901 (4) 131
C22—H22A⋯Br3ii 0.98 2.92 3.764 (4) 144
C12—H12B⋯Br3iii 0.98 2.96 3.826 (4) 148
C13—H13B⋯Br3iii 0.98 3.15 4.051 (4) 153
C12—H12A⋯Br4iv 0.98 2.82 3.761 (4) 160
C13—H13A⋯Br4v 0.98 3.05 3.771 (5) 132
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [x+1, y-1, z]; (v) [x, y-1, z].

Table 32
Hydrogen-bond geometry (Å, °) for 23b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Se1 0.98 2.60 3.163 (8) 116
C31—H31B⋯Br1 0.98 2.78 3.551 (7) 137
C23—H23B⋯Br1 0.98 2.98 3.476 (8) 112
C3—H3⋯Br3 1.00 3.13 4.108 (7) 166
C23—H23C⋯Br3 0.98 3.05 3.994 (9) 161
C11—H11C⋯Br4 0.98 3.23 4.182 (7) 165
C31—H31C⋯Br2i 0.98 3.06 3.825 (7) 136
C23—H23A⋯Br4ii 0.98 2.91 3.824 (7) 156
C13—H13C⋯Br4iii 0.98 3.06 3.998 (8) 160
C32—H32C⋯Br4i 0.98 3.01 3.782 (7) 136
C11—H11A⋯Br5iii 0.98 3.12 3.874 (7) 135
C32—H32C⋯Br5iv 0.98 2.93 3.804 (8) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y, -z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The most striking secondary inter­actions are the short halogen⋯halogen contacts between cation and anion; these are shown explicitly in Figs. 1[link]–14[link][link][link][link][link][link][link][link][link][link][link][link][link] (except for compounds 17a, 19a and 23a, for which instead chalcogen⋯halogen contacts are observed; see below). From our previous experiences, we expected this type of inter­action to be ubiquitous for these compounds, but this proved to be an erroneous assumption; only eleven of the fourteen structures display such XX contacts, and we discuss these first. Selected contact dimensions are given in Table 17[link]. The common features (exceptions are discussed below) are: (1) The XX distance is generally shorter than the double van der Waals radius and in some cases extremely short, e.g. the Br⋯Br distance of 3.1509 (7) Å in [Ph3PSBr][AuBr4]. Being ‘softer’ than chlorine, bromine would be expected to form stronger (and thus shorter compared to the van der Waals distance) contacts. (2) The EXX grouping is approximately linear. (3) The XX—Au angle is approximately 90°. (4) The relative orientation of the anion and cation is described by the torsion angle XX—Au—Xcis; this too is approximately 90° (positive for one Xcis and negative for the other).

The combination of linear EXX and right-angled XX—Au parallels the model for short contacts C—XX—C in organic compounds, and both may be regarded as a form of ‘halogen bonding’ (see e.g. Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]). The strongest C—XX—C inter­actions are termed ‘type II’ according to the classification of Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) and are characterized by C—XX angles of approximately 180 and 90°. The simple model is that (as shown by calculation) there is a small region of positive charge δ+ in the direction extending one C—X vector, while the overall δ- charge of the other X atom (because of its higher electronegativity compared to carbon) is distributed perpendicular to the C—X bond (Legon, 2010[Legon, A. C. (2010). Phys. Chem. Chem. Phys. 12, 7736-7747.]). We are, however, not aware of similar calculations for atoms other than carbon.

The main exceptions to the above generalities involve the tri-t-butyl derivatives 20a and 20b, which show the narrowest EXX angles [159.83 (6) and 157.33 (4)°], the widest XX—Au angles [115.19 (4) and 112.62 (2)°] and completely different absolute torsion angles XX—Au—Xcis of 8.88 (5) and 9.80 (2)° [paired with 171.12 (2) and 170.20 (2)° for the other Xcis atom], so that these four atoms form a synperiplanar grouping. The compound [Ph3PSeBr][AuBr4] is also an outlier, with XX—Au—Xcis values of 48.32 (1) and −131.68 (1)°.

The other three structures (17a, 19a and 23a) involve E⋯Cl contacts between the cation and the anion, as we had previously observed for [Ph3PSeCl]2[Au4Se2Cl10] (Upmann et al., 2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.]), rather than halogen⋯halogen contacts. Details are given in Table 18[link]. The P—E⋯Cl angles are approximately linear and the E⋯Cl—Au angles are somewhat larger than right angles, but there are no clear trends for the torsion angles E⋯Cl—Au—Clcis. Since the E atoms presumably carry a partial positive charge, and the Cl atoms a partial negative charge, these E⋯Cl contacts may be termed as ‘chalcogen bonds’, a class of secondary contact named in analogy to ‘halogen bonds’. Other criteria also fulfil the requirements given by Aakeroy et al. (2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]). The topic of chalcogen bonds has been reviewed by Vogel et al. (2019[Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed.58, 1880-1891.]).

Of course other types of inter­molecular contact are also involved in the overall packing, which we now describe. The decision as to which contacts are more or less important is, as remarked above, to some extent subjective; a packing pattern is more assimilable to the human eye if it involves a small number of contacts, and we have tended to choose heavy-atom contacts rather than possible hydrogen bonds. Where the latter are considered, we tend to concentrate on the inter­actions of the methine rather than the methyl hydrogens; we established in the series of R1R2R3PEAuX3 complexes that the methine hydrogen atoms have a greater tendency than methyl hydrogens to form ‘weak’ hydrogen bonds, thereby influencing the mol­ecular conformation by forming intra­molecular H⋯X hydrogen bonds.

Dance (2003[Dance, I. (2003). New J. Chem. 27, 22-27.]) has pointed out (our paraphrasing) that packing energies are probably determined in many cases by a large number of slightly favourable inter­actions, such as H⋯H van der Waals contacts, rather than a small number of very short contacts (of which the shortest may even be unfav­ourable in energy terms). Despite this, it is probably inevit­able that one will (over)emphasize the contacts between heavy atoms in order to make the diagrams more inter­pretable. Packing diagrams based on the extremely numerous weakly attractive H⋯H inter­actions would be neither easily drawn nor easily inter­preted.

For compound 17a, the S⋯Cl inter­action combines with two hydrogen bonds from the methine hydrogens H1 and H3 to form a layer structure parallel to ([\overline{1}]01) (Fig. 15[link]). The atom H2 makes a short intra­cationic contact to Cl1, but the angle is necessarily very narrow.

[Figure 15]
Figure 15
Packing diagram of 17a. Two H⋯Cl contacts combine with the S⋯Cl inter­actions to form a layer structure parallel to ([\overline{1}]01); the viewing direction is perpendicular to this plane. The dashed lines indicate S⋯Cl inter­actions (thick) or H⋯Cl contacts (thin). For all packing diagrams, atom labels correspond to the asymmetric unit, and hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

The packing of compound 18a may be described in terms of three secondary inter­actions: the short Cl1⋯Cl2 contact, an unusually short contact C3—H3⋯Au2 (H⋯Au = 2.75 Å) that could be classified as a hydrogen bond (Schmidbaur et al., 2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.] and Schmidbaur, 2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]) and another strikingly short contact, Cl5⋯Cl5(2 − x, 1 − y, −z) = 3.2632 (10) Å, between anions. The angle Au2—Cl5⋯Cl5’ is 149.86 (3)°. We have drawn attention to such short contacts between [AuX4] anions elsewhere (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]). The first two contacts lead to the formation of zigzag chains with overall direction parallel to [10[\overline{1}]] (Fig. 16[link]), further linked by the contact S1⋯Cl2(−x, −y, 1 − z) = 3.5768 (8) Å; the second and third contacts link cations and Au2 anions parallel to the a axis (Fig. 17[link]). The contact H2⋯Cl2′ between the cation and a symmetry-extended anion is rather long at 2.93 Å; it can be recognized in Fig. 2[link], but is not drawn explicitly there, and is not included in the packing diagram.

[Figure 16]
Figure 16
Packing diagram of 18a viewed perpendicular to (212), showing two zigzag chains of residues (running horizontally). Dashed lines indicate Cl⋯Cl and H⋯Au contacts (thick) or S⋯Cl contacts (thin).
[Figure 17]
Figure 17
Packing diagram of 18a viewed perpendicular to the xy plane in the region z ≃ 0. Dashed lines indicate Cl⋯Cl and H⋯Au contacts.

Compounds 18a, 18b, 22a and 22b, with all possible permutations of E = S/Se and X = Cl/Br, are isotypic, and so it should not be necessary to provide separate packing diagrams. However, this set of compounds provides a good opportunity to consider the definition of ‘isotypic’ and the subjectivity of packing diagrams. For 18a, we considered the S1⋯Cl2 contact to be significant, but did not include the significantly longer contact S1⋯Cl3(1 − x, −y, 1 − z), 3.7012 (8) Å, regarding it (arbitrarily) as too long. The corresponding contacts (in Å; same operator as above) for the other compounds are: 18b, S1⋯Br2 = 4.0635 (10) and S1⋯Br3 = 3.6779 (11); 22a, Se1⋯Cl2 = 3.4602 (7) and Se1⋯Cl3 = 3.7004 (8); 22b, Se1⋯Br2 = 3.7704 (6) and Se1⋯Br3 = 3.7484 (6). We draw attention to the considerable variations in the lengths of these contacts; thus S1⋯Br2 might well be ignored for 18b, while S1⋯Br3 is the shorter and thus more significant contact. For 22a, Se1⋯Cl2 is the much shorter inter­action, whereas for 22b the lengths are almost equal. For 22b, one can then draw an alternative packing diagram excluding the anion based on Au2, showing both Se⋯Br contacts (Fig. 18[link]). The residues are linked by these contacts and by Br1⋯Br2 to provide crosslinked chains of anions and cations parallel to [1[\overline{1}]0], forming a layer structure parallel to the ab plane, in which ten-membered rings Au2Se2Br6 can be recognized.

[Figure 18]
Figure 18
Packing diagram of 22b viewed perpendicular to the ab plane. Hydrogen atoms and the anions based on Au2 are omitted. Residues are linked by Br⋯Br and Se⋯Br contacts (thick dashed lines) to form linear arrays (parallel to [1[\overline{1}]0], horizontal in the diagram), further crosslinked to form a layer.

The potential hydrogen bond H2⋯Cl2′, ignored for 18a (as discussed above) as being ‘too long’ at 2.93 Å, also behaves somewhat differently for the other three isotypic structures: for 18b H2⋯Cl2′ is shorter at 2.87 Å, whereas for the two bromo derivatives 18b and 22b the H2⋯Br2′ contacts are very long at 3.28 and 3.17 Å, respectively. This again draws attention to possible significant differences between isotypic structures and to the arbitrary nature of decisions to include or exclude particular contacts in the discussion of the packing. During the preparation of this paper, Bombicz (2024[Bombicz, P. (2024). IUCrJ, 11, 3-6.]) published a commentary ‘What is isostructurality?’, in which she raised similar questions, commenting for instance that ‘The extent of the difference between corresponding crystal structures referred to as isostructural is not limited’, and that the IUCr definition of ‘isostructural/isotypic’ (regarded as synonymous terms) is vague on this point.

Compound 19a and the isotypic 23a (as discussed above, see Figs. 3[link] and 7[link]) involve E⋯Cl rather than Cl⋯Cl inter­actions between the cation and one anion (based on Au1); the other anion (based on Au2) is close to the methine hydrogen H3, with H3⋯Au2 and H3⋯Cl6 distances of 2.93, 2.90 Å for 19a and 2.95, 2.88 Å for 23a that might be inter­preted as three-centre hydrogen bonds. The main feature of the packing (as shown in Fig. 19[link] for 23a) is the formation of almost square networks of [AuCl4] anions, involving Au1, parallel to the bc plane in the regions x ≃ 0, 0.5, within which the cations are linked via E⋯Cl contacts. The contact distances (Å) are S1⋯Cl4(1 − x, y, [{3\over 2}] − z) = 3.80, Cl3⋯Cl4(x, 1 + y, z) = 3.30, Cl2⋯Cl2(1 − x, 2 − y, 1 − z) = 3.633 (2) for 19a and Se1⋯Cl4 = 3.77, Cl3⋯Cl4 = 3.28, Cl2⋯Cl2 = 3.6717 (12) for 23a (note however that the disorder of Cl3 and Cl4 make these values uncertain; in Fig. 19[link], the idealized positions on the twofold axis are used for clarity, and these are the basis for the calculated distances). The [AuCl4] anions involving Au2 occupy the regions at x ≃ 0.25, 0.75.

[Figure 19]
Figure 19
Packing diagram of 23a viewed perpendicular to the bc plane in the region x ≃ 0.5. Hydrogen atoms and the anion based on Au2 are omitted. For clarity, the positions of the disordered atoms Cl3 and Cl4 are idealized to lie on the twofold axes. Thick dashed lines indicate Cl⋯Cl or Se⋯Cl contacts.

Compound 20a forms winding chains parallel to the c axis (Fig. 20[link]); residues are linked by the inter­ionic Cl1⋯Cl2 contact and a double contact from S1 to two chlorine atoms of a neighbouring anion [S1⋯Cl4 = 3.6661 (14), S1⋯Cl5 = 3.5471 (14) Å], whereby the corresponding S1⋯Au2 distance is necessarily short at 3.7113 (9) Å. Chains are linked by several H⋯Cl contacts.

[Figure 20]
Figure 20
Packing diagram of 20a. The viewing direction has been rotated by ca 20° and 10° respectively around the horizontal and vertical directions from the direction parallel to the b axis (to avoid overlap of the two S⋯Cl contacts). Hydrogen atoms are omitted for clarity. Dashed lines indicate Cl⋯Cl and S⋯Cl contacts. The unusual orientation of the tetra­chloro­aurate(III) anion at Au1, with an approximately synperiplanar grouping Cl1⋯Cl2—Au1—Cl3, can be recognized.

In the packing of compound 21a, two Se⋯Cl contacts [Se1⋯Cl5 = 3.3504 (6) and Se1⋯Cl5(2 − x, 1 − y, 1 − z) = 3.3728 (5) Å], which form striking Se2Cl2 quadrilaterals, combine with the long Cl1⋯Cl2 contact, 3.6031 (7) Å, and two Hmethine⋯Cl hydrogen bonds to symmetry-extended anions to form a layer structure parallel to (10[\overline{1}]) (Fig. 21[link]). The quadrilaterals are thereby linked directly by [AuCl4] anions involving Au2, parallel to the b axis, and indirectly via [AuCl4] anions involving Au1, parallel to [111]. The methine hydrogen H1 makes a short contact to Cl4′ (2.78 Å), but also a longer contact of 2.93 Å to the neighbouring Cl5 atom; this may be regarded as an asymmetric three-centre system, but the longer contact is omitted from the Figures. The third methine hydrogen, H3, also makes a longer contact of 2.94 Å to Cl2(x, 1 + y, z); this contact also lies in the layer but is omitted for clarity.

[Figure 21]
Figure 21
Packing diagram of 21a, viewed perpendicular to (10[\overline{1}]). Dashed lines indicate Cl⋯Cl and Se⋯Cl contacts (thick) or Hmethine⋯Cl hydrogen bonds (thin). Note that the set of AuCl4 anions based on Au2 is seen edge on, whereby the gold atoms are obscured.

The packing of 17b only has one strikingly short contact, Br1⋯Br2 = 3.3206 (5) Å between anion and cation, but there is also a three-centre grouping with Br4⋯Br1 = 3.8725 (5) and Br4⋯S1 = 3.7666 (8) Å, also within the asymmetric unit. Additionally, the borderline contacts Br1⋯Br2(2 − x, 1 − y, −z) = 3.8652 (5), Br3⋯Br4(−1 + x, y, z) = 3.8725 (5) and Br5⋯Br5(2 − x, −1 − y, 1 − z) = 3.8808 (6) Å link the residues to form layers parallel to the ab plane (Fig. 22[link]). The two possible weak hydrogen bonds H1⋯Br5 and H3⋯Br3, quite long but reasonably linear, also lie within these layers, but are omitted from Fig. 22[link] for clarity. The isotypic structure 21b has a much shorter corresponding Se1⋯Br4 contact of 3.6501 (5) Å.

[Figure 22]
Figure 22
Layer structure of 17b viewed perpendicular to the ab plane in the region z ≃ 0.25. Dashed lines indicate contacts S1⋯Br4 and Br1⋯Br2 (thick) or other appreciably longer Br⋯Br contacts (thin).

For compound 19b, there are two very short Br⋯Br contacts, namely Br1⋯Br2 = 3.2686 (7) Å between cation and anion and Br3⋯Br5([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) = 3.3324 (6) Å between the two anions. These are accompanied by the three-centre association of S1⋯Br4 = 3.7797 (13) and S1⋯Br5 = 3.6326 (12) Å and the probable hydrogen bond H3⋯Br3 (Fig. 10[link]), all within the asymmetric unit, to form a layer structure parallel to (1[\overline{1}]0) (Fig. 23[link]). The corresponding distances for the isotypic 23b are Br1⋯Br2 = 3.3416 (11), Br3⋯Br5 = 3.3205 (10), Se1⋯Br4 = 3.8310 (11) and Se1⋯Br5 = 3.5473 (10) Å.

[Figure 23]
Figure 23
Layer structure of 19b viewed perpendicular to (1[\overline{1}]0). Dashed lines indicate short Br⋯Br contacts (thick) or rather longer S⋯Br contacts (thin). The anions based on Au2 are viewed edge-on, so that the atom Au2 is obscured by Br4. The corresponding anion at the right-hand edge of the cell is shown more clearly. The probable hydrogen bonds H3⋯Br3 (see text and Fig. 10[link]) are omitted for clarity.

Compound 20b has three Br⋯Br contacts: Br1⋯Br2 = 3.3465 (7) Å, between anion and cation, is very short, whereas the other two, Br1⋯Br3(2 − x, −y, −z) = 3.7995 (7) and Br3⋯Br4(1 + x, −1 + y, z) = 3.8361 (7) Å are long. There are also two S⋯Br contacts, one short and one long, namely S1⋯Br4 = 3.5208 (13) and S1⋯Br5(1 − x, 1 − y, 1 − z) = 3.8555 (13) Å. These combine to form a layer structure parallel to (110) (Fig. 24[link]).

[Figure 24]
Figure 24
Layer structure of 20b viewed perpendicular to (110). Dashed lines indicate short (thick) or long (thin) Br⋯Br and S⋯Br contacts. The horizontal direction is [001] and the vertical direction [1[\overline{1}]0]. The anions based on Au2 are viewed edge-on, so that the atom Au2 is obscured by Br5.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Except for the structures in our previous work, no hits were registered for the atom sequence P—(S or Se)—(Cl or Br) with coordination numbers restricted to 2 for S/Se and 1 for Cl/Br (but with unrestricted bond orders). To obtain usable values for the EX single bond lengths, we therefore searched for the sequence C—(S or Se)—(Cl or Br), on the principle that phospho­rus and carbon are in many respects similar (see e.g. Dillon et al., 1998[Dillon, K. B., Mathey, F. & Nixon, J. F. (1998). Phosphorus: The Carbon Copy. Hoboken: John Wiley & Sons.]). We obtained average values of 2.021, 2.224, 2.201 and 2.334 Å for S—Cl (20 values), S—Br (11 values), Se—Cl (12 values) and Se—Br (10 values) bonds, respectively. These are in reasonable agreement with our values given above. Care was, however, necessary in inter­preting the search output, because several hits with short intra­molecular contacts (some as short as 2.0 Å for Se⋯O, but not marked as bonds in the Database) involved three-coordinate selenium and, hence, needed to be removed. Thus the compound chloro­(8-(N,N-di­methyl­amino)­naphthyl­selenium(II) (Panda et al., 1999[Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986-1993.]; refcode LIWYIZ), with an intra­molecular Se—N distance of 2.174 (5) Å and a long Se—Cl bond trans to the N atom, was drawn as a formula without an Se—N bond (and therefore, not unreasonably, coded accordingly in the CCDC). The distance was described as ‘non-bonded’, but the displacement ellipsoid plot included this as a normal bond. There seems to be some confusion in the older literature as to what constitutes a bond in such systems.

Similarly, a search for the atom sequence C3P—S—C, with coordination numbers restricted to 4 for P and 2 for S, gave 19 hits and 21 P—S bond lengths, averaging to 2.076 Å. The analogous search using selenium gave 24 hits and 35 P—Se bond lengths, with an average of 2.233 Å. These are slightly shorter than our average values given above.

5. Synthesis and crystallization

For several of the compounds, the syntheses can be found in the PhD thesis of D. Upmann (Upmann, 2015[Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe. Dissertation, Technical University of Braunschweig, Braunschweig, Niedersachsen, Germany. ISBN: 978-3-8439-1972-2.]). There was however a general problem of incomplete reactions, despite the use of excess oxidants PhICl2 or Br2. The following attempted, but not entirely successful, syntheses do not appear there:

Compound 17a: 212 mg (0.5 mmol) of iPr3PSAuCl and 344 mg (1.25 mmol) of PhICl2 were each dissolved in 10 mL of di­chloro­methane. The solutions were combined and stirred for 30 min, during which time the solution changed from red to yellow; the solvents were then removed under vacuum. All attempts to isolate the product from this solution proved to be unsuccessful because intra­ctable oils or gums were formed; drying and recrystallization generally led to the separation of unidentified insoluble solids. 31P-NMR (81 MHz, CDCl3, 300 K): δ [ppm] 92.56, 1JP–Se 416.3 Hz. Despite the failure to prepare the substance in qu­antity, a few single crystals (coated with an adhesive gum) were obtained by overlaying a solution in di­chloro­methane with n-pentane (or diethyl ether) and storing it in a refrigerator (276 K) over the weekend.

Compound 20a: Pilot experiments suggested that a large excess of PhICl2 was necessary for complete reaction. 91.8 mg (0.197 mmol) of tBu3PSAuCl and 541 mg (1.97 mmol) of PhICl2 were each dissolved in 3 mL of di­chloro­methane. The solutions were combined; the mixture was then overlayered with n-pentane and stored in a refrigerator (276 K) for 7 d. However, no crystals formed. The solvents were then removed under vacuum. The solid residue was washed with n-pentane and recrystallized from di­chloro­methane/n-pentane. Yield 77 mg (0.127 mmol, 64%). However, the elemental analysis was poor and some colourless crystals of PhICl2 were identified by their cell constants. 31P-NMR (81 MHz, CDCl3, 300 K): δ [ppm] 90.18.

Compound 21a: 236 mg (0.5 mmol) of iPr3PSeAuCl and 344 mg (1.25 mmol) of PhICl2 were dissolved in 10/9 mL of di­chloro­methane, respectively. The solutions were combined and stirred for 30 min, during which time the solution changed from red to yellow; the solvents were then removed under vacuum. The product proved to be very sensitive to air and moisture, and decomposed rapidly in solution. 31P-NMR (81 MHz, CDCl3, 300 K): δ [ppm] 92.56, 1JP–Se 416 Hz. Despite the failure to prepare the substance in qu­antity, single crystals were obtained by overlaying a solution in di­chloro­methane with n-pentane and storing it in a refrigerator (276 K) over the weekend.

Compounds 17b and 21b: Treatment of solutions of iPr3PEAuBr3 in di­chloro­methane with excess elemental bromine led to solutions whose 31P-NMR spectra showed the presence of both starting material and product (17b δ 84.15; 21b δ 80.47). Removal of the solvent, followed by crystallization attempts, led to some single crystals of the products. For 21b, the NMR spectrum was of poor quality and no P–Se coupling was detected.

Compounds 20b and 24b: Treatment of solutions of [(tBu3PE)2Au][AuBr4] (the syntheses and structures of these are still to be published) in di­chloro­methane with excess elemental bromine led to solutions whose 31P-NMR spectra showed the presence of both starting material and product (20b δ 91.16; 24b δ 88.08). Removal of the solvent, followed by crystallization attempts, led to some single crystals of 20b (but not of 24b). For 24b, the NMR spectrum was of poor quality and no P–Se coupling was detected.

6. Refinement

Details of the measurements and refinements are given in Table 33[link]. Structures were refined anisotropically on F2. Methine hydrogens were included at calculated positions and refined using a riding model with C—H = 1.00 Å and U(H) = 1.2 × Ueq(C). Methyl groups were refined, using the command ‘AFIX 137’, as idealized rigid groups allowed to rotate but not to tip, with C—H = 0.98 Å, H—C—H = 109.5° and U(H) = 1.5 × Ueq(C). This procedure is less reliable for heavy-atom structures, so that any postulated hydrogen bonds involving methyl hydrogen atoms should be inter­preted with caution.

Table 33
Experimental details

  17a 18a 19a 20a 21a
Crystal data
Chemical formula (C9H21ClPS)[AuCl4] (C10H23ClPS)[AuCl4] (C11H25ClPS)[AuCl4] (C12H27ClPS)[AuCl4] (C9H21ClPSe)[AuCl4]
Mr 566.50 580.53 594.55 608.58 613.40
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, C2/c Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100 100
a, b, c (Å) 13.3577 (5), 10.0877 (3), 13.9182 (5) 7.5619 (4), 8.7408 (4), 15.4558 (6) 33.653 (3), 7.7933 (3), 16.212 (2) 9.7661 (3), 12.5787 (3), 16.9776 (5) 7.4202 (3), 8.5966 (3), 15.3980 (6)
α, β, γ (°) 90, 106.290 (4), 90 84.346 (4), 78.306 (4), 66.915 (5) 90, 113.861 (8), 90 90, 103.887 (3), 90 97.497 (3), 100.128 (4), 109.324 (4)
V3) 1800.18 (11) 920.07 (8) 3888.5 (6) 2024.67 (10) 893.42 (6)
Z 4 2 8 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 9.10 8.90 8.43 8.10 11.09
Crystal size (mm) 0.2 × 0.1 × 0.03 0.2 × 0.18 × 0.05 0.2 × 0.02 × 0.01 0.15 × 0.07 × 0.04 0.18 × 0.15 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.359, 1.000 0.316, 1.000 0.698, 1.000 0.756, 1.000 0.631, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 65964, 4458, 3807 50339, 5453, 4838 84613, 4815, 3861 8891, 8891, 4196 106851, 5322, 4900
Rint 0.056 0.032 0.096 0.039
θ values (°) θmax = 28.3, θmin = 2.5 θmax = 30.8, θmin = 2.5 θmax = 28.3, θmin = 2.5 θmax = 31.3, θmin = 2.2 θmax = 30.9, θmin = 2.6
(sin θ/λ)max−1) 0.667 0.721 0.667 0.731 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.08 0.017, 0.036, 1.05 0.033, 0.064, 1.04 0.022, 0.045, 0.77 0.016, 0.033, 1.10
No. of reflections 4458 5453 4815 8891 5322
No. of parameters 160 174 191 194 164
No. of restraints 0 0 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 5.27, −1.24 1.32, −1.07 2.43, −1.87 1.12, −0.92 0.83, −0.85
Extinction method None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) None None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.])
Extinction coefficient 0.00167 (11) 0.00346 (11)
  22a 23a 17b 18b 19b
Crystal data
Chemical formula (C10H23ClPSe)[AuCl4] (C11H25ClPSe)[AuCl4] (C9H21BrPS)[AuBr4] (C10H23BrPS)[AuBr4] (C11H25BrPS)[AuBr4]
Mr 627.43 641.46 788.80 802.83 816.86
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100 100 100 100
a, b, c (Å) 7.5836 (2), 8.7603 (2), 15.4719 (6) 33.7472 (6), 7.79306 (8), 16.2575 (3) 7.8543 (4), 8.0592 (4), 15.3505 (7) 7.8455 (6), 9.1380 (6), 15.5440 (9) 12.4712 (4), 10.3712 (3), 16.2524 (5)
α, β, γ (°) 84.445 (3), 78.641 (3), 67.128 (3) 90, 113.582 (3), 90 76.717 (4), 83.169 (4), 87.722 (4) 86.600 (5), 81.097 (6), 64.862 (6) 90, 92.724 (3), 90
V3) 928.28 (5) 3918.54 (14) 938.89 (8) 996.65 (13) 2099.73 (11)
Z 2 8 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.67 10.12 18.65 17.57 16.69
Crystal size (mm) 0.2 × 0.2 × 0.03 0.35 × 0.2 × 0.04 0.2 × 0.08 × 0.05 0.25 × 0.1 × 0.03 0.35 × 0.25 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.232, 1.000 0.308, 1.000 0.247, 1.000 0.097, 0.621 0.068, 0.286
No. of measured, independent and observed [I > 2σ(I)] reflections 102916, 5490, 4978 257492, 6028, 5453 54229, 5646, 5089 26487, 5731, 5030 70058, 6335, 5041
Rint 0.042 0.058 0.043 0.045 0.065
θ values (°) θmax = 30.9, θmin = 2.5 θmax = 30.9, θmin = 2.5 θmax = 30.9, θmin = 2.6 θmax = 30.8, θmin = 2.5 θmax = 30.9, θmin = 2.3
(sin θ/λ)max−1) 0.722 0.723 0.721 0.720 0.723
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05 0.021, 0.043, 1.11 0.021, 0.040, 1.08 0.027, 0.052, 1.06 0.033, 0.061, 1.09
No. of reflections 5490 6028 5646 5731 6335
No. of parameters 174 191 164 173 183
No. of restraints 0 0 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.86, −1.59 1.13, −1.20 1.42, −1.15 2.15, −2.24 2.43, −1.44
Extinction method Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) None None
Extinction coefficient 0.00144 (18) 0.00112 (7)
  20b 21b 22b 23b
Crystal data
Chemical formula (C12H27BrPS)[AuBr4] (C9H21BrPSe)[AuBr4] (C10H23BrPSe)[AuBr4] (C11H25BrPSe)[AuBr4]
Mr 830.88 835.70 849.73 863.76
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100 100 101
a, b, c (Å) 10.2218 (5), 10.8085 (6), 11.1163 (5) 7.9212 (4), 8.0606 (4), 15.2911 (8) 7.8155 (3), 9.1505 (3), 15.5221 (5) 12.3529 (4), 10.4233 (4), 16.4635 (5)
α, β, γ (°) 70.909 (4), 71.516 (5), 75.645 (4) 76.817 (5), 82.668 (5), 87.728 (4) 85.965 (2), 80.294 (3), 66.049 (3) 90, 93.453 (3), 90
V3) 1086.40 (10) 942.78 (9) 999.97 (6) 2115.97 (12)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 16.13 20.39 19.23 18.18
Crystal size (mm) 0.1 × 0.05 × 0.002 0.1 × 0.1 × 0.05 0.3 × 0.2 × 0.03 0.2 × 0.1 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.284, 1.000 0.434, 1.000 0.202, 1.000 0.122, 0.713
No. of measured, independent and observed [I > 2σ(I)] reflections 73343, 6283, 5151 69642, 5661, 4881 52431, 5847, 5198 7063, 7063, 4089
Rint 0.078 0.057 0.050
θ values (°) θmax = 30.0, θmin = 2.4 θmax = 30.9, θmin = 2.6 θmax = 30.9, θmin = 2.4 θmax = 28.3, θmin = 2.3
(sin θ/λ)max−1) 0.704 0.723 0.722 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.05 0.024, 0.045, 1.06 0.025, 0.063, 1.04 0.034, 0.061, 0.81
No. of reflections 6283 5661 5847 7063
No. of parameters 193 164 173 184
No. of restraints 0 0 0 66
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.56, −1.67 1.53, −1.01 1.71, −1.44 1.72, −1.10
Extinction method None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) None None
Extinction coefficient 0.00116 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Special features: For 17a, there is a large difference peak of ca 5.6 e A−3 near the gold atom Au1. This peak may probably be attributed to residual absorption errors. It can be ‘removed’ by assuming a disorder of the AuCl4 anion (the minor site then has an occupation of ca 3%), but we do not find this strategy satisfactory. [Note added during revision. The referee asked for an explanation of ‘unsatisfactory’: Heavy-atom structures generally show significant residual electron density near the heavy atom, and this can be large if the data are not of high quality. These peaks can always be removed by the ad hoc method of refining them as an alternative heavy-atom position with low occupation. However, the lighter atom positions (here chlorines with occupation factor 3%) cannot be clearly identified, but only guessed and then refined with strict restraints. We therefore prefer to assume that the large peak is a result of imperfect data, and that it would not be justifiable to remove it for cosmetic reasons.] The U values of this structure are significantly higher than those of the other structures, and the corresponding figure shows 30% rather than 50% ellipsoids. For 19a (and the isotypic 23a), the anion centred on Au1 is disordered, with the atoms Cl3 and Cl4 being slightly displaced from the twofold axis. Dimensions of disordered groups should be inter­preted with caution. For 20a, the data were affected by a small twinning component (rotated by 180° about the c axis) that was at first not detected, but which led to poor agreement of data with l = 4. Data reduction and refinement (‘HKLF 5’ method; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) as a non-merohedral twin led to a BASF parameter (relative volume of the smaller twin component) of 0.0300 (3). As is often the case with ‘HKLF 5’ refinements, several reflections were severely in error; 20 of these were removed from the dataset. Because equivalent reflections are merged during the generation of the ‘HKLF 5’ intensity dataset, and because both overlapped and non-overlapped reflections are included in the refinement, the number of reflections should be inter­preted carefully. The low GOOF value may be associated with the difficulty of estimating s.u.'s for the intensities of the small twin component (and of the weak intensities not corresponding to the pseudo-I centring caused by the presence of two gold atoms on special positions). Similarly, the crystal of 23b was a two-component non-merohedral twin (by 180° rotation about the a* axis). The relative volume of the smaller twin component refined to 0.0807 (6). The U values of the carbon atoms were restrained to be less anisotropic using the command ‘ISOR $C 0.005’. For several of the non-twinned structures, a few (1–3) poorly fitting reflections (Δ/σ ca 7–11) were omitted from the refinement.

Supporting information


Computing details top

(Chlorosulfanyl)tris(propan-2-yl)phosphonium tetrachloridoaurate(III) (17a) top
Crystal data top
(C9H21ClPS)[AuCl4]F(000) = 1080
Mr = 566.50Dx = 2.090 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.3577 (5) ÅCell parameters from 13392 reflections
b = 10.0877 (3) Åθ = 2.5–27.5°
c = 13.9182 (5) ŵ = 9.10 mm1
β = 106.290 (4)°T = 100 K
V = 1800.18 (11) Å3Plate, yellow
Z = 40.2 × 0.1 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4458 independent reflections
Radiation source: fine-focus sealed tube3807 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.056
ω scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1717
Tmin = 0.359, Tmax = 1.000k = 1313
65964 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0437P)2 + 16.018P]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 5.27 e Å3
0 restraintsΔρmin = 1.24 e Å3
Special details top

Refinement. The structure can also be refined with a second position of the AuCl4 anion, occupation ca. 3%, which leads to an improved R factor, but is probably just a way of removing the excess residual electron density at the gold atom, in turn probably caused by residual absorption errors.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.49492 (13)0.26458 (15)0.71127 (13)0.0229 (3)
S10.37078 (15)0.3269 (2)0.59158 (16)0.0411 (5)
Cl10.4167 (2)0.24787 (19)0.47722 (16)0.0518 (6)
C10.4821 (6)0.3685 (7)0.8153 (6)0.0332 (15)
H10.5247530.4499580.8151240.040*
C20.6151 (5)0.3045 (7)0.6810 (5)0.0283 (14)
H20.6170640.2494620.6217660.034*
C30.4873 (5)0.0874 (6)0.7358 (5)0.0244 (12)
H30.5382960.0693140.8022650.029*
C110.5284 (6)0.3003 (7)0.9151 (6)0.0366 (16)
H11A0.5244320.3598340.9695540.055*
H11B0.6015370.2780200.9220510.055*
H11C0.4892470.2190450.9181590.055*
C120.3706 (7)0.4145 (8)0.8027 (7)0.047 (2)
H12A0.3258910.3373730.8020760.071*
H12B0.3454900.4630010.7395010.071*
H12C0.3687910.4728700.8585060.071*
C210.6189 (6)0.4495 (7)0.6512 (6)0.0394 (17)
H21A0.6179450.5063620.7079970.059*
H21B0.5582710.4695180.5945370.059*
H21C0.6829840.4657150.6318950.059*
C220.7085 (5)0.2646 (7)0.7673 (5)0.0319 (15)
H22A0.7724950.2725820.7464120.048*
H22B0.7001990.1726060.7864020.048*
H22C0.7130430.3229060.8246990.048*
C310.3807 (6)0.0498 (7)0.7447 (6)0.0351 (16)
H31A0.3286640.0624370.6799480.053*
H31B0.3631970.1059810.7951340.053*
H31C0.3811620.0433330.7648270.053*
C320.5206 (6)0.0026 (6)0.6583 (5)0.0297 (14)
H32A0.5229000.0909310.6778300.044*
H32B0.5898700.0306040.6551740.044*
H32C0.4702570.0140500.5923880.044*
Au10.19556 (2)0.73810 (2)0.47234 (2)0.02350 (9)
Cl20.34024 (14)0.70385 (17)0.60253 (15)0.0379 (4)
Cl30.24567 (14)0.95147 (16)0.45821 (13)0.0325 (4)
Cl40.04849 (14)0.77264 (18)0.34302 (14)0.0355 (4)
Cl50.14653 (14)0.52388 (16)0.48526 (14)0.0341 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0234 (8)0.0195 (7)0.0242 (8)0.0026 (6)0.0038 (6)0.0009 (6)
S10.0346 (10)0.0362 (10)0.0437 (11)0.0058 (8)0.0031 (8)0.0093 (8)
Cl10.0764 (15)0.0362 (10)0.0309 (10)0.0012 (9)0.0046 (10)0.0011 (7)
C10.043 (4)0.022 (3)0.038 (4)0.006 (3)0.017 (3)0.004 (3)
C20.028 (3)0.025 (3)0.033 (4)0.004 (3)0.012 (3)0.007 (3)
C30.025 (3)0.020 (3)0.025 (3)0.001 (2)0.002 (2)0.000 (2)
C110.048 (4)0.027 (3)0.040 (4)0.000 (3)0.021 (3)0.001 (3)
C120.051 (5)0.041 (4)0.063 (6)0.017 (4)0.037 (4)0.011 (4)
C210.049 (4)0.027 (4)0.047 (4)0.011 (3)0.021 (4)0.002 (3)
C220.026 (3)0.040 (4)0.031 (4)0.005 (3)0.011 (3)0.010 (3)
C310.037 (4)0.031 (4)0.040 (4)0.009 (3)0.014 (3)0.004 (3)
C320.039 (4)0.018 (3)0.031 (3)0.001 (3)0.010 (3)0.004 (2)
Au10.02594 (14)0.02090 (13)0.02427 (14)0.00120 (9)0.00804 (9)0.00287 (9)
Cl20.0324 (9)0.0263 (8)0.0454 (10)0.0038 (7)0.0051 (7)0.0020 (7)
Cl30.0371 (9)0.0226 (7)0.0358 (9)0.0045 (6)0.0069 (7)0.0022 (6)
Cl40.0361 (9)0.0334 (8)0.0307 (8)0.0025 (7)0.0008 (7)0.0002 (7)
Cl50.0357 (9)0.0234 (7)0.0398 (9)0.0068 (6)0.0049 (7)0.0012 (6)
Geometric parameters (Å, º) top
P1—C21.815 (7)C12—H12B0.9800
P1—C31.828 (6)C12—H12C0.9800
P1—C11.834 (7)C21—H21A0.9800
P1—S12.091 (2)C21—H21B0.9800
S1—Cl12.023 (3)C21—H21C0.9800
S1—Cl53.553 (3)C22—H22A0.9800
C1—C111.518 (11)C22—H22B0.9800
C1—C121.522 (11)C22—H22C0.9800
C1—H11.0000C31—H31A0.9800
C2—C221.525 (10)C31—H31B0.9800
C2—C211.525 (10)C31—H31C0.9800
C2—H21.0000C32—H32A0.9800
C3—C311.511 (9)C32—H32B0.9800
C3—C321.537 (9)C32—H32C0.9800
C3—H31.0000Au1—Cl22.2745 (17)
C11—H11A0.9800Au1—Cl32.2789 (16)
C11—H11B0.9800Au1—Cl52.2797 (16)
C11—H11C0.9800Au1—Cl42.2884 (17)
C12—H12A0.9800
C2—P1—C3111.1 (3)H12A—C12—H12B109.5
C2—P1—C1109.9 (3)C1—C12—H12C109.5
C3—P1—C1112.9 (3)H12A—C12—H12C109.5
C2—P1—S1107.7 (2)H12B—C12—H12C109.5
C3—P1—S1111.7 (2)C2—C21—H21A109.5
C1—P1—S1103.2 (3)C2—C21—H21B109.5
Cl1—S1—P199.25 (11)H21A—C21—H21B109.5
Cl1—S1—Cl5107.39 (10)C2—C21—H21C109.5
P1—S1—Cl5152.59 (11)H21A—C21—H21C109.5
C11—C1—C12112.2 (6)H21B—C21—H21C109.5
C11—C1—P1111.0 (5)C2—C22—H22A109.5
C12—C1—P1112.9 (6)C2—C22—H22B109.5
C11—C1—H1106.8H22A—C22—H22B109.5
C12—C1—H1106.8C2—C22—H22C109.5
P1—C1—H1106.8H22A—C22—H22C109.5
C22—C2—C21112.6 (6)H22B—C22—H22C109.5
C22—C2—P1109.9 (5)C3—C31—H31A109.5
C21—C2—P1112.0 (5)C3—C31—H31B109.5
C22—C2—H2107.3H31A—C31—H31B109.5
C21—C2—H2107.3C3—C31—H31C109.5
P1—C2—H2107.3H31A—C31—H31C109.5
C31—C3—C32112.5 (5)H31B—C31—H31C109.5
C31—C3—P1111.3 (5)C3—C32—H32A109.5
C32—C3—P1111.8 (4)C3—C32—H32B109.5
C31—C3—H3107.0H32A—C32—H32B109.5
C32—C3—H3107.0C3—C32—H32C109.5
P1—C3—H3107.0H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5Cl2—Au1—Cl390.44 (6)
H11A—C11—H11B109.5Cl2—Au1—Cl589.54 (6)
C1—C11—H11C109.5Cl3—Au1—Cl5179.34 (7)
H11A—C11—H11C109.5Cl2—Au1—Cl4179.13 (7)
H11B—C11—H11C109.5Cl3—Au1—Cl489.80 (6)
C1—C12—H12A109.5Cl5—Au1—Cl490.24 (6)
C1—C12—H12B109.5Au1—Cl5—S1109.61 (7)
C2—P1—S1—Cl148.2 (3)C3—P1—C2—C2259.0 (5)
C3—P1—S1—Cl174.0 (3)C1—P1—C2—C2266.7 (5)
C1—P1—S1—Cl1164.4 (2)S1—P1—C2—C22178.4 (4)
C2—P1—S1—Cl5118.1 (3)C3—P1—C2—C21174.9 (5)
C3—P1—S1—Cl5119.7 (3)C1—P1—C2—C2159.4 (6)
C1—P1—S1—Cl51.9 (3)S1—P1—C2—C2152.4 (5)
C2—P1—C1—C1192.0 (6)C2—P1—C3—C31170.9 (5)
C3—P1—C1—C1132.6 (6)C1—P1—C3—C3165.1 (6)
S1—P1—C1—C11153.4 (5)S1—P1—C3—C3150.7 (5)
C2—P1—C1—C12141.0 (5)C2—P1—C3—C3244.1 (5)
C3—P1—C1—C1294.4 (6)C1—P1—C3—C32168.2 (5)
S1—P1—C1—C1226.4 (6)S1—P1—C3—C3276.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl11.002.863.343 (7)110
C32—H32C···Cl10.982.833.527 (7)129
C12—H12B···S10.982.573.069 (9)111
C21—H21B···S10.982.883.415 (8)115
C32—H32A···Cl1i0.982.973.395 (7)108
C22—H22C···Cl3ii0.982.893.843 (7)164
C1—H1···Cl4ii1.002.833.721 (7)149
C32—H32A···Cl4iii0.982.883.731 (7)145
C3—H3···Cl5iii1.002.723.701 (7)167
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
(tert-Butyl)(chlorosulfanyl)bis(propan-2-yl)phosphonium tetrachloridoaurate(III) (18a) top
Crystal data top
(C10H23ClPS)[AuCl4]Z = 2
Mr = 580.53F(000) = 556
Triclinic, P1Dx = 2.095 Mg m3
a = 7.5619 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7408 (4) ÅCell parameters from 21451 reflections
c = 15.4558 (6) Åθ = 2.5–30.7°
α = 84.346 (4)°µ = 8.90 mm1
β = 78.306 (4)°T = 100 K
γ = 66.915 (5)°Plate, yellow
V = 920.07 (8) Å30.2 × 0.18 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5453 independent reflections
Radiation source: Enhance (Mo) X-ray Source4838 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.032
ω scanθmax = 30.8°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1010
Tmin = 0.316, Tmax = 1.000k = 1212
50339 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0146P)2 + 0.7146P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5453 reflectionsΔρmax = 1.32 e Å3
174 parametersΔρmin = 1.07 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00167 (11)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50154 (7)0.10754 (6)0.25334 (3)0.01224 (10)
S10.38459 (8)0.05864 (6)0.32441 (4)0.01794 (10)
Cl10.16037 (8)0.09519 (6)0.41119 (4)0.02207 (11)
C10.7444 (3)0.0351 (2)0.19677 (13)0.0153 (4)
C20.5052 (3)0.2531 (3)0.32961 (13)0.0177 (4)
H20.3650080.3228760.3517350.021*
C30.3485 (3)0.2313 (2)0.17343 (13)0.0150 (4)
H30.4250260.2895890.1335080.018*
C110.8102 (3)0.0503 (3)0.11176 (14)0.0202 (4)
H11A0.8105970.1568110.1262760.030*
H11B0.7197730.0698850.0707830.030*
H11C0.9421230.0212780.0840580.030*
C120.8927 (3)0.0766 (3)0.25912 (14)0.0207 (4)
H12A1.0178610.1599370.2320130.031*
H12B0.8435560.1208810.3154290.031*
H12C0.9111080.0244510.2696130.031*
C130.7340 (3)0.1982 (2)0.17357 (15)0.0206 (4)
H13A0.6289370.1728290.1397980.031*
H13B0.7077560.2591760.2280900.031*
H13C0.8587770.2664190.1380570.031*
C210.5927 (4)0.1771 (3)0.41227 (15)0.0272 (5)
H21A0.7355540.1305460.3965800.041*
H21B0.5469430.0886280.4368730.041*
H21C0.5514780.2634110.4563050.041*
C220.5945 (4)0.3744 (3)0.27927 (16)0.0242 (5)
H22A0.5764120.4623650.3188850.036*
H22B0.5295940.4241560.2287700.036*
H22C0.7344070.3140020.2581300.036*
C310.3042 (3)0.1241 (3)0.11454 (15)0.0229 (5)
H31A0.2316440.0624280.1513590.034*
H31B0.4271000.0455020.0824970.034*
H31C0.2256410.1958780.0721500.034*
C320.1580 (3)0.3670 (3)0.21726 (15)0.0216 (4)
H32A0.0837320.4310510.1717160.032*
H32B0.1891330.4414410.2496300.032*
H32C0.0798270.3151440.2583690.032*
Au10.0000000.5000000.5000000.01355 (3)
Cl20.16568 (8)0.34352 (7)0.57470 (4)0.02303 (11)
Cl30.21372 (8)0.41221 (7)0.59592 (4)0.02613 (12)
Au20.5000000.5000000.0000000.01239 (3)
Cl40.34494 (8)0.70229 (6)0.10234 (4)0.02293 (11)
Cl50.79512 (7)0.47158 (6)0.02926 (4)0.02032 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0107 (2)0.0125 (2)0.0131 (2)0.00431 (18)0.00189 (18)0.00008 (18)
S10.0162 (2)0.0147 (2)0.0212 (3)0.00623 (18)0.00016 (19)0.00216 (19)
Cl10.0175 (2)0.0233 (2)0.0232 (3)0.0088 (2)0.00370 (19)0.0011 (2)
C10.0118 (9)0.0165 (9)0.0148 (9)0.0033 (7)0.0010 (7)0.0004 (7)
C20.0173 (10)0.0222 (10)0.0158 (10)0.0095 (8)0.0012 (8)0.0055 (8)
C30.0138 (9)0.0129 (9)0.0179 (10)0.0038 (7)0.0055 (8)0.0023 (7)
C110.0157 (10)0.0233 (10)0.0175 (10)0.0055 (8)0.0013 (8)0.0016 (8)
C120.0126 (10)0.0265 (11)0.0200 (11)0.0042 (8)0.0034 (8)0.0008 (8)
C130.0197 (10)0.0143 (9)0.0250 (11)0.0027 (8)0.0040 (9)0.0033 (8)
C210.0271 (12)0.0406 (14)0.0167 (11)0.0152 (11)0.0036 (9)0.0049 (10)
C220.0265 (12)0.0249 (11)0.0266 (12)0.0155 (9)0.0027 (9)0.0042 (9)
C310.0251 (11)0.0194 (10)0.0254 (12)0.0052 (9)0.0138 (9)0.0008 (9)
C320.0177 (10)0.0165 (10)0.0264 (12)0.0010 (8)0.0065 (9)0.0001 (8)
Au10.01509 (6)0.01277 (5)0.01290 (6)0.00503 (4)0.00292 (4)0.00121 (4)
Cl20.0239 (3)0.0218 (2)0.0256 (3)0.0125 (2)0.0035 (2)0.0033 (2)
Cl30.0254 (3)0.0343 (3)0.0223 (3)0.0129 (2)0.0121 (2)0.0057 (2)
Au20.00974 (5)0.01046 (5)0.01638 (6)0.00389 (4)0.00134 (4)0.00042 (4)
Cl40.0181 (2)0.0202 (2)0.0277 (3)0.00397 (19)0.0005 (2)0.0092 (2)
Cl50.0134 (2)0.0207 (2)0.0283 (3)0.00719 (18)0.00544 (19)0.0000 (2)
Geometric parameters (Å, º) top
P1—C21.829 (2)C13—H13B0.9800
P1—C31.836 (2)C13—H13C0.9800
P1—C11.860 (2)C21—H21A0.9800
P1—S12.0970 (7)C21—H21B0.9800
S1—Cl12.0316 (7)C21—H21C0.9800
Cl1—Cl23.3964 (8)C22—H22A0.9800
C1—C111.538 (3)C22—H22B0.9800
C1—C131.538 (3)C22—H22C0.9800
C1—C121.539 (3)C31—H31A0.9800
C2—C211.530 (3)C31—H31B0.9800
C2—C221.540 (3)C31—H31C0.9800
C2—H21.0000C32—H32A0.9800
C3—C311.535 (3)C32—H32B0.9800
C3—C321.538 (3)C32—H32C0.9800
C3—H31.0000Au1—Cl3i2.2744 (5)
C11—H11A0.9800Au1—Cl32.2744 (5)
C11—H11B0.9800Au1—Cl22.2847 (5)
C11—H11C0.9800Au1—Cl2i2.2847 (5)
C12—H12A0.9800Au2—Cl4ii2.2753 (5)
C12—H12B0.9800Au2—Cl42.2753 (5)
C12—H12C0.9800Au2—Cl52.2801 (5)
C13—H13A0.9800Au2—Cl5ii2.2801 (5)
C2—P1—C3107.15 (9)C1—C13—H13C109.5
C2—P1—C1115.86 (10)H13A—C13—H13C109.5
C3—P1—C1111.39 (9)H13B—C13—H13C109.5
C2—P1—S1109.35 (7)C2—C21—H21A109.5
C3—P1—S1110.73 (7)C2—C21—H21B109.5
C1—P1—S1102.30 (7)H21A—C21—H21B109.5
Cl1—S1—P1101.57 (3)C2—C21—H21C109.5
S1—Cl1—Cl2171.74 (3)H21A—C21—H21C109.5
C11—C1—C13109.53 (17)H21B—C21—H21C109.5
C11—C1—C12109.89 (17)C2—C22—H22A109.5
C13—C1—C12108.50 (17)C2—C22—H22B109.5
C11—C1—P1109.31 (14)H22A—C22—H22B109.5
C13—C1—P1110.59 (14)C2—C22—H22C109.5
C12—C1—P1109.01 (13)H22A—C22—H22C109.5
C21—C2—C22112.40 (19)H22B—C22—H22C109.5
C21—C2—P1116.51 (16)C3—C31—H31A109.5
C22—C2—P1110.40 (14)C3—C31—H31B109.5
C21—C2—H2105.5H31A—C31—H31B109.5
C22—C2—H2105.5C3—C31—H31C109.5
P1—C2—H2105.5H31A—C31—H31C109.5
C31—C3—C32110.39 (17)H31B—C31—H31C109.5
C31—C3—P1112.89 (14)C3—C32—H32A109.5
C32—C3—P1112.80 (14)C3—C32—H32B109.5
C31—C3—H3106.8H32A—C32—H32B109.5
C32—C3—H3106.8C3—C32—H32C109.5
P1—C3—H3106.8H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5Cl3i—Au1—Cl3180.0
H11A—C11—H11B109.5Cl3i—Au1—Cl289.57 (2)
C1—C11—H11C109.5Cl3—Au1—Cl290.43 (2)
H11A—C11—H11C109.5Cl3i—Au1—Cl2i90.43 (2)
H11B—C11—H11C109.5Cl3—Au1—Cl2i89.57 (2)
C1—C12—H12A109.5Cl2—Au1—Cl2i180.000 (18)
C1—C12—H12B109.5Au1—Cl2—Cl175.206 (18)
H12A—C12—H12B109.5Cl4ii—Au2—Cl4180.0
C1—C12—H12C109.5Cl4ii—Au2—Cl589.65 (2)
H12A—C12—H12C109.5Cl4—Au2—Cl590.35 (2)
H12B—C12—H12C109.5Cl4ii—Au2—Cl5ii90.34 (2)
C1—C13—H13A109.5Cl4—Au2—Cl5ii89.66 (2)
C1—C13—H13B109.5Cl5—Au2—Cl5ii180.0
H13A—C13—H13B109.5
C2—P1—S1—Cl141.13 (8)C3—P1—C2—C21169.11 (16)
C3—P1—S1—Cl176.73 (7)C1—P1—C2—C2165.87 (19)
C1—P1—S1—Cl1164.48 (7)S1—P1—C2—C2149.04 (17)
C2—P1—C1—C1187.34 (16)C3—P1—C2—C2261.10 (17)
C3—P1—C1—C1135.47 (17)C1—P1—C2—C2263.92 (18)
S1—P1—C1—C11153.80 (13)S1—P1—C2—C22178.83 (13)
C2—P1—C1—C13152.00 (14)C2—P1—C3—C31170.50 (15)
C3—P1—C1—C1385.19 (16)C1—P1—C3—C3161.82 (18)
S1—P1—C1—C1333.14 (15)S1—P1—C3—C3151.31 (17)
C2—P1—C1—C1232.80 (18)C2—P1—C3—C3244.51 (17)
C3—P1—C1—C12155.61 (14)C1—P1—C3—C32172.19 (14)
S1—P1—C1—C1286.06 (14)S1—P1—C3—C3274.68 (15)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···S10.982.633.073 (2)107
C2—H2···Cl11.002.953.383 (2)107
C32—H32C···Cl10.982.903.635 (2)133
C21—H21C···Cl30.982.933.705 (2)137
C11—H11A···Cl50.982.973.742 (2)136
C3—H3···Au21.002.753.693 (2)158
C2—H2···Cl2i1.002.933.688 (2)133
C22—H22A···Cl3iii0.982.823.642 (2)142
C12—H12B···Cl3iv0.982.913.754 (2)145
C13—H13B···Cl3iv0.982.983.876 (2)153
C12—H12A···Cl4v0.982.783.699 (2)157
C13—H13A···Cl4vi0.982.933.760 (2)143
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y1, z; (vi) x, y1, z.
Bis(tert-butyl)(chlorosulfanyl)(propan-2-yl)phosphonium tetrachloridoaurate(III) (19a) top
Crystal data top
(C11H25ClPS)[AuCl4]F(000) = 2288
Mr = 594.55Dx = 2.031 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.653 (3) ÅCell parameters from 9326 reflections
b = 7.7933 (3) Åθ = 2.3–29.3°
c = 16.212 (2) ŵ = 8.43 mm1
β = 113.861 (8)°T = 100 K
V = 3888.5 (6) Å3Plate, yellow
Z = 80.2 × 0.02 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4815 independent reflections
Radiation source: Enhance (Mo) X-ray Source3861 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.096
ω scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 4444
Tmin = 0.698, Tmax = 1.000k = 1010
84613 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0233P)2 + 18.2209P]
where P = (Fo2 + 2Fc2)/3
4815 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 2.42 e Å3
1 restraintΔρmin = 1.86 e Å3
Special details top

Refinement. The anion centred on Au1 is disordered, with the atoms Cl3 and Cl4 being slightly displaced from the twofold axis. Dimensions of disordered groups should be interpreted with caution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.37573 (4)0.61321 (15)0.40339 (8)0.0139 (2)
S10.42233 (4)0.76384 (17)0.50388 (8)0.0229 (3)
Cl10.38636 (5)0.89460 (17)0.55781 (9)0.0318 (3)
C10.41258 (15)0.4470 (6)0.3892 (3)0.0178 (10)
C20.34680 (15)0.7536 (6)0.3034 (3)0.0168 (9)
C30.33665 (15)0.5286 (6)0.4457 (3)0.0181 (10)
H30.3158900.6243660.4397200.022*
C230.33158 (18)0.9160 (6)0.3367 (3)0.0261 (12)
H23A0.3150360.9893290.2851000.039*
H23B0.3569370.9789780.3785260.039*
H23C0.3130930.8828200.3677850.039*
C210.30734 (16)0.6650 (6)0.2324 (3)0.0224 (11)
H21A0.2956300.7361940.1779730.034*
H21B0.2850440.6488210.2561260.034*
H21C0.3160060.5531280.2175230.034*
C220.37784 (16)0.8113 (6)0.2609 (3)0.0225 (11)
H22A0.3859990.7121750.2339570.034*
H22B0.4039760.8616540.3075010.034*
H22C0.3633970.8971010.2141000.034*
C110.42557 (16)0.3207 (6)0.4683 (3)0.0228 (11)
H11A0.4464320.2374870.4637900.034*
H11B0.3996870.2602250.4663700.034*
H11C0.4389040.3837960.5252430.034*
C120.38961 (16)0.3496 (6)0.3002 (3)0.0207 (10)
H12A0.4089650.2603390.2949510.031*
H12B0.3821710.4297770.2495890.031*
H12C0.3630310.2965260.2992500.031*
C130.45356 (16)0.5339 (7)0.3899 (3)0.0247 (11)
H13A0.4679840.5972140.4465180.037*
H13B0.4455360.6135400.3389740.037*
H13C0.4733730.4464950.3847840.037*
C320.30897 (16)0.3797 (6)0.3897 (3)0.0211 (11)
H32A0.3268860.2760780.4007580.032*
H32B0.2976790.4091350.3254500.032*
H32C0.2846600.3588170.4069760.032*
C310.35594 (17)0.4771 (7)0.5463 (3)0.0246 (11)
H31A0.3327710.4744370.5683120.037*
H31B0.3780260.5610940.5812520.037*
H31C0.3692700.3632820.5532660.037*
Au10.5000000.99691 (3)0.7500000.01611 (7)
Cl20.51000 (4)0.99765 (15)0.61880 (7)0.0205 (2)
Cl30.49041 (17)1.2856 (3)0.7334 (3)0.0361 (13)0.5
Cl40.5066 (3)0.7069 (3)0.7565 (13)0.0271 (18)0.5
Au20.2500000.7500000.5000000.01468 (7)
Cl50.27160 (4)1.02504 (15)0.49346 (8)0.0248 (3)
Cl60.22544 (4)0.72530 (15)0.34763 (7)0.0241 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0161 (6)0.0138 (6)0.0118 (5)0.0003 (5)0.0056 (5)0.0005 (4)
S10.0230 (6)0.0237 (7)0.0186 (6)0.0052 (5)0.0049 (5)0.0082 (5)
Cl10.0389 (8)0.0307 (8)0.0254 (7)0.0011 (6)0.0125 (6)0.0113 (5)
C10.020 (2)0.022 (3)0.013 (2)0.0033 (19)0.0081 (19)0.0007 (19)
C20.023 (2)0.012 (2)0.014 (2)0.002 (2)0.0067 (19)0.0029 (18)
C30.021 (2)0.017 (3)0.017 (2)0.0041 (19)0.0087 (19)0.0034 (18)
C230.033 (3)0.020 (3)0.022 (3)0.003 (2)0.008 (2)0.001 (2)
C210.025 (3)0.021 (3)0.017 (2)0.001 (2)0.006 (2)0.000 (2)
C220.025 (3)0.020 (3)0.023 (3)0.003 (2)0.012 (2)0.005 (2)
C110.023 (3)0.021 (3)0.023 (3)0.008 (2)0.008 (2)0.008 (2)
C120.024 (3)0.015 (2)0.025 (3)0.002 (2)0.012 (2)0.003 (2)
C130.023 (3)0.028 (3)0.025 (3)0.003 (2)0.012 (2)0.003 (2)
C320.030 (3)0.016 (3)0.022 (2)0.007 (2)0.015 (2)0.001 (2)
C310.030 (3)0.029 (3)0.018 (2)0.002 (2)0.013 (2)0.003 (2)
Au10.01937 (13)0.01138 (13)0.02047 (13)0.0000.01105 (10)0.000
Cl20.0246 (6)0.0207 (6)0.0193 (5)0.0025 (5)0.0119 (5)0.0009 (5)
Cl30.079 (5)0.0095 (10)0.039 (4)0.0076 (13)0.044 (3)0.0037 (11)
Cl40.047 (6)0.0117 (9)0.028 (5)0.0041 (14)0.021 (5)0.0002 (16)
Au20.01788 (12)0.01255 (13)0.01355 (12)0.00187 (10)0.00630 (9)0.00001 (10)
Cl50.0353 (7)0.0140 (6)0.0274 (6)0.0033 (5)0.0149 (5)0.0009 (5)
Cl60.0342 (7)0.0222 (6)0.0128 (5)0.0050 (5)0.0062 (5)0.0001 (5)
Geometric parameters (Å, º) top
P1—C31.834 (5)C3—C311.545 (6)
P1—C21.870 (4)Au1—Cl4i2.269 (2)
P1—C11.871 (5)Au1—Cl42.269 (2)
P1—S12.1035 (16)Au1—Cl3i2.274 (2)
S1—Cl12.0310 (19)Au1—Cl32.274 (2)
S1—Cl23.3240 (17)Au1—Cl2i2.2839 (11)
C1—C131.532 (7)Au1—Cl22.2839 (11)
C1—C111.533 (6)Cl3—Cl3i0.653 (8)
C1—C121.534 (6)Cl4—Cl4i0.409 (18)
C2—C211.526 (6)Au2—Cl62.2738 (11)
C2—C221.533 (6)Au2—Cl6ii2.2738 (11)
C2—C231.543 (7)Au2—Cl5ii2.2796 (12)
C3—C321.534 (6)Au2—Cl52.2796 (12)
C3—P1—C2109.5 (2)Cl4i—Au1—Cl410.3 (5)
C3—P1—C1114.1 (2)Cl4i—Au1—Cl3i176.1 (4)
C2—P1—C1115.9 (2)Cl4—Au1—Cl3i166.8 (3)
C3—P1—S1109.51 (16)Cl4i—Au1—Cl3166.8 (3)
C2—P1—S1107.97 (16)Cl4—Au1—Cl3176.1 (4)
C1—P1—S199.09 (16)Cl3i—Au1—Cl316.50 (19)
Cl1—S1—P1103.06 (7)Cl4i—Au1—Cl2i89.8 (5)
Cl1—S1—Cl291.84 (6)Cl4—Au1—Cl2i90.5 (5)
P1—S1—Cl2162.69 (7)Cl3i—Au1—Cl2i87.38 (17)
C13—C1—C11109.0 (4)Cl3—Au1—Cl2i92.33 (17)
C13—C1—C12109.6 (4)Cl4i—Au1—Cl290.5 (5)
C11—C1—C12109.5 (4)Cl4—Au1—Cl289.8 (5)
C13—C1—P1109.4 (3)Cl3i—Au1—Cl292.33 (17)
C11—C1—P1108.7 (3)Cl3—Au1—Cl287.38 (17)
C12—C1—P1110.6 (3)Cl2i—Au1—Cl2179.71 (6)
C21—C2—C22109.7 (4)Au1—Cl2—S195.10 (4)
C21—C2—C23108.9 (4)Cl3i—Cl3—Au181.75 (9)
C22—C2—C23107.4 (4)Cl4i—Cl4—Au184.8 (2)
C21—C2—P1112.2 (3)Cl6—Au2—Cl6ii180.00 (6)
C22—C2—P1110.5 (3)Cl6—Au2—Cl5ii89.33 (4)
C23—C2—P1107.8 (3)Cl6ii—Au2—Cl5ii90.67 (4)
C32—C3—C31108.9 (4)Cl6—Au2—Cl590.67 (4)
C32—C3—P1114.0 (3)Cl6ii—Au2—Cl589.33 (4)
C31—C3—P1115.4 (3)Cl5ii—Au2—Cl5180.0
C3—P1—S1—Cl140.49 (18)C3—P1—C2—C2151.4 (4)
C2—P1—S1—Cl178.68 (17)C1—P1—C2—C2179.4 (4)
C1—P1—S1—Cl1160.17 (16)S1—P1—C2—C21170.6 (3)
C3—P1—S1—Cl2170.8 (3)C3—P1—C2—C22174.3 (3)
C2—P1—S1—Cl270.1 (3)C1—P1—C2—C2243.5 (4)
C1—P1—S1—Cl251.1 (3)S1—P1—C2—C2266.6 (3)
C3—P1—C1—C13158.2 (3)C3—P1—C2—C2368.5 (4)
C2—P1—C1—C1373.2 (4)C1—P1—C2—C23160.6 (3)
S1—P1—C1—C1342.0 (3)S1—P1—C2—C2350.6 (3)
C3—P1—C1—C1139.3 (4)C2—P1—C3—C3277.6 (4)
C2—P1—C1—C11167.9 (3)C1—P1—C3—C3254.2 (4)
S1—P1—C1—C1176.9 (3)S1—P1—C3—C32164.2 (3)
C3—P1—C1—C1281.0 (4)C2—P1—C3—C31155.2 (3)
C2—P1—C1—C1247.6 (4)C1—P1—C3—C3173.0 (4)
S1—P1—C1—C12162.8 (3)S1—P1—C3—C3137.0 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Au21.002.933.786 (5)144
C3—H3···Cl61.002.903.751 (5)143
C13—H13A···S10.982.463.049 (5)118
C23—H23B···Cl10.982.743.305 (5)117
C31—H31B···Cl10.982.663.393 (5)132
C23—H23A···Cl6iii0.982.743.713 (5)173
C21—H21C···Cl6iv0.982.903.672 (5)137
C13—H13B···Cl3v0.982.813.536 (8)131
C22—H22B···Cl2vi0.982.873.783 (5)156
C13—H13C···Cl4vii0.982.893.677 (19)138
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+2, z1/2; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+1.
Tris(tert-butyl)(chlorosulfanyl)phosphonium tetrachloridoaurate(III) (20a) top
Crystal data top
(C12H27ClPS)[AuCl4]F(000) = 1176
Mr = 608.58Dx = 1.997 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7661 (3) ÅCell parameters from 16785 reflections
b = 12.5787 (3) Åθ = 2.1–30.9°
c = 16.9776 (5) ŵ = 8.10 mm1
β = 103.887 (3)°T = 100 K
V = 2024.67 (10) Å3Block, yellow
Z = 40.15 × 0.07 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
8891 independent reflections
Radiation source: Enhance (Mo) X-ray Source4196 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.0000
ω scanθmax = 31.3°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1414
Tmin = 0.756, Tmax = 1.000k = 1718
8891 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 0.77 w = 1/[σ2(Fo2) + (0.0179P)2]
where P = (Fo2 + 2Fc2)/3
8891 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.92 e Å3
Special details top

Refinement. The data were affected by a small twinning component (by 180 degrees about the c axis) that was at first not detected, but which led to poor agreement of data with l = 4. Data reduction and refinement ("HKLF 5" method; Sheldrick, 2015) as a non-merohedral twin led to a BASF parameter (relative volume of the smaller twin component) of 0.0300 (3). As is often the case with "HKLF 5" refinements, several reflections were severely in error; 20 of these were removed from the dataset.

Because equivalent reflections are merged during the generation of the "HKLF 5" intensity dataset, and because overlapped and non-overlapped reflections are both included in the refinement, the number of reflections should be interpreted carefully.

The low GOOF value may be due to the difficulty of estimating e.s.d.s for the intensities of the small twin component.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.49208 (10)0.50047 (10)0.25997 (5)0.00909 (17)
S10.28916 (10)0.52505 (7)0.18610 (5)0.0156 (2)
Cl10.15675 (9)0.48996 (10)0.25817 (5)0.0199 (2)
C10.5898 (3)0.4946 (4)0.17591 (18)0.0136 (7)
C20.5023 (4)0.3710 (3)0.3180 (2)0.0134 (9)
C30.5395 (4)0.6193 (3)0.3280 (2)0.0100 (8)
C110.7488 (4)0.5137 (3)0.2099 (2)0.0175 (9)
H11A0.7856390.4624960.2532660.026*
H11B0.7639710.5861130.2315540.026*
H11C0.7980980.5047530.1663490.026*
C120.5311 (4)0.5783 (3)0.1101 (2)0.0199 (10)
H12A0.5792170.5715510.0658420.030*
H12B0.5472500.6496370.1336740.030*
H12C0.4297060.5669050.0888200.030*
C130.5663 (4)0.3869 (3)0.1324 (2)0.0195 (10)
H13A0.6120980.3871180.0869490.029*
H13B0.4649540.3744760.1118640.029*
H13C0.6069580.3302980.1705290.029*
C210.6553 (4)0.3327 (3)0.3404 (2)0.0183 (9)
H21A0.6615510.2661260.3710530.027*
H21B0.7147920.3866860.3736390.027*
H21C0.6877320.3206470.2907640.027*
C220.4052 (5)0.2874 (3)0.2668 (2)0.0212 (10)
H22A0.4318840.2772830.2152550.032*
H22B0.3071430.3117620.2561740.032*
H22C0.4146290.2198590.2964320.032*
C230.4521 (4)0.3838 (3)0.3972 (2)0.0169 (9)
H23A0.4564510.3148660.4245970.025*
H23B0.3547220.4099870.3842590.025*
H23C0.5131950.4346850.4329540.025*
C310.6780 (4)0.6028 (3)0.3911 (2)0.0167 (9)
H31A0.7535780.5884280.3636200.025*
H31B0.6686040.5423770.4258440.025*
H31C0.7007810.6670110.4243460.025*
C320.5508 (5)0.7190 (3)0.2774 (2)0.0202 (9)
H32A0.5698000.7811780.3131400.030*
H32B0.4619640.7294750.2366760.030*
H32C0.6278840.7098110.2501850.030*
C330.4188 (4)0.6433 (3)0.3706 (2)0.0160 (10)
H33A0.4030290.5809200.4019260.024*
H33B0.3321700.6598400.3296900.024*
H33C0.4451640.7041150.4071590.024*
Au10.0000000.5000000.5000000.01111 (5)
Cl20.03947 (11)0.38336 (8)0.40465 (6)0.0223 (2)
Cl30.10599 (12)0.63217 (8)0.44413 (6)0.0255 (2)
Au20.0000000.5000000.0000000.01066 (5)
Cl40.16838 (12)0.37478 (9)0.00287 (6)0.0176 (2)
Cl50.15525 (12)0.63167 (9)0.01076 (6)0.0180 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0088 (4)0.0094 (3)0.0096 (4)0.0006 (6)0.0030 (3)0.0004 (6)
S10.0098 (4)0.0252 (7)0.0116 (4)0.0007 (4)0.0022 (4)0.0006 (4)
Cl10.0124 (4)0.0251 (6)0.0240 (4)0.0027 (5)0.0078 (4)0.0028 (5)
C10.0126 (16)0.0211 (19)0.0106 (14)0.005 (2)0.0101 (13)0.004 (2)
C20.012 (2)0.010 (2)0.017 (2)0.0012 (17)0.0018 (17)0.0000 (17)
C30.009 (2)0.0081 (19)0.0119 (18)0.0001 (16)0.0012 (16)0.0002 (16)
C110.0168 (19)0.018 (3)0.0202 (17)0.0020 (19)0.0096 (15)0.0055 (18)
C120.017 (2)0.031 (3)0.015 (2)0.004 (2)0.0108 (18)0.0069 (18)
C130.018 (2)0.031 (3)0.012 (2)0.002 (2)0.0091 (18)0.0053 (19)
C210.024 (2)0.014 (2)0.018 (2)0.0067 (18)0.0077 (18)0.0079 (16)
C220.028 (3)0.012 (2)0.027 (2)0.0036 (18)0.013 (2)0.0003 (17)
C230.021 (2)0.011 (2)0.021 (2)0.0015 (19)0.0092 (19)0.0065 (18)
C310.016 (2)0.014 (2)0.0175 (19)0.0004 (17)0.0005 (17)0.0055 (16)
C320.021 (2)0.015 (2)0.024 (2)0.0022 (18)0.0067 (18)0.0010 (17)
C330.019 (2)0.011 (2)0.017 (2)0.0030 (18)0.0028 (18)0.0021 (16)
Au10.00871 (10)0.01398 (11)0.01084 (10)0.00008 (14)0.00275 (8)0.00063 (13)
Cl20.0241 (6)0.0240 (6)0.0223 (5)0.0051 (5)0.0126 (5)0.0084 (4)
Cl30.0330 (6)0.0200 (6)0.0291 (6)0.0072 (5)0.0183 (5)0.0010 (5)
Au20.01168 (10)0.01105 (10)0.00926 (9)0.00079 (14)0.00256 (8)0.00012 (13)
Cl40.0163 (6)0.0156 (6)0.0217 (5)0.0024 (5)0.0060 (5)0.0026 (5)
Cl50.0161 (6)0.0156 (6)0.0227 (5)0.0002 (5)0.0054 (5)0.0040 (5)
Geometric parameters (Å, º) top
P1—C31.877 (4)C21—H21B0.9800
P1—C21.894 (4)C21—H21C0.9800
P1—C11.899 (3)C22—H22A0.9800
P1—S12.0983 (13)C22—H22B0.9800
S1—Cl12.0307 (13)C22—H22C0.9800
Cl1—Cl23.2652 (14)C23—H23A0.9800
C1—C131.534 (6)C23—H23B0.9800
C1—C111.541 (5)C23—H23C0.9800
C1—C121.543 (5)C31—H31A0.9800
C2—C211.529 (5)C31—H31B0.9800
C2—C221.538 (5)C31—H31C0.9800
C2—C231.546 (5)C32—H32A0.9800
C3—C311.525 (5)C32—H32B0.9800
C3—C321.539 (5)C32—H32C0.9800
C3—C331.553 (5)C33—H33A0.9800
C11—H11A0.9800C33—H33B0.9800
C11—H11B0.9800C33—H33C0.9800
C11—H11C0.9800Au1—Cl32.2818 (10)
C12—H12A0.9800Au1—Cl3i2.2818 (10)
C12—H12B0.9800Au1—Cl2i2.2850 (10)
C12—H12C0.9800Au1—Cl22.2850 (10)
C13—H13A0.9800Au2—Cl52.2821 (11)
C13—H13B0.9800Au2—Cl5ii2.2822 (11)
C13—H13C0.9800Au2—Cl4ii2.2859 (11)
C21—H21A0.9800Au2—Cl42.2860 (11)
C3—P1—C2112.97 (15)C2—C21—H21C109.5
C3—P1—C1113.5 (2)H21A—C21—H21C109.5
C2—P1—C1112.6 (2)H21B—C21—H21C109.5
C3—P1—S1107.96 (13)C2—C22—H22A109.5
C2—P1—S1111.23 (13)C2—C22—H22B109.5
C1—P1—S197.43 (11)H22A—C22—H22B109.5
Cl1—S1—P1104.74 (5)C2—C22—H22C109.5
S1—Cl1—Cl2159.83 (6)H22A—C22—H22C109.5
C13—C1—C11109.8 (3)H22B—C22—H22C109.5
C13—C1—C12105.5 (3)C2—C23—H23A109.5
C11—C1—C12109.3 (3)C2—C23—H23B109.5
C13—C1—P1110.7 (3)H23A—C23—H23B109.5
C11—C1—P1110.9 (2)C2—C23—H23C109.5
C12—C1—P1110.6 (3)H23A—C23—H23C109.5
C21—C2—C22111.0 (3)H23B—C23—H23C109.5
C21—C2—C23108.2 (3)C3—C31—H31A109.5
C22—C2—C23106.3 (3)C3—C31—H31B109.5
C21—C2—P1109.1 (3)H31A—C31—H31B109.5
C22—C2—P1110.2 (3)C3—C31—H31C109.5
C23—C2—P1112.0 (3)H31A—C31—H31C109.5
C31—C3—C32109.4 (3)H31B—C31—H31C109.5
C31—C3—C33110.1 (3)C3—C32—H32A109.5
C32—C3—C33105.4 (3)C3—C32—H32B109.5
C31—C3—P1111.7 (3)H32A—C32—H32B109.5
C32—C3—P1110.2 (3)C3—C32—H32C109.5
C33—C3—P1109.8 (3)H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5C3—C33—H33A109.5
H11A—C11—H11B109.5C3—C33—H33B109.5
C1—C11—H11C109.5H33A—C33—H33B109.5
H11A—C11—H11C109.5C3—C33—H33C109.5
H11B—C11—H11C109.5H33A—C33—H33C109.5
C1—C12—H12A109.5H33B—C33—H33C109.5
C1—C12—H12B109.5Cl3—Au1—Cl3i180.0
H12A—C12—H12B109.5Cl3—Au1—Cl2i89.84 (4)
C1—C12—H12C109.5Cl3i—Au1—Cl2i90.16 (4)
H12A—C12—H12C109.5Cl3—Au1—Cl290.16 (4)
H12B—C12—H12C109.5Cl3i—Au1—Cl289.84 (4)
C1—C13—H13A109.5Cl2i—Au1—Cl2180.0
C1—C13—H13B109.5Au1—Cl2—Cl1115.19 (4)
H13A—C13—H13B109.5Cl5—Au2—Cl5ii180.0
C1—C13—H13C109.5Cl5—Au2—Cl4ii89.82 (3)
H13A—C13—H13C109.5Cl5ii—Au2—Cl4ii90.18 (3)
H13B—C13—H13C109.5Cl5—Au2—Cl490.18 (3)
C2—C21—H21A109.5Cl5ii—Au2—Cl489.82 (3)
C2—C21—H21B109.5Cl4ii—Au2—Cl4180.0
H21A—C21—H21B109.5
C3—P1—S1—Cl178.89 (15)C3—P1—C2—C22155.2 (3)
C2—P1—S1—Cl145.59 (15)C1—P1—C2—C2274.5 (3)
C1—P1—S1—Cl1163.38 (16)S1—P1—C2—C2233.6 (3)
P1—S1—Cl1—Cl225.47 (19)C3—P1—C2—C2337.1 (3)
C3—P1—C1—C13170.0 (2)C1—P1—C2—C23167.3 (3)
C2—P1—C1—C1340.0 (3)S1—P1—C2—C2384.5 (3)
S1—P1—C1—C1376.7 (3)C2—P1—C3—C3149.6 (3)
C3—P1—C1—C1147.9 (4)C1—P1—C3—C3180.1 (3)
C2—P1—C1—C1182.0 (3)S1—P1—C3—C31173.0 (2)
S1—P1—C1—C11161.2 (3)C2—P1—C3—C32171.5 (3)
C3—P1—C1—C1273.4 (3)C1—P1—C3—C3241.7 (3)
C2—P1—C1—C12156.6 (3)S1—P1—C3—C3265.1 (3)
S1—P1—C1—C1239.9 (3)C2—P1—C3—C3372.8 (3)
C3—P1—C2—C2182.7 (3)C1—P1—C3—C33157.5 (2)
C1—P1—C2—C2147.6 (3)S1—P1—C3—C3350.6 (3)
S1—P1—C2—C21155.8 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23B···Cl10.982.713.522 (4)141
C22—H22B···Cl10.982.683.497 (4)141
C33—H33B···Cl10.982.823.401 (4)118
C13—H13A···Cl5iii0.982.883.796 (4)156
C12—H12C···Cl50.982.923.810 (4)151
C31—H31C···Cl5iv0.982.843.763 (4)158
C12—H12C···S10.982.443.027 (4)118
C22—H22B···S10.982.923.370 (4)109
C33—H33B···S10.982.923.424 (4)113
C21—H21A···Cl4v0.982.773.708 (4)161
Symmetry codes: (iii) x+1, y+1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
(Chloroselanyl)tris(propan-2-yl)phosphonium tetrachloridoaurate(III) (21a) top
Crystal data top
(C9H21ClPSe)[AuCl4]Z = 2
Mr = 613.40F(000) = 576
Triclinic, P1Dx = 2.280 Mg m3
a = 7.4202 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5966 (3) ÅCell parameters from 42603 reflections
c = 15.3980 (6) Åθ = 2.6–30.8°
α = 97.497 (3)°µ = 11.09 mm1
β = 100.128 (4)°T = 100 K
γ = 109.324 (4)°Block, yellow
V = 893.42 (6) Å30.18 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5322 independent reflections
Radiation source: Enhance (Mo) X-ray Source4900 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.039
ω scanθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1010
Tmin = 0.631, Tmax = 1.000k = 1212
106851 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.014P)2 + 0.5143P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5322 reflectionsΔρmax = 0.83 e Å3
164 parametersΔρmin = 0.85 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00346 (11)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.53786 (6)0.48435 (6)0.25613 (3)0.01070 (9)
Se10.73544 (3)0.38369 (2)0.34073 (2)0.01473 (4)
Cl10.71221 (7)0.17157 (6)0.23989 (3)0.02085 (10)
C10.4802 (3)0.6161 (2)0.34217 (12)0.0148 (4)
H10.6058030.6793040.3883140.018*
C20.3309 (3)0.3099 (2)0.18196 (12)0.0147 (4)
H20.3848660.2590660.1354100.018*
C30.6750 (3)0.6170 (2)0.18854 (12)0.0143 (3)
H30.5896580.6731880.1590620.017*
C110.4107 (3)0.7490 (3)0.30424 (14)0.0233 (4)
H11A0.2878050.6924780.2581520.035*
H11B0.5111690.8181790.2773630.035*
H11C0.3888710.8207850.3530570.035*
C120.3354 (3)0.5142 (3)0.39157 (14)0.0216 (4)
H12A0.3315140.5885420.4446120.032*
H12B0.3777320.4248960.4106080.032*
H12C0.2041980.4639570.3511380.032*
C210.2291 (3)0.1679 (3)0.22723 (14)0.0219 (4)
H21A0.1602270.2084750.2684740.033*
H21B0.3274740.1316850.2610820.033*
H21C0.1344250.0726420.1811190.033*
C220.1837 (3)0.3768 (3)0.13123 (14)0.0221 (4)
H22A0.0829010.2846940.0854240.033*
H22B0.2529240.4656710.1020710.033*
H22C0.1213340.4226120.1738980.033*
C310.8610 (3)0.7560 (3)0.24968 (14)0.0233 (4)
H31A0.9440350.7043550.2823420.035*
H31B0.8231290.8263720.2928860.035*
H31C0.9340170.8257630.2126750.035*
C320.7241 (3)0.5134 (3)0.11392 (14)0.0210 (4)
H32A0.8030990.5890690.0810550.032*
H32B0.6022060.4356690.0722790.032*
H32C0.7985690.4491670.1406300.032*
Au10.5000000.0000000.0000000.01487 (3)
Cl30.30365 (8)0.18377 (7)0.06920 (3)0.02345 (10)
Cl20.75097 (7)0.08933 (7)0.04630 (3)0.02262 (10)
Au21.0000001.0000000.5000000.01214 (3)
Cl41.29351 (7)1.06893 (7)0.45972 (3)0.02286 (10)
Cl50.99249 (7)0.73205 (6)0.49898 (3)0.02014 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01038 (19)0.0108 (2)0.01082 (19)0.00406 (17)0.00169 (15)0.00242 (16)
Se10.01665 (9)0.01492 (10)0.01344 (8)0.00888 (7)0.00026 (6)0.00238 (7)
Cl10.0250 (2)0.0155 (2)0.0223 (2)0.0110 (2)0.00174 (18)0.00024 (18)
C10.0159 (8)0.0157 (10)0.0131 (8)0.0072 (7)0.0029 (6)0.0012 (7)
C20.0126 (8)0.0147 (10)0.0132 (8)0.0024 (7)0.0003 (6)0.0010 (7)
C30.0130 (8)0.0146 (10)0.0152 (8)0.0042 (7)0.0036 (6)0.0051 (7)
C110.0325 (11)0.0230 (12)0.0227 (10)0.0198 (10)0.0078 (8)0.0060 (8)
C120.0218 (10)0.0278 (12)0.0203 (9)0.0114 (9)0.0113 (8)0.0067 (8)
C210.0178 (9)0.0176 (11)0.0257 (10)0.0014 (8)0.0022 (8)0.0061 (8)
C220.0158 (9)0.0243 (12)0.0220 (9)0.0055 (8)0.0032 (7)0.0054 (8)
C310.0178 (9)0.0228 (12)0.0224 (10)0.0009 (8)0.0007 (7)0.0084 (8)
C320.0244 (10)0.0230 (12)0.0211 (9)0.0109 (9)0.0121 (8)0.0078 (8)
Au10.02126 (5)0.01143 (6)0.01034 (5)0.00685 (4)0.00120 (3)0.00097 (3)
Cl30.0289 (2)0.0204 (3)0.0213 (2)0.0083 (2)0.00511 (19)0.00814 (19)
Cl20.0257 (2)0.0215 (3)0.0211 (2)0.0125 (2)0.00138 (18)0.00491 (19)
Au20.01478 (5)0.01236 (6)0.00960 (4)0.00728 (4)0.00026 (3)0.00054 (3)
Cl40.0200 (2)0.0224 (3)0.0262 (2)0.0081 (2)0.00875 (18)0.00042 (19)
Cl50.0254 (2)0.0148 (2)0.0214 (2)0.01103 (19)0.00119 (17)0.00335 (17)
Geometric parameters (Å, º) top
P1—C21.8230 (19)C21—H21A0.9800
P1—C31.8256 (19)C21—H21B0.9800
P1—C11.8304 (18)C21—H21C0.9800
P1—Se12.2488 (5)C22—H22A0.9800
Se1—Cl12.1736 (5)C22—H22B0.9800
Cl1—Cl23.6031 (7)C22—H22C0.9800
C1—C121.529 (3)C31—H31A0.9800
C1—C111.539 (3)C31—H31B0.9800
C1—H11.0000C31—H31C0.9800
C2—C211.531 (3)C32—H32A0.9800
C2—C221.539 (3)C32—H32B0.9800
C2—H21.0000C32—H32C0.9800
C3—C321.530 (3)Au1—Cl2i2.2778 (5)
C3—C311.542 (3)Au1—Cl22.2778 (5)
C3—H31.0000Au1—Cl32.2838 (5)
C11—H11A0.9800Au1—Cl3i2.2839 (5)
C11—H11B0.9800Au2—Cl4ii2.2795 (5)
C11—H11C0.9800Au2—Cl42.2795 (5)
C12—H12A0.9800Au2—Cl5ii2.2836 (5)
C12—H12B0.9800Au2—Cl52.2836 (5)
C12—H12C0.9800
C2—P1—C3109.48 (8)C2—C21—H21A109.5
C2—P1—C1116.55 (9)C2—C21—H21B109.5
C3—P1—C1109.25 (9)H21A—C21—H21B109.5
C2—P1—Se1109.69 (6)C2—C21—H21C109.5
C3—P1—Se1109.75 (6)H21A—C21—H21C109.5
C1—P1—Se1101.79 (6)H21B—C21—H21C109.5
Cl1—Se1—P198.381 (19)C2—C22—H22A109.5
Se1—Cl1—Cl2164.28 (2)C2—C22—H22B109.5
C12—C1—C11111.32 (16)H22A—C22—H22B109.5
C12—C1—P1113.15 (14)C2—C22—H22C109.5
C11—C1—P1112.12 (13)H22A—C22—H22C109.5
C12—C1—H1106.6H22B—C22—H22C109.5
C11—C1—H1106.6C3—C31—H31A109.5
P1—C1—H1106.6C3—C31—H31B109.5
C21—C2—C22111.54 (16)H31A—C31—H31B109.5
C21—C2—P1115.24 (13)C3—C31—H31C109.5
C22—C2—P1110.02 (14)H31A—C31—H31C109.5
C21—C2—H2106.5H31B—C31—H31C109.5
C22—C2—H2106.5C3—C32—H32A109.5
P1—C2—H2106.5C3—C32—H32B109.5
C32—C3—C31111.75 (16)H32A—C32—H32B109.5
C32—C3—P1111.79 (14)C3—C32—H32C109.5
C31—C3—P1110.18 (13)H32A—C32—H32C109.5
C32—C3—H3107.6H32B—C32—H32C109.5
C31—C3—H3107.6Cl2i—Au1—Cl2180.00 (3)
P1—C3—H3107.6Cl2i—Au1—Cl389.455 (19)
C1—C11—H11A109.5Cl2—Au1—Cl390.545 (19)
C1—C11—H11B109.5Cl2i—Au1—Cl3i90.544 (19)
H11A—C11—H11B109.5Cl2—Au1—Cl3i89.456 (19)
C1—C11—H11C109.5Cl3—Au1—Cl3i180.0
H11A—C11—H11C109.5Au1—Cl2—Cl172.720 (15)
H11B—C11—H11C109.5Cl4ii—Au2—Cl4180.0
C1—C12—H12A109.5Cl4ii—Au2—Cl5ii89.900 (19)
C1—C12—H12B109.5Cl4—Au2—Cl5ii90.100 (19)
H12A—C12—H12B109.5Cl4ii—Au2—Cl590.100 (19)
C1—C12—H12C109.5Cl4—Au2—Cl589.900 (19)
H12A—C12—H12C109.5Cl5ii—Au2—Cl5180.0
H12B—C12—H12C109.5
C2—P1—Se1—Cl137.57 (7)Se1—P1—C2—C2146.80 (15)
C3—P1—Se1—Cl182.75 (7)C3—P1—C2—C2265.57 (15)
C1—P1—Se1—Cl1161.60 (7)C1—P1—C2—C2259.03 (16)
P1—Se1—Cl1—Cl270.10 (8)Se1—P1—C2—C22173.95 (11)
C2—P1—C1—C1245.26 (16)C2—P1—C3—C3250.07 (15)
C3—P1—C1—C12169.97 (13)C1—P1—C3—C32178.81 (13)
Se1—P1—C1—C1274.02 (13)Se1—P1—C3—C3270.38 (13)
C2—P1—C1—C1181.65 (16)C2—P1—C3—C31174.96 (13)
C3—P1—C1—C1143.06 (16)C1—P1—C3—C3156.30 (15)
Se1—P1—C1—C11159.07 (13)Se1—P1—C3—C3154.51 (15)
C3—P1—C2—C21167.28 (14)Cl3—Au1—Cl2—Cl174.650 (17)
C1—P1—C2—C2168.12 (17)Cl3i—Au1—Cl2—Cl1105.350 (17)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···Cl10.982.843.545 (2)129
C32—H32C···Cl10.982.953.712 (2)135
C1—H1···Cl51.002.933.8615 (19)156
C2—H2···Cl2i1.002.823.6147 (19)137
C3—H3···Cl2iii1.002.943.5249 (19)118
C31—H31C···Cl2iii0.982.983.626 (2)125
C21—H21C···Cl2iv0.982.983.868 (2)151
C11—H11C···Cl4iv0.982.873.828 (2)166
C1—H1···Cl4ii1.002.783.5341 (19)133
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x1, y, z.
(tert-Butyl)(chloroselanyl)bis(propan-2-yl)phosphonium tetrachloridoaurate(III) (22a) top
Crystal data top
(C10H23ClPSe)[AuCl4]Z = 2
Mr = 627.43F(000) = 592
Triclinic, P1Dx = 2.245 Mg m3
a = 7.5836 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7603 (2) ÅCell parameters from 37919 reflections
c = 15.4719 (6) Åθ = 2.5–30.8°
α = 84.445 (3)°µ = 10.67 mm1
β = 78.641 (3)°T = 100 K
γ = 67.128 (3)°Plate, yellow
V = 928.28 (5) Å30.2 × 0.2 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5490 independent reflections
Radiation source: Enhance (Mo) X-ray Source4978 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.042
ω scanθmax = 30.9°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1010
Tmin = 0.232, Tmax = 1.000k = 1212
102916 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.3105P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5490 reflectionsΔρmax = 1.86 e Å3
174 parametersΔρmin = 1.59 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00144 (18)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50453 (9)0.10337 (8)0.25119 (4)0.01197 (12)
Se10.37816 (4)0.07476 (3)0.32514 (2)0.01739 (6)
Cl10.14673 (9)0.09827 (9)0.41498 (5)0.02223 (14)
C10.7478 (4)0.0370 (3)0.19534 (17)0.0146 (5)
C20.5057 (4)0.2483 (4)0.32872 (18)0.0172 (5)
H20.3660500.3178730.3497420.021*
C30.3524 (4)0.2280 (3)0.17101 (17)0.0148 (5)
H30.4279660.2879820.1323810.018*
C110.8138 (4)0.0486 (4)0.11101 (18)0.0198 (5)
H11A0.8104330.1562600.1255820.030*
H11B0.7264860.0651340.0689330.030*
H11C0.9466080.0208600.0847070.030*
C120.8939 (4)0.0783 (4)0.25882 (19)0.0204 (6)
H12A1.0180920.1622900.2327680.031*
H12B0.8430220.1209540.3149520.031*
H12C0.9135440.0221890.2691240.031*
C130.7372 (4)0.2000 (4)0.1719 (2)0.0203 (5)
H13A0.6349860.1749760.1365370.030*
H13B0.7073570.2593700.2262640.030*
H13C0.8623420.2690910.1381410.030*
C210.5903 (4)0.1724 (4)0.41189 (19)0.0256 (6)
H21A0.7324890.1245010.3970860.038*
H21B0.5424790.0853700.4362700.038*
H21C0.5502770.2586070.4556280.038*
C220.5972 (4)0.3690 (4)0.2794 (2)0.0235 (6)
H22A0.5840580.4535630.3199170.035*
H22B0.5303470.4224700.2299410.035*
H22C0.7351630.3074350.2569970.035*
C310.3105 (4)0.1225 (4)0.1106 (2)0.0231 (6)
H31A0.2321050.0645300.1457380.035*
H31B0.4333920.0411650.0813950.035*
H31C0.2392740.1941010.0660810.035*
C320.1628 (4)0.3603 (4)0.2149 (2)0.0217 (6)
H32A0.0874490.4234520.1696560.033*
H32B0.1926610.4353850.2473870.033*
H32C0.0870090.3067430.2558590.033*
Au10.0000000.5000000.5000000.01294 (5)
Cl20.17349 (10)0.35513 (9)0.57968 (5)0.02250 (14)
Cl30.21088 (11)0.41781 (10)0.59700 (5)0.02634 (15)
Au20.5000000.5000000.0000000.01263 (5)
Cl40.34763 (10)0.69883 (9)0.10371 (5)0.02299 (14)
Cl50.79509 (9)0.46997 (9)0.02957 (5)0.02043 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0108 (3)0.0126 (3)0.0126 (3)0.0047 (2)0.0017 (2)0.0001 (2)
Se10.01475 (12)0.01428 (14)0.02174 (13)0.00624 (10)0.00013 (9)0.00256 (10)
Cl10.0172 (3)0.0237 (4)0.0233 (3)0.0085 (3)0.0041 (2)0.0014 (3)
C10.0132 (11)0.0149 (13)0.0136 (11)0.0038 (9)0.0012 (9)0.0005 (9)
C20.0176 (12)0.0188 (14)0.0170 (12)0.0084 (10)0.0020 (9)0.0043 (10)
C30.0132 (11)0.0136 (13)0.0170 (11)0.0040 (9)0.0044 (9)0.0010 (9)
C110.0168 (12)0.0227 (15)0.0161 (12)0.0063 (11)0.0023 (9)0.0019 (10)
C120.0122 (11)0.0222 (15)0.0249 (14)0.0031 (10)0.0057 (10)0.0015 (11)
C130.0177 (12)0.0153 (14)0.0254 (14)0.0038 (10)0.0025 (10)0.0030 (11)
C210.0252 (14)0.0386 (19)0.0162 (13)0.0148 (13)0.0042 (10)0.0023 (12)
C220.0244 (14)0.0252 (16)0.0259 (14)0.0152 (12)0.0017 (11)0.0042 (12)
C310.0255 (14)0.0206 (15)0.0252 (14)0.0075 (12)0.0108 (11)0.0012 (11)
C320.0164 (12)0.0194 (15)0.0254 (14)0.0018 (11)0.0061 (10)0.0009 (11)
Au10.01396 (7)0.01208 (8)0.01319 (7)0.00517 (5)0.00260 (5)0.00061 (5)
Cl20.0228 (3)0.0210 (4)0.0253 (3)0.0122 (3)0.0014 (2)0.0031 (3)
Cl30.0248 (3)0.0352 (4)0.0230 (3)0.0134 (3)0.0119 (3)0.0061 (3)
Au20.01037 (7)0.01051 (8)0.01674 (7)0.00433 (5)0.00129 (5)0.00044 (5)
Cl40.0187 (3)0.0208 (4)0.0273 (3)0.0049 (3)0.0004 (2)0.0090 (3)
Cl50.0132 (3)0.0206 (3)0.0289 (3)0.0074 (2)0.0051 (2)0.0001 (3)
Geometric parameters (Å, º) top
P1—C21.833 (3)C13—H13B0.9800
P1—C31.839 (3)C13—H13C0.9800
P1—C11.864 (3)C21—H21A0.9800
P1—Se12.2467 (7)C21—H21B0.9800
Se1—Cl12.1654 (7)C21—H21C0.9800
Cl1—Cl23.4465 (10)C22—H22A0.9800
C1—C111.536 (4)C22—H22B0.9800
C1—C121.540 (4)C22—H22C0.9800
C1—C131.542 (4)C31—H31A0.9800
C2—C211.529 (4)C31—H31B0.9800
C2—C221.545 (4)C31—H31C0.9800
C2—H21.0000C32—H32A0.9800
C3—C311.530 (4)C32—H32B0.9800
C3—C321.531 (4)C32—H32C0.9800
C3—H31.0000Au1—Cl32.2736 (7)
C11—H11A0.9800Au1—Cl3i2.2737 (7)
C11—H11B0.9800Au1—Cl22.2842 (7)
C11—H11C0.9800Au1—Cl2i2.2842 (7)
C12—H12A0.9800Au2—Cl42.2781 (7)
C12—H12B0.9800Au2—Cl4ii2.2781 (7)
C12—H12C0.9800Au2—Cl5ii2.2823 (6)
C13—H13A0.9800Au2—Cl52.2823 (6)
C2—P1—C3106.87 (13)C1—C13—H13C109.5
C2—P1—C1115.83 (12)H13A—C13—H13C109.5
C3—P1—C1111.60 (12)H13B—C13—H13C109.5
C2—P1—Se1109.29 (9)C2—C21—H21A109.5
C3—P1—Se1110.42 (9)C2—C21—H21B109.5
C1—P1—Se1102.77 (9)H21A—C21—H21B109.5
Cl1—Se1—P198.35 (3)C2—C21—H21C109.5
Se1—Cl1—Cl2171.45 (3)H21A—C21—H21C109.5
C11—C1—C12110.2 (2)H21B—C21—H21C109.5
C11—C1—C13109.8 (2)C2—C22—H22A109.5
C12—C1—C13108.4 (2)C2—C22—H22B109.5
C11—C1—P1109.60 (18)H22A—C22—H22B109.5
C12—C1—P1108.97 (18)C2—C22—H22C109.5
C13—C1—P1109.90 (17)H22A—C22—H22C109.5
C21—C2—C22112.3 (2)H22B—C22—H22C109.5
C21—C2—P1116.6 (2)C3—C31—H31A109.5
C22—C2—P1110.04 (19)C3—C31—H31B109.5
C21—C2—H2105.7H31A—C31—H31B109.5
C22—C2—H2105.7C3—C31—H31C109.5
P1—C2—H2105.7H31A—C31—H31C109.5
C31—C3—C32110.5 (2)H31B—C31—H31C109.5
C31—C3—P1112.97 (19)C3—C32—H32A109.5
C32—C3—P1112.57 (19)C3—C32—H32B109.5
C31—C3—H3106.8H32A—C32—H32B109.5
C32—C3—H3106.8C3—C32—H32C109.5
P1—C3—H3106.8H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5Cl3—Au1—Cl3i180.0
H11A—C11—H11B109.5Cl3—Au1—Cl290.35 (3)
C1—C11—H11C109.5Cl3i—Au1—Cl289.65 (3)
H11A—C11—H11C109.5Cl3—Au1—Cl2i89.65 (3)
H11B—C11—H11C109.5Cl3i—Au1—Cl2i90.35 (3)
C1—C12—H12A109.5Cl2—Au1—Cl2i180.00 (3)
C1—C12—H12B109.5Au1—Cl2—Cl173.52 (2)
H12A—C12—H12B109.5Cl4—Au2—Cl4ii180.0
C1—C12—H12C109.5Cl4—Au2—Cl5ii89.59 (3)
H12A—C12—H12C109.5Cl4ii—Au2—Cl5ii90.41 (3)
H12B—C12—H12C109.5Cl4—Au2—Cl590.41 (3)
C1—C13—H13A109.5Cl4ii—Au2—Cl589.59 (3)
C1—C13—H13B109.5Cl5ii—Au2—Cl5180.0
H13A—C13—H13B109.5
C2—P1—Se1—Cl139.96 (10)C1—P1—C2—C2166.3 (2)
C3—P1—Se1—Cl177.33 (10)Se1—P1—C2—C2149.2 (2)
C1—P1—Se1—Cl1163.52 (9)C3—P1—C2—C2262.0 (2)
C2—P1—C1—C1187.7 (2)C1—P1—C2—C2263.1 (2)
C3—P1—C1—C1134.9 (2)Se1—P1—C2—C22178.52 (17)
Se1—P1—C1—C11153.19 (17)C2—P1—C3—C31170.76 (19)
C2—P1—C1—C1232.9 (2)C1—P1—C3—C3161.7 (2)
C3—P1—C1—C12155.51 (18)Se1—P1—C3—C3152.0 (2)
Se1—P1—C1—C1286.16 (19)C2—P1—C3—C3244.8 (2)
C2—P1—C1—C13151.59 (18)C1—P1—C3—C32172.36 (19)
C3—P1—C1—C1385.8 (2)Se1—P1—C3—C3274.0 (2)
Se1—P1—C1—C1332.50 (19)Cl3—Au1—Cl2—Cl194.93 (3)
C3—P1—C2—C21168.7 (2)Cl3i—Au1—Cl2—Cl185.07 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Se10.982.653.142 (3)111
C2—H2···Cl11.002.993.454 (3)110
C3—H3···Au21.002.753.690 (3)157
C32—H32C···Cl10.982.923.682 (3)135
C21—H21C···Cl30.982.993.774 (3)138
C11—H11A···Cl50.982.973.741 (3)137
C2—H2···Cl2i1.002.873.629 (3)133
C22—H22A···Cl3iii0.982.793.629 (3)144
C12—H12B···Cl3iv0.982.953.783 (3)143
C13—H13B···Cl3iv0.983.013.902 (3)152
C12—H12A···Cl4v0.982.803.721 (3)156
C13—H13A···Cl4vi0.982.943.751 (3)141
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y1, z; (vi) x, y1, z.
Bis(tert-butyl)(chloroselanyl)(propan-2-yl)phosphonium tetrachloridoaurate(III) (23a) top
Crystal data top
(C11H25ClPSe)[AuCl4]F(000) = 2432
Mr = 641.46Dx = 2.175 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.7472 (6) ÅCell parameters from 55878 reflections
b = 7.79306 (8) Åθ = 2.2–30.9°
c = 16.2575 (3) ŵ = 10.12 mm1
β = 113.582 (3)°T = 100 K
V = 3918.54 (14) Å3Plate, yellow
Z = 80.35 × 0.2 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6028 independent reflections
Radiation source: Enhance (Mo) X-ray Source5453 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.058
ω scanθmax = 30.9°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 4847
Tmin = 0.308, Tmax = 1.000k = 1111
257492 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0165P)2 + 12.3178P]
where P = (Fo2 + 2Fc2)/3
6028 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 1.20 e Å3
Special details top

Refinement. The anion centred on Au1 is disordered, with the atoms Cl3 and Cl4 being slightly displaced from the twofold axis. Dimensions of disordered groups should be interpreted with caution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.37529 (2)0.60748 (7)0.40097 (4)0.01109 (11)
Se10.42555 (2)0.76990 (3)0.50633 (2)0.01833 (5)
Cl10.38551 (2)0.90386 (9)0.56139 (4)0.02734 (14)
C20.34626 (8)0.7484 (3)0.30151 (15)0.0141 (4)
C10.41121 (8)0.4391 (3)0.38588 (15)0.0138 (4)
C30.33619 (8)0.5250 (3)0.44412 (15)0.0137 (4)
H30.3154690.6210020.4374550.016*
C230.33117 (9)0.9092 (3)0.33558 (17)0.0197 (5)
H23A0.3143770.9825490.2845530.030*
H23B0.3564120.9725280.3766590.030*
H23C0.3130920.8748940.3672760.030*
C210.30654 (8)0.6599 (3)0.23160 (16)0.0168 (5)
H21A0.2945740.7313190.1775950.025*
H21B0.2846700.6434920.2563320.025*
H21C0.3149800.5480660.2161380.025*
C220.37709 (9)0.8055 (3)0.25826 (17)0.0202 (5)
H22A0.3851580.7059740.2314960.030*
H22B0.4031280.8562110.3041670.030*
H22C0.3626430.8908490.2115360.030*
C110.42408 (8)0.3114 (3)0.46488 (17)0.0186 (5)
H11A0.4450450.2288580.4604570.028*
H11B0.3983170.2501800.4626710.028*
H11C0.4370650.3742330.5216770.028*
C120.38849 (8)0.3426 (3)0.29689 (17)0.0188 (5)
H12A0.4075470.2519570.2919470.028*
H12B0.3817730.4229500.2467270.028*
H12C0.3616550.2913810.2951930.028*
C130.45260 (8)0.5246 (3)0.38698 (18)0.0204 (5)
H13A0.4678730.5816180.4448510.031*
H13B0.4448620.6094820.3385920.031*
H13C0.4713890.4370220.3781940.031*
C320.30876 (8)0.3748 (3)0.38931 (18)0.0191 (5)
H32A0.3265830.2709780.4014350.029*
H32B0.2978540.4022480.3252030.029*
H32C0.2843480.3553870.4063170.029*
C310.35545 (9)0.4778 (4)0.54445 (17)0.0227 (5)
H31A0.3320390.4630820.5650310.034*
H31B0.3747830.5696700.5789240.034*
H31C0.3717740.3704350.5532730.034*
Au10.5000001.01052 (2)0.7500000.01363 (3)
Cl20.51056 (2)1.01088 (7)0.61977 (4)0.01812 (11)
Cl30.49010 (7)1.29947 (15)0.73350 (16)0.0338 (6)0.5
Cl40.5054 (3)0.72026 (14)0.7548 (10)0.0235 (13)0.5
Au20.2500000.7500000.5000000.01126 (3)
Cl50.27035 (2)1.02584 (7)0.49126 (4)0.02105 (12)
Cl60.22611 (2)0.72036 (8)0.34868 (4)0.02033 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0116 (3)0.0111 (2)0.0103 (2)0.00052 (19)0.0041 (2)0.00012 (19)
Se10.01531 (12)0.02074 (11)0.01544 (11)0.00326 (9)0.00247 (9)0.00587 (9)
Cl10.0316 (4)0.0280 (3)0.0228 (3)0.0020 (3)0.0112 (3)0.0093 (2)
C20.0157 (11)0.0129 (10)0.0120 (10)0.0007 (8)0.0039 (9)0.0022 (8)
C10.0122 (11)0.0152 (10)0.0149 (10)0.0020 (8)0.0063 (9)0.0000 (8)
C30.0143 (11)0.0151 (10)0.0134 (10)0.0001 (8)0.0074 (9)0.0024 (8)
C230.0239 (13)0.0129 (10)0.0203 (12)0.0030 (9)0.0067 (10)0.0029 (9)
C210.0161 (12)0.0168 (10)0.0134 (10)0.0013 (9)0.0017 (9)0.0005 (8)
C220.0229 (13)0.0204 (11)0.0188 (11)0.0034 (10)0.0098 (10)0.0046 (9)
C110.0187 (12)0.0187 (11)0.0184 (11)0.0067 (9)0.0075 (10)0.0047 (9)
C120.0213 (13)0.0173 (11)0.0186 (11)0.0016 (9)0.0087 (10)0.0042 (9)
C130.0130 (11)0.0263 (12)0.0241 (12)0.0007 (9)0.0096 (10)0.0011 (10)
C320.0183 (12)0.0164 (11)0.0244 (12)0.0036 (9)0.0103 (10)0.0002 (9)
C310.0266 (14)0.0289 (13)0.0156 (11)0.0006 (11)0.0116 (10)0.0047 (10)
Au10.01365 (6)0.00993 (5)0.02032 (6)0.0000.00996 (5)0.000
Cl20.0196 (3)0.0176 (2)0.0199 (3)0.0035 (2)0.0108 (2)0.0004 (2)
Cl30.065 (2)0.0113 (4)0.0477 (18)0.0045 (6)0.0463 (14)0.0033 (5)
Cl40.040 (4)0.0110 (4)0.021 (2)0.0037 (7)0.014 (3)0.0006 (9)
Au20.01106 (6)0.01076 (5)0.01175 (5)0.00169 (4)0.00433 (4)0.00043 (4)
Cl50.0266 (3)0.0134 (2)0.0244 (3)0.0031 (2)0.0115 (2)0.0005 (2)
Cl60.0252 (3)0.0205 (3)0.0124 (2)0.0039 (2)0.0046 (2)0.0003 (2)
Geometric parameters (Å, º) top
P1—C31.840 (2)C11—H11C0.9800
P1—C11.868 (2)C12—H12A0.9800
P1—C21.875 (2)C12—H12B0.9800
P1—Se12.2557 (6)C12—H12C0.9800
Se1—Cl12.1645 (7)C13—H13A0.9800
Se1—Cl23.3052 (6)C13—H13B0.9800
C2—C211.532 (3)C13—H13C0.9800
C2—C221.536 (4)C32—H32A0.9800
C2—C231.536 (3)C32—H32B0.9800
C1—C121.536 (3)C32—H32C0.9800
C1—C131.541 (3)C31—H31A0.9800
C1—C111.543 (3)C31—H31B0.9800
C3—C321.537 (3)C31—H31C0.9800
C3—C311.540 (3)Au1—Cl4i2.2681 (13)
C3—H31.0000Au1—Cl42.2681 (13)
C23—H23A0.9800Au1—Cl3i2.2765 (12)
C23—H23B0.9800Au1—Cl32.2765 (12)
C23—H23C0.9800Au1—Cl22.2833 (6)
C21—H21A0.9800Au1—Cl2i2.2833 (6)
C21—H21B0.9800Cl3—Cl3i0.669 (4)
C21—H21C0.9800Cl4—Cl4i0.332 (17)
C22—H22A0.9800Au2—Cl6ii2.2734 (6)
C22—H22B0.9800Au2—Cl62.2735 (6)
C22—H22C0.9800Au2—Cl52.2784 (6)
C11—H11A0.9800Au2—Cl5ii2.2785 (6)
C11—H11B0.9800
C3—P1—C1113.98 (11)H11B—C11—H11C109.5
C3—P1—C2109.06 (11)C1—C12—H12A109.5
C1—P1—C2116.17 (11)C1—C12—H12B109.5
C3—P1—Se1110.03 (8)H12A—C12—H12B109.5
C1—P1—Se199.42 (8)C1—C12—H12C109.5
C2—P1—Se1107.51 (7)H12A—C12—H12C109.5
Cl1—Se1—P1100.40 (3)H12B—C12—H12C109.5
Cl1—Se1—Cl292.37 (2)C1—C13—H13A109.5
P1—Se1—Cl2164.50 (2)C1—C13—H13B109.5
C21—C2—C22110.0 (2)H13A—C13—H13B109.5
C21—C2—C23108.5 (2)C1—C13—H13C109.5
C22—C2—C23108.17 (19)H13A—C13—H13C109.5
C21—C2—P1112.10 (15)H13B—C13—H13C109.5
C22—C2—P1110.40 (17)C3—C32—H32A109.5
C23—C2—P1107.51 (16)C3—C32—H32B109.5
C12—C1—C13109.3 (2)H32A—C32—H32B109.5
C12—C1—C11109.7 (2)C3—C32—H32C109.5
C13—C1—C11108.5 (2)H32A—C32—H32C109.5
C12—C1—P1111.22 (16)H32B—C32—H32C109.5
C13—C1—P1109.11 (16)C3—C31—H31A109.5
C11—C1—P1108.96 (16)C3—C31—H31B109.5
C32—C3—C31109.5 (2)H31A—C31—H31B109.5
C32—C3—P1113.73 (17)C3—C31—H31C109.5
C31—C3—P1115.10 (17)H31A—C31—H31C109.5
C32—C3—H3105.9H31B—C31—H31C109.5
C31—C3—H3105.9Cl4i—Au1—Cl48.4 (4)
P1—C3—H3105.9Cl4i—Au1—Cl3i175.2 (3)
C2—C23—H23A109.5Cl4—Au1—Cl3i167.6 (2)
C2—C23—H23B109.5Cl4i—Au1—Cl3167.6 (2)
H23A—C23—H23B109.5Cl4—Au1—Cl3175.2 (3)
C2—C23—H23C109.5Cl3i—Au1—Cl316.89 (9)
H23A—C23—H23C109.5Cl4i—Au1—Cl290.5 (4)
H23B—C23—H23C109.5Cl4—Au1—Cl289.6 (4)
C2—C21—H21A109.5Cl3i—Au1—Cl292.19 (8)
C2—C21—H21B109.5Cl3—Au1—Cl287.68 (8)
H21A—C21—H21B109.5Cl4i—Au1—Cl2i89.6 (4)
C2—C21—H21C109.5Cl4—Au1—Cl2i90.5 (4)
H21A—C21—H21C109.5Cl3i—Au1—Cl2i87.67 (8)
H21B—C21—H21C109.5Cl3—Au1—Cl2i92.18 (8)
C2—C22—H22A109.5Cl2—Au1—Cl2i179.86 (3)
C2—C22—H22B109.5Au1—Cl2—Se195.398 (19)
H22A—C22—H22B109.5Cl3i—Cl3—Au181.55 (5)
C2—C22—H22C109.5Cl4i—Cl4—Au185.8 (2)
H22A—C22—H22C109.5Cl6ii—Au2—Cl6180.00 (3)
H22B—C22—H22C109.5Cl6ii—Au2—Cl589.22 (2)
C1—C11—H11A109.5Cl6—Au2—Cl590.78 (2)
C1—C11—H11B109.5Cl6ii—Au2—Cl5ii90.78 (2)
H11A—C11—H11B109.5Cl6—Au2—Cl5ii89.22 (2)
C1—C11—H11C109.5Cl5—Au2—Cl5ii180.0
H11A—C11—H11C109.5
C3—P1—Se1—Cl139.56 (8)Se1—P1—C1—C1340.61 (16)
C1—P1—Se1—Cl1159.50 (8)C3—P1—C1—C1139.33 (19)
C2—P1—Se1—Cl179.09 (9)C2—P1—C1—C11167.41 (16)
C3—P1—Se1—Cl2175.48 (10)Se1—P1—C1—C1177.67 (16)
C1—P1—Se1—Cl255.54 (11)C1—P1—C3—C3253.0 (2)
C2—P1—Se1—Cl265.86 (12)C2—P1—C3—C3278.60 (19)
C3—P1—C2—C2151.5 (2)Se1—P1—C3—C32163.70 (15)
C1—P1—C2—C2179.0 (2)C1—P1—C3—C3174.4 (2)
Se1—P1—C2—C21170.76 (15)C2—P1—C3—C31153.95 (18)
C3—P1—C2—C22174.55 (16)Se1—P1—C3—C3136.25 (19)
C1—P1—C2—C2244.1 (2)Cl4i—Au1—Cl2—Se151.0 (2)
Se1—P1—C2—C2266.17 (17)Cl4—Au1—Cl2—Se159.4 (2)
C3—P1—C2—C2367.66 (18)Cl3i—Au1—Cl2—Se1132.95 (5)
C1—P1—C2—C23161.87 (16)Cl3—Au1—Cl2—Se1116.66 (5)
Se1—P1—C2—C2351.61 (18)Cl4i—Au1—Cl3—Cl3i173 (2)
C3—P1—C1—C1281.70 (19)Cl2—Au1—Cl3—Cl3i105.4 (5)
C2—P1—C1—C1246.4 (2)Cl2i—Au1—Cl3—Cl3i74.6 (5)
Se1—P1—C1—C12161.30 (16)Cl3i—Au1—Cl4—Cl4i165 (4)
C3—P1—C1—C13157.60 (16)Cl2—Au1—Cl4—Cl4i96 (6)
C2—P1—C1—C1374.31 (19)Cl2i—Au1—Cl4—Cl4i84 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Au21.002.953.805 (2)144
C3—H3···Cl61.002.883.730 (2)143
C13—H13A···Se10.982.523.110 (3)119
C23—H23B···Cl10.982.813.385 (3)118
C31—H31B···Cl10.982.663.451 (3)138
C23—H23A···Cl6iii0.982.763.736 (2)173
C21—H21C···Cl6iv0.982.903.674 (2)137
C13—H13B···Cl3v0.982.803.498 (4)129
C22—H22B···Cl2vi0.982.863.787 (3)157
C13—H13C···Cl4vii0.982.853.685 (15)143
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+2, z1/2; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+1.
(Bromosulfanyl)tris(propan-2-yl)phosphonium tetrabromidoaurate(III) (17b) top
Crystal data top
(C9H21BrPS)[AuBr4]Z = 2
Mr = 788.80F(000) = 720
Triclinic, P1Dx = 2.790 Mg m3
a = 7.8543 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0592 (4) ÅCell parameters from 18583 reflections
c = 15.3505 (7) Åθ = 2.6–30.8°
α = 76.717 (4)°µ = 18.65 mm1
β = 83.169 (4)°T = 100 K
γ = 87.722 (4)°Plate, red
V = 938.89 (8) Å30.2 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5646 independent reflections
Radiation source: Enhance (Mo) X-ray Source5089 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.043
ω scansθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1111
Tmin = 0.247, Tmax = 1.000k = 1111
54229 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.014P)2 + 1.1153P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5646 reflectionsΔρmax = 1.42 e Å3
164 parametersΔρmin = 1.15 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00112 (7)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.69771 (9)0.74853 (9)0.25622 (5)0.00958 (13)
S10.88558 (9)0.55851 (9)0.28013 (5)0.01523 (14)
Br10.85534 (4)0.43166 (4)0.17064 (2)0.01714 (6)
C10.7070 (4)0.8436 (4)0.35348 (18)0.0129 (5)
H10.8312590.8596460.3572450.015*
C20.4956 (4)0.6524 (3)0.24812 (18)0.0119 (5)
H20.5124170.6090800.1916230.014*
C30.7561 (4)0.9104 (3)0.15342 (18)0.0113 (5)
H30.6818711.0126590.1576360.014*
C110.6231 (4)1.0202 (4)0.3420 (2)0.0189 (6)
H11A0.5002051.0111950.3383590.028*
H11B0.6759561.0951040.2865600.028*
H11C0.6393011.0678130.3936730.028*
C120.6375 (4)0.7254 (4)0.44330 (19)0.0182 (6)
H12A0.6740910.7666910.4933340.027*
H12B0.6822600.6094680.4454240.027*
H12C0.5119810.7248140.4483930.027*
C210.4448 (4)0.4985 (4)0.3250 (2)0.0186 (6)
H21A0.4095120.5371930.3805100.028*
H21B0.5429850.4199640.3337360.028*
H21C0.3493160.4397930.3097980.028*
C220.3521 (4)0.7878 (4)0.2357 (2)0.0172 (6)
H22A0.2503750.7382800.2207520.026*
H22B0.3907420.8845310.1866960.026*
H22C0.3234450.8269770.2915910.026*
C310.9412 (4)0.9658 (4)0.14881 (19)0.0165 (6)
H31A1.0192760.8727930.1381210.025*
H31B0.9595060.9935360.2058600.025*
H31C0.9636411.0664660.0994790.025*
C320.7224 (4)0.8589 (4)0.06692 (19)0.0178 (6)
H32A0.7464240.9553730.0153310.027*
H32B0.6021940.8262550.0716650.027*
H32C0.7970260.7621540.0584850.027*
Au10.5000000.5000000.0000000.01133 (4)
Br20.76076 (4)0.33440 (4)0.01670 (2)0.01959 (7)
Br30.39092 (4)0.28650 (4)0.13213 (2)0.01803 (7)
Au21.0000000.0000000.5000000.00940 (4)
Br41.11077 (4)0.13466 (4)0.34673 (2)0.01512 (6)
Br51.10194 (4)0.27647 (4)0.47679 (2)0.01735 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0090 (3)0.0109 (3)0.0085 (3)0.0001 (2)0.0009 (2)0.0015 (2)
S10.0135 (4)0.0151 (3)0.0168 (3)0.0036 (3)0.0037 (3)0.0026 (3)
Br10.01764 (15)0.01416 (13)0.01919 (14)0.00246 (11)0.00120 (11)0.00502 (11)
C10.0127 (14)0.0166 (13)0.0100 (12)0.0035 (10)0.0018 (10)0.0032 (10)
C20.0112 (14)0.0143 (13)0.0112 (12)0.0039 (10)0.0006 (10)0.0045 (10)
C30.0119 (14)0.0119 (13)0.0092 (12)0.0001 (10)0.0005 (10)0.0010 (9)
C110.0240 (17)0.0168 (14)0.0178 (14)0.0004 (12)0.0031 (12)0.0075 (11)
C120.0220 (17)0.0227 (15)0.0099 (13)0.0041 (12)0.0003 (11)0.0037 (11)
C210.0204 (16)0.0180 (15)0.0161 (14)0.0072 (12)0.0014 (12)0.0017 (11)
C220.0093 (14)0.0205 (15)0.0218 (15)0.0001 (11)0.0006 (11)0.0050 (12)
C310.0151 (15)0.0183 (14)0.0139 (13)0.0032 (11)0.0002 (11)0.0006 (11)
C320.0224 (17)0.0185 (14)0.0115 (13)0.0030 (12)0.0006 (12)0.0017 (11)
Au10.01375 (8)0.01132 (7)0.00895 (7)0.00043 (5)0.00182 (5)0.00222 (5)
Br20.01882 (16)0.01990 (15)0.01867 (14)0.00610 (11)0.00027 (12)0.00357 (11)
Br30.02203 (16)0.01692 (14)0.01267 (13)0.00162 (11)0.00002 (11)0.00091 (10)
Au20.00830 (7)0.01071 (7)0.00965 (7)0.00008 (5)0.00162 (5)0.00296 (5)
Br40.01749 (15)0.01523 (13)0.01148 (12)0.00092 (10)0.00137 (10)0.00208 (10)
Br50.02171 (16)0.01346 (13)0.01655 (13)0.00486 (11)0.00061 (11)0.00435 (10)
Geometric parameters (Å, º) top
P1—C21.823 (3)C21—H21A0.9800
P1—C31.825 (3)C21—H21B0.9800
P1—C11.837 (3)C21—H21C0.9800
P1—S12.0852 (10)C22—H22A0.9800
S1—Br12.1977 (8)C22—H22B0.9800
Br1—Br23.3206 (5)C22—H22C0.9800
C1—C111.527 (4)C31—H31A0.9800
C1—C121.538 (4)C31—H31B0.9800
C1—H11.0000C31—H31C0.9800
C2—C211.531 (4)C32—H32A0.9800
C2—C221.535 (4)C32—H32B0.9800
C2—H21.0000C32—H32C0.9800
C3—C311.526 (4)Au1—Br22.4201 (3)
C3—C321.533 (4)Au1—Br2i2.4201 (3)
C3—H31.0000Au1—Br3i2.4307 (3)
C11—H11A0.9800Au1—Br32.4308 (3)
C11—H11B0.9800Au2—Br4ii2.4259 (3)
C11—H11C0.9800Au2—Br42.4259 (3)
C12—H12A0.9800Au2—Br52.4265 (3)
C12—H12B0.9800Au2—Br5ii2.4265 (3)
C12—H12C0.9800
C2—P1—C3109.37 (13)C2—C21—H21A109.5
C2—P1—C1116.89 (13)C2—C21—H21B109.5
C3—P1—C1108.56 (13)H21A—C21—H21B109.5
C2—P1—S1109.41 (10)C2—C21—H21C109.5
C3—P1—S1112.29 (10)H21A—C21—H21C109.5
C1—P1—S1100.11 (10)H21B—C21—H21C109.5
P1—S1—Br199.46 (4)C2—C22—H22A109.5
S1—Br1—Br2165.22 (2)C2—C22—H22B109.5
C11—C1—C12111.3 (2)H22A—C22—H22B109.5
C11—C1—P1113.1 (2)C2—C22—H22C109.5
C12—C1—P1112.9 (2)H22A—C22—H22C109.5
C11—C1—H1106.3H22B—C22—H22C109.5
C12—C1—H1106.3C3—C31—H31A109.5
P1—C1—H1106.3C3—C31—H31B109.5
C21—C2—C22112.2 (2)H31A—C31—H31B109.5
C21—C2—P1114.3 (2)C3—C31—H31C109.5
C22—C2—P1110.73 (19)H31A—C31—H31C109.5
C21—C2—H2106.3H31B—C31—H31C109.5
C22—C2—H2106.3C3—C32—H32A109.5
P1—C2—H2106.3C3—C32—H32B109.5
C31—C3—C32111.6 (2)H32A—C32—H32B109.5
C31—C3—P1110.68 (19)C3—C32—H32C109.5
C32—C3—P1114.0 (2)H32A—C32—H32C109.5
C31—C3—H3106.7H32B—C32—H32C109.5
C32—C3—H3106.7Br2—Au1—Br2i180.0
P1—C3—H3106.7Br2—Au1—Br3i89.288 (11)
C1—C11—H11A109.5Br2i—Au1—Br3i90.711 (11)
C1—C11—H11B109.5Br2—Au1—Br390.712 (11)
H11A—C11—H11B109.5Br2i—Au1—Br389.289 (11)
C1—C11—H11C109.5Br3i—Au1—Br3180.0
H11A—C11—H11C109.5Au1—Br2—Br186.521 (11)
H11B—C11—H11C109.5Br4ii—Au2—Br4180.0
C1—C12—H12A109.5Br4ii—Au2—Br589.307 (10)
C1—C12—H12B109.5Br4—Au2—Br590.692 (10)
H12A—C12—H12B109.5Br4ii—Au2—Br5ii90.693 (10)
C1—C12—H12C109.5Br4—Au2—Br5ii89.308 (10)
H12A—C12—H12C109.5Br5—Au2—Br5ii180.0
H12B—C12—H12C109.5
C2—P1—S1—Br151.56 (10)C1—P1—C2—C2163.8 (2)
C3—P1—S1—Br170.07 (10)S1—P1—C2—C2149.0 (2)
C1—P1—S1—Br1174.93 (9)C3—P1—C2—C2259.7 (2)
P1—S1—Br1—Br219.42 (11)C1—P1—C2—C2264.1 (2)
C2—P1—C1—C1179.3 (2)S1—P1—C2—C22176.91 (17)
C3—P1—C1—C1144.9 (2)C2—P1—C3—C31167.66 (19)
S1—P1—C1—C11162.73 (19)C1—P1—C3—C3163.7 (2)
C2—P1—C1—C1248.3 (3)S1—P1—C3—C3146.0 (2)
C3—P1—C1—C12172.5 (2)C2—P1—C3—C3240.9 (2)
S1—P1—C1—C1269.7 (2)C1—P1—C3—C32169.5 (2)
C3—P1—C2—C21172.4 (2)S1—P1—C3—C3280.8 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···Br10.983.283.864 (3)120
C3—H3···Br2iii1.003.293.792 (3)113
C31—H31C···Br2iii0.983.003.787 (3)138
C32—H32A···Br2iii0.982.983.763 (3)137
C1—H1···Br4iii1.003.153.997 (3)144
C21—H21C···Br4iv0.983.063.943 (3)151
C31—H31B···Br4iii0.983.043.983 (3)162
C1—H1···Br5iii1.002.983.802 (3)140
C22—H22C···Br5v0.983.113.911 (3)140
Symmetry codes: (iii) x, y+1, z; (iv) x1, y, z; (v) x1, y+1, z.
(Bromosulfanyl)(tert-butyl)bis(propan-2-yl)phosphonium tetrabromidoaurate(III) (18b) top
Crystal data top
(C10H23BrPS)[AuBr4]Z = 2
Mr = 802.83F(000) = 736
Triclinic, P1Dx = 2.675 Mg m3
a = 7.8455 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1380 (6) ÅCell parameters from 9831 reflections
c = 15.5440 (9) Åθ = 2.5–30.8°
α = 86.600 (5)°µ = 17.57 mm1
β = 81.097 (6)°T = 100 K
γ = 64.862 (6)°Plate, orange-red
V = 996.65 (13) Å30.25 × 0.1 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5731 independent reflections
Radiation source: Enhance (Mo) X-ray Source5030 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.045
ω–scanθmax = 30.8°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1110
Tmin = 0.097, Tmax = 0.621k = 1213
26487 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0167P)2]
where P = (Fo2 + 2Fc2)/3
5731 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 2.15 e Å3
0 restraintsΔρmin = 2.24 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50339 (12)0.10905 (11)0.24799 (7)0.01362 (19)
S10.39290 (12)0.05194 (10)0.30387 (7)0.0183 (2)
Br10.16092 (5)0.09936 (4)0.40317 (3)0.01924 (8)
C10.7420 (5)0.0279 (4)0.1918 (3)0.0167 (8)
C20.5065 (5)0.2376 (5)0.3328 (3)0.0198 (8)
H20.3700550.3063640.3551190.024*
C30.3524 (5)0.2400 (4)0.1706 (3)0.0185 (8)
H30.4257370.2956730.1359090.022*
C110.8009 (5)0.0614 (5)0.1138 (3)0.0250 (9)
H11A0.7972390.1623210.1342290.038*
H11B0.7126070.0859870.0712610.038*
H11C0.9301650.0071710.0865140.038*
C120.8867 (5)0.0766 (5)0.2555 (3)0.0229 (9)
H12A1.0106200.1541050.2271330.034*
H12B0.8441510.1263430.3068710.034*
H12C0.8982090.0196050.2732400.034*
C130.7392 (5)0.1820 (4)0.1585 (3)0.0216 (8)
H13A0.6380840.1521370.1221070.032*
H13B0.7155600.2454570.2081420.032*
H13C0.8622090.2465470.1239830.032*
C210.5961 (6)0.1502 (5)0.4119 (3)0.0299 (10)
H21A0.7349000.1067290.3981380.045*
H21B0.5586560.0613720.4274900.045*
H21C0.5523200.2261400.4609400.045*
C220.5904 (6)0.3550 (5)0.2935 (3)0.0312 (11)
H22A0.5760680.4320710.3383360.047*
H22B0.5230560.4138000.2454040.047*
H22C0.7257080.2941730.2716830.047*
C310.3097 (6)0.1447 (5)0.1057 (3)0.0265 (9)
H31A0.2275860.0961950.1363350.040*
H31B0.4290520.0591630.0785830.040*
H31C0.2450110.2176680.0605920.040*
C320.1676 (5)0.3728 (4)0.2152 (3)0.0231 (9)
H32A0.0961160.4429080.1709050.035*
H32B0.1978600.4370570.2534990.035*
H32C0.0905810.3232160.2496390.035*
Au10.0000000.5000000.5000000.01491 (5)
Br20.15629 (5)0.32924 (5)0.55955 (3)0.02348 (9)
Br30.22769 (6)0.38839 (5)0.60137 (3)0.02456 (9)
Au20.5000000.5000000.0000000.01379 (5)
Br40.35239 (5)0.70272 (5)0.11380 (3)0.02518 (10)
Br50.81073 (5)0.45559 (4)0.03161 (3)0.02119 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0130 (4)0.0145 (4)0.0138 (5)0.0062 (4)0.0016 (4)0.0009 (4)
S10.0158 (4)0.0154 (4)0.0232 (6)0.0069 (4)0.0008 (4)0.0012 (4)
Br10.01646 (17)0.02354 (18)0.0193 (2)0.01088 (15)0.00037 (15)0.00017 (16)
C10.0159 (17)0.0153 (17)0.018 (2)0.0055 (14)0.0022 (15)0.0009 (15)
C20.0176 (18)0.0248 (19)0.019 (2)0.0114 (16)0.0008 (15)0.0054 (16)
C30.0190 (18)0.0151 (17)0.020 (2)0.0055 (15)0.0044 (16)0.0026 (15)
C110.0207 (19)0.027 (2)0.022 (2)0.0067 (17)0.0041 (17)0.0010 (18)
C120.0144 (18)0.029 (2)0.023 (2)0.0073 (16)0.0027 (16)0.0007 (18)
C130.0199 (19)0.0196 (19)0.022 (2)0.0053 (16)0.0014 (16)0.0038 (17)
C210.023 (2)0.049 (3)0.023 (3)0.019 (2)0.0049 (18)0.007 (2)
C220.029 (2)0.028 (2)0.045 (3)0.0203 (19)0.001 (2)0.012 (2)
C310.028 (2)0.024 (2)0.026 (3)0.0051 (17)0.0150 (18)0.0004 (18)
C320.0213 (19)0.0183 (18)0.024 (2)0.0020 (16)0.0059 (17)0.0003 (17)
Au10.01684 (10)0.01425 (9)0.01507 (11)0.00780 (8)0.00204 (8)0.00133 (8)
Br20.0262 (2)0.02399 (19)0.0257 (2)0.01649 (17)0.00262 (17)0.00259 (17)
Br30.0251 (2)0.0284 (2)0.0240 (2)0.01321 (17)0.00993 (17)0.00443 (17)
Au20.00922 (9)0.01233 (9)0.01999 (12)0.00528 (7)0.00075 (7)0.00101 (8)
Br40.01812 (18)0.0244 (2)0.0315 (3)0.00830 (16)0.00282 (16)0.01051 (18)
Br50.01142 (16)0.02067 (18)0.0331 (3)0.00777 (14)0.00541 (15)0.00139 (17)
Geometric parameters (Å, º) top
P1—C21.827 (4)C13—H13B0.9800
P1—C31.830 (4)C13—H13C0.9800
P1—C11.862 (4)C21—H21A0.9800
P1—S12.0902 (12)C21—H21B0.9800
S1—Br12.2028 (10)C21—H21C0.9800
Br1—Br23.2874 (6)C22—H22A0.9800
C1—C121.527 (5)C22—H22B0.9800
C1—C131.539 (5)C22—H22C0.9800
C1—C111.542 (5)C31—H31A0.9800
C2—C211.522 (6)C31—H31B0.9800
C2—C221.535 (5)C31—H31C0.9800
C2—H21.0000C32—H32A0.9800
C3—C311.532 (5)C32—H32B0.9800
C3—C321.533 (5)C32—H32C0.9800
C3—H31.0000Au1—Br32.4180 (4)
C11—H11A0.9800Au1—Br3i2.4181 (4)
C11—H11B0.9800Au1—Br22.4287 (4)
C11—H11C0.9800Au1—Br2i2.4287 (4)
C12—H12A0.9800Au2—Br42.4154 (4)
C12—H12B0.9800Au2—Br4ii2.4154 (4)
C12—H12C0.9800Au2—Br5ii2.4199 (4)
C13—H13A0.9800Au2—Br52.4199 (4)
C2—P1—C3107.86 (17)C1—C13—H13C109.5
C2—P1—C1114.96 (17)H13A—C13—H13C109.5
C3—P1—C1111.42 (17)H13B—C13—H13C109.5
C2—P1—S1109.57 (13)C2—C21—H21A109.5
C3—P1—S1110.03 (13)C2—C21—H21B109.5
C1—P1—S1102.89 (12)H21A—C21—H21B109.5
P1—S1—Br1102.51 (5)C2—C21—H21C109.5
S1—Br1—Br2174.89 (3)H21A—C21—H21C109.5
C12—C1—C13108.6 (3)H21B—C21—H21C109.5
C12—C1—C11109.7 (3)C2—C22—H22A109.5
C13—C1—C11109.0 (3)C2—C22—H22B109.5
C12—C1—P1109.4 (3)H22A—C22—H22B109.5
C13—C1—P1111.1 (2)C2—C22—H22C109.5
C11—C1—P1109.1 (2)H22A—C22—H22C109.5
C21—C2—C22112.2 (3)H22B—C22—H22C109.5
C21—C2—P1115.9 (3)C3—C31—H31A109.5
C22—C2—P1110.5 (3)C3—C31—H31B109.5
C21—C2—H2105.8H31A—C31—H31B109.5
C22—C2—H2105.8C3—C31—H31C109.5
P1—C2—H2105.8H31A—C31—H31C109.5
C31—C3—C32110.6 (3)H31B—C31—H31C109.5
C31—C3—P1112.5 (2)C3—C32—H32A109.5
C32—C3—P1112.9 (3)C3—C32—H32B109.5
C31—C3—H3106.8H32A—C32—H32B109.5
C32—C3—H3106.8C3—C32—H32C109.5
P1—C3—H3106.8H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5Br3—Au1—Br3i180.0
H11A—C11—H11B109.5Br3—Au1—Br290.373 (15)
C1—C11—H11C109.5Br3i—Au1—Br289.628 (15)
H11A—C11—H11C109.5Br3—Au1—Br2i89.627 (15)
H11B—C11—H11C109.5Br3i—Au1—Br2i90.372 (15)
C1—C12—H12A109.5Br2—Au1—Br2i180.000 (11)
C1—C12—H12B109.5Au1—Br2—Br178.058 (13)
H12A—C12—H12B109.5Br4—Au2—Br4ii180.0
C1—C12—H12C109.5Br4—Au2—Br5ii90.027 (15)
H12A—C12—H12C109.5Br4ii—Au2—Br5ii89.972 (15)
H12B—C12—H12C109.5Br4—Au2—Br589.972 (15)
C1—C13—H13A109.5Br4ii—Au2—Br590.029 (15)
C1—C13—H13B109.5Br5ii—Au2—Br5180.0
H13A—C13—H13B109.5
C2—P1—S1—Br139.31 (14)C3—P1—C2—C21169.8 (3)
C3—P1—S1—Br179.12 (14)C1—P1—C2—C2165.3 (3)
C1—P1—S1—Br1162.05 (13)S1—P1—C2—C2150.0 (3)
C2—P1—C1—C1231.6 (3)C3—P1—C2—C2261.2 (3)
C3—P1—C1—C12154.7 (2)C1—P1—C2—C2263.8 (3)
S1—P1—C1—C1287.5 (2)S1—P1—C2—C22179.0 (2)
C2—P1—C1—C13151.5 (3)C2—P1—C3—C31169.6 (3)
C3—P1—C1—C1385.4 (3)C1—P1—C3—C3163.3 (3)
S1—P1—C1—C1332.4 (3)S1—P1—C3—C3150.1 (3)
C2—P1—C1—C1188.4 (3)C2—P1—C3—C3243.6 (3)
C3—P1—C1—C1134.7 (3)C1—P1—C3—C32170.6 (3)
S1—P1—C1—C11152.6 (2)S1—P1—C3—C3275.9 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···S10.982.663.095 (4)107
C2—H2···Br11.002.993.459 (4)110
C3—H3···Au21.002.893.828 (4)156
C32—H32C···Br10.983.013.739 (4)132
C21—H21C···Br30.982.983.814 (4)143
C11—H11A···Br50.983.073.778 (4)130
C2—H2···Br2i1.003.284.017 (4)132
C22—H22A···Br3iii0.982.953.771 (4)142
C12—H12B···Br3iv0.982.933.832 (4)154
C13—H13B···Br3iv0.983.184.075 (4)152
C12—H12A···Br4v0.982.803.747 (4)163
C13—H13A···Br4vi0.983.073.776 (4)130
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y1, z; (vi) x, y1, z.
(Bromosulfanyl)bis(tert-butyl)(propan-2-yl)phosphonium tetrabromidoaurate(III) (19b) top
Crystal data top
(C11H25BrPS)[AuBr4]F(000) = 1504
Mr = 816.86Dx = 2.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4712 (4) ÅCell parameters from 15934 reflections
b = 10.3712 (3) Åθ = 2.3–30.9°
c = 16.2524 (5) ŵ = 16.68 mm1
β = 92.724 (3)°T = 100 K
V = 2099.73 (11) Å3Plate, orange-red
Z = 40.35 × 0.25 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6335 independent reflections
Radiation source: Enhance (Mo) X-ray Source5041 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.065
ω scansθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1717
Tmin = 0.068, Tmax = 0.286k = 1414
70058 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0128P)2 + 8.4095P]
where P = (Fo2 + 2Fc2)/3
6335 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 2.42 e Å3
0 restraintsΔρmin = 1.44 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.47617 (8)0.09340 (11)0.25608 (7)0.0122 (2)
S10.44209 (9)0.26253 (11)0.18886 (7)0.0194 (2)
Br10.50831 (4)0.41904 (4)0.26809 (3)0.02289 (10)
C20.3752 (4)0.0775 (5)0.3358 (3)0.0227 (10)
C10.4639 (4)0.0278 (4)0.1711 (3)0.0190 (9)
C30.6110 (3)0.1033 (4)0.3061 (3)0.0177 (9)
H30.6038700.1560650.3569940.021*
C210.4031 (5)0.0301 (6)0.3978 (3)0.0363 (14)
H21A0.3462440.0369950.4371410.054*
H21B0.4713700.0101830.4273800.054*
H21C0.4095070.1121080.3684040.054*
C220.2627 (4)0.0542 (5)0.2959 (3)0.0308 (12)
H22A0.2604120.0306980.2694590.046*
H22B0.2464010.1210280.2545870.046*
H22C0.2094730.0574300.3383740.046*
C230.3721 (4)0.2056 (5)0.3835 (3)0.0333 (13)
H23A0.3270630.1955250.4309470.050*
H23B0.3420490.2733270.3472380.050*
H23C0.4450150.2295030.4028110.050*
C110.5660 (4)0.0216 (5)0.1213 (3)0.0284 (11)
H11A0.5580920.0796020.0738410.043*
H11B0.6282000.0479900.1564060.043*
H11C0.5764690.0668810.1020760.043*
C120.4520 (4)0.1653 (4)0.2062 (3)0.0251 (11)
H12A0.3852090.1709310.2354500.038*
H12B0.5130720.1842330.2444560.038*
H12C0.4500860.2278350.1609750.038*
C130.3676 (4)0.0033 (5)0.1120 (3)0.0285 (12)
H13A0.3799060.0857010.0845450.043*
H13B0.3024000.0091920.1432250.043*
H13C0.3589770.0651550.0706920.043*
C310.6958 (3)0.1712 (5)0.2556 (3)0.0249 (11)
H31A0.7572120.1956680.2921270.037*
H31B0.6643180.2486340.2297160.037*
H31C0.7197120.1125650.2129300.037*
C320.6555 (4)0.0289 (5)0.3348 (4)0.0298 (12)
H32A0.6696370.0819900.2866220.045*
H32B0.6027920.0722200.3680410.045*
H32C0.7224040.0163560.3679560.045*
Au10.5000000.5000000.5000000.01294 (5)
Br20.59615 (4)0.63077 (5)0.40419 (3)0.02733 (11)
Br30.64240 (4)0.34181 (5)0.49969 (3)0.02734 (12)
Au20.5000000.5000000.0000000.01160 (5)
Br40.62972 (3)0.32712 (4)0.01765 (3)0.01734 (9)
Br50.35771 (3)0.34321 (4)0.02188 (3)0.01984 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0133 (5)0.0126 (5)0.0109 (5)0.0000 (4)0.0005 (4)0.0006 (4)
S10.0249 (6)0.0143 (5)0.0185 (6)0.0028 (4)0.0035 (4)0.0004 (4)
Br10.0262 (2)0.0137 (2)0.0285 (3)0.00032 (18)0.00035 (19)0.00333 (19)
C20.023 (2)0.028 (3)0.018 (2)0.009 (2)0.0084 (18)0.006 (2)
C10.034 (3)0.011 (2)0.012 (2)0.0021 (18)0.0016 (18)0.0018 (17)
C30.017 (2)0.018 (2)0.018 (2)0.0013 (17)0.0034 (17)0.0002 (18)
C210.041 (3)0.047 (4)0.022 (3)0.012 (3)0.009 (2)0.006 (3)
C220.019 (2)0.035 (3)0.039 (3)0.009 (2)0.006 (2)0.013 (3)
C230.030 (3)0.038 (3)0.034 (3)0.014 (2)0.018 (2)0.018 (3)
C110.039 (3)0.023 (3)0.024 (3)0.005 (2)0.009 (2)0.003 (2)
C120.038 (3)0.013 (2)0.024 (3)0.005 (2)0.004 (2)0.0010 (19)
C130.044 (3)0.022 (3)0.018 (2)0.003 (2)0.013 (2)0.003 (2)
C310.013 (2)0.027 (3)0.035 (3)0.0022 (19)0.0040 (19)0.002 (2)
C320.025 (3)0.021 (2)0.042 (3)0.001 (2)0.012 (2)0.009 (2)
Au10.01148 (10)0.01165 (11)0.01575 (11)0.00025 (8)0.00140 (8)0.00279 (9)
Br20.0386 (3)0.0202 (2)0.0243 (2)0.0096 (2)0.0132 (2)0.0023 (2)
Br30.0193 (2)0.0219 (2)0.0403 (3)0.00802 (19)0.0039 (2)0.0060 (2)
Au20.01165 (10)0.01152 (10)0.01178 (10)0.00266 (8)0.00220 (8)0.00080 (9)
Br40.0155 (2)0.0148 (2)0.0219 (2)0.00024 (16)0.00228 (16)0.00118 (18)
Br50.0155 (2)0.0149 (2)0.0287 (3)0.00572 (16)0.00267 (17)0.00139 (18)
Geometric parameters (Å, º) top
P1—C31.836 (4)C11—H11A0.9800
P1—C21.856 (5)C11—H11B0.9800
P1—C11.868 (4)C11—H11C0.9800
P1—S12.0992 (16)C12—H12A0.9800
S1—Br12.2077 (12)C12—H12B0.9800
Br1—Br23.2686 (7)C12—H12C0.9800
C2—C211.532 (7)C13—H13A0.9800
C2—C221.537 (6)C13—H13B0.9800
C2—C231.540 (7)C13—H13C0.9800
C1—C131.537 (6)C31—H31A0.9800
C1—C111.541 (7)C31—H31B0.9800
C1—C121.545 (6)C31—H31C0.9800
C3—C311.538 (6)C32—H32A0.9800
C3—C321.543 (6)C32—H32B0.9800
C3—H31.0000C32—H32C0.9800
C21—H21A0.9800Au1—Br3i2.4179 (5)
C21—H21B0.9800Au1—Br32.4179 (5)
C21—H21C0.9800Au1—Br2i2.4247 (5)
C22—H22A0.9800Au1—Br22.4247 (5)
C22—H22B0.9800Au2—Br5ii2.4206 (4)
C22—H22C0.9800Au2—Br52.4207 (4)
C23—H23A0.9800Au2—Br42.4228 (4)
C23—H23B0.9800Au2—Br4ii2.4229 (4)
C23—H23C0.9800
C3—P1—C2109.5 (2)C1—C11—H11A109.5
C3—P1—C1113.9 (2)C1—C11—H11B109.5
C2—P1—C1115.0 (2)H11A—C11—H11B109.5
C3—P1—S1110.01 (15)C1—C11—H11C109.5
C2—P1—S1108.07 (17)H11A—C11—H11C109.5
C1—P1—S199.81 (14)H11B—C11—H11C109.5
P1—S1—Br1104.48 (6)C1—C12—H12A109.5
S1—Br1—Br2173.07 (4)C1—C12—H12B109.5
C21—C2—C22109.7 (4)H12A—C12—H12B109.5
C21—C2—C23108.0 (4)C1—C12—H12C109.5
C22—C2—C23107.6 (4)H12A—C12—H12C109.5
C21—C2—P1112.5 (4)H12B—C12—H12C109.5
C22—C2—P1110.8 (3)C1—C13—H13A109.5
C23—C2—P1108.0 (3)C1—C13—H13B109.5
C13—C1—C11107.7 (4)H13A—C13—H13B109.5
C13—C1—C12109.8 (4)C1—C13—H13C109.5
C11—C1—C12109.2 (4)H13A—C13—H13C109.5
C13—C1—P1110.8 (3)H13B—C13—H13C109.5
C11—C1—P1108.6 (3)C3—C31—H31A109.5
C12—C1—P1110.7 (3)C3—C31—H31B109.5
C31—C3—C32108.8 (4)H31A—C31—H31B109.5
C31—C3—P1115.3 (3)C3—C31—H31C109.5
C32—C3—P1113.2 (3)H31A—C31—H31C109.5
C31—C3—H3106.3H31B—C31—H31C109.5
C32—C3—H3106.3C3—C32—H32A109.5
P1—C3—H3106.3C3—C32—H32B109.5
C2—C21—H21A109.5H32A—C32—H32B109.5
C2—C21—H21B109.5C3—C32—H32C109.5
H21A—C21—H21B109.5H32A—C32—H32C109.5
C2—C21—H21C109.5H32B—C32—H32C109.5
H21A—C21—H21C109.5Br3i—Au1—Br3180.0
H21B—C21—H21C109.5Br3i—Au1—Br2i89.572 (19)
C2—C22—H22A109.5Br3—Au1—Br2i90.429 (19)
C2—C22—H22B109.5Br3i—Au1—Br290.428 (19)
H22A—C22—H22B109.5Br3—Au1—Br289.571 (19)
C2—C22—H22C109.5Br2i—Au1—Br2180.0
H22A—C22—H22C109.5Au1—Br2—Br184.190 (16)
H22B—C22—H22C109.5Br5ii—Au2—Br5180.0
C2—C23—H23A109.5Br5ii—Au2—Br489.945 (15)
C2—C23—H23B109.5Br5—Au2—Br490.055 (15)
H23A—C23—H23B109.5Br5ii—Au2—Br4ii90.055 (15)
C2—C23—H23C109.5Br5—Au2—Br4ii89.944 (15)
H23A—C23—H23C109.5Br4—Au2—Br4ii180.0
H23B—C23—H23C109.5
C3—P1—S1—Br140.27 (17)S1—P1—C1—C1341.1 (4)
C2—P1—S1—Br179.21 (16)C3—P1—C1—C1140.2 (4)
C1—P1—S1—Br1160.33 (16)C2—P1—C1—C11167.7 (3)
C3—P1—C2—C2150.6 (4)S1—P1—C1—C1176.9 (3)
C1—P1—C2—C2179.1 (4)C3—P1—C1—C1279.7 (4)
S1—P1—C2—C21170.5 (3)C2—P1—C1—C1247.8 (4)
C3—P1—C2—C22173.8 (3)S1—P1—C1—C12163.1 (3)
C1—P1—C2—C2244.1 (4)C2—P1—C3—C31155.5 (3)
S1—P1—C2—C2266.3 (4)C1—P1—C3—C3174.2 (4)
C3—P1—C2—C2368.5 (4)S1—P1—C3—C3136.9 (4)
C1—P1—C2—C23161.8 (3)C2—P1—C3—C3278.3 (4)
S1—P1—C2—C2351.4 (4)C1—P1—C3—C3251.9 (4)
C3—P1—C1—C13158.3 (3)S1—P1—C3—C32163.0 (3)
C2—P1—C1—C1374.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···S10.982.593.089 (5)112
C31—H31B···Br10.982.723.487 (5)135
C23—H23B···Br10.982.913.407 (6)112
C3—H3···Br31.003.044.007 (5)164
C23—H23C···Br30.983.094.040 (5)165
C11—H11C···Br40.983.114.084 (5)171
C31—H31C···Br2iii0.983.063.781 (5)132
C23—H23A···Br4iv0.982.903.824 (5)157
C13—H13C···Br4v0.983.084.024 (5)162
C32—H32C···Br4iii0.983.033.814 (5)138
C11—H11A···Br5v0.983.063.846 (5)138
C32—H32C···Br5vi0.983.003.864 (5)148
Symmetry codes: (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1/2.
(Bromosulfanyl)tris(tert-butyl)phosphonium tetrabromidoaurate(III) (20b) top
Crystal data top
(C12H27BrPS)[AuBr4]Z = 2
Mr = 830.88F(000) = 768
Triclinic, P1Dx = 2.540 Mg m3
a = 10.2218 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8085 (6) ÅCell parameters from 12650 reflections
c = 11.1163 (5) Åθ = 2.5–29.6°
α = 70.909 (4)°µ = 16.13 mm1
β = 71.516 (5)°T = 100 K
γ = 75.645 (4)°Plate, red
V = 1086.40 (10) Å30.1 × 0.05 × 0.002 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6283 independent reflections
Radiation source: Enhance (Mo) X-ray Source5151 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.078
ω scanθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1414
Tmin = 0.284, Tmax = 1.000k = 1515
73343 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.022P)2 + 3.2663P]
where P = (Fo2 + 2Fc2)/3
6283 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 1.67 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59391 (5)0.25831 (5)0.21953 (5)0.02502 (11)
S10.37937 (12)0.36541 (12)0.26091 (12)0.0198 (2)
P10.25702 (12)0.25589 (11)0.22831 (11)0.0129 (2)
C10.0812 (5)0.3286 (5)0.3233 (5)0.0188 (10)
C20.3046 (5)0.0719 (4)0.3011 (5)0.0179 (9)
C30.2756 (5)0.3022 (5)0.0457 (5)0.0192 (10)
C110.0398 (5)0.3020 (5)0.2854 (5)0.0219 (10)
H11A0.1291990.3376990.3380520.033*
H11B0.0341350.2062450.3022800.033*
H11C0.0329620.3452540.1916390.033*
C120.0707 (6)0.4787 (5)0.2971 (6)0.0309 (13)
H12A0.0232340.5154150.3413520.046*
H12B0.0887080.5207000.2020690.046*
H12C0.1399430.4960060.3311480.046*
C130.0652 (5)0.2691 (6)0.4720 (5)0.0259 (11)
H13A0.1427330.2852980.4957740.039*
H13B0.0661410.1733610.4947610.039*
H13C0.0235180.3106900.5204110.039*
C210.1768 (5)0.0050 (5)0.3309 (5)0.0226 (10)
H21A0.2010120.0909070.3671850.034*
H21B0.1491030.0223080.2495140.034*
H21C0.0991530.0409620.3951620.034*
C220.3481 (5)0.0441 (5)0.4286 (5)0.0264 (11)
H22A0.2710800.0812190.4924580.040*
H22B0.4304150.0851250.4095100.040*
H22C0.3706000.0519450.4653010.040*
C230.4267 (5)0.0064 (5)0.2063 (5)0.0224 (10)
H23A0.5084190.0498500.1824070.034*
H23B0.3991750.0157130.1266060.034*
H23C0.4501330.0879300.2497990.034*
C310.2029 (6)0.2133 (6)0.0115 (5)0.0279 (12)
H31A0.1044910.2197700.0613810.042*
H31B0.2492170.1210680.0346290.042*
H31C0.2088070.2428620.0830380.042*
C320.2122 (6)0.4465 (5)0.0025 (5)0.0303 (12)
H32A0.2511430.5026600.0264930.045*
H32B0.1105890.4572070.0338810.045*
H32C0.2339730.4725700.0989450.045*
C330.4314 (5)0.2889 (6)0.0280 (5)0.0262 (11)
H33A0.4408860.3062980.1223860.039*
H33B0.4782030.1989130.0055950.039*
H33C0.4742970.3531470.0142860.039*
Au11.0000000.0000000.0000000.01454 (6)
Br20.84988 (5)0.00379 (5)0.21819 (5)0.02579 (12)
Br31.16132 (5)0.18362 (5)0.09502 (5)0.02498 (11)
Au20.5000000.5000000.5000000.01325 (6)
Br40.33104 (5)0.64083 (5)0.38216 (5)0.01821 (10)
Br50.66249 (5)0.65479 (5)0.37637 (5)0.02208 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0131 (2)0.0355 (3)0.0279 (3)0.0051 (2)0.00249 (19)0.0123 (2)
S10.0158 (5)0.0232 (6)0.0250 (6)0.0044 (4)0.0029 (5)0.0136 (5)
P10.0119 (5)0.0133 (5)0.0146 (6)0.0015 (4)0.0029 (4)0.0063 (5)
C10.016 (2)0.018 (2)0.023 (2)0.0006 (18)0.0034 (19)0.0105 (19)
C20.016 (2)0.015 (2)0.020 (2)0.0020 (17)0.0024 (18)0.0027 (18)
C30.021 (2)0.022 (2)0.015 (2)0.0061 (19)0.0047 (18)0.0031 (19)
C110.015 (2)0.023 (2)0.027 (3)0.0004 (19)0.0067 (19)0.007 (2)
C120.023 (3)0.023 (3)0.050 (4)0.002 (2)0.004 (2)0.023 (3)
C130.018 (2)0.043 (3)0.021 (2)0.003 (2)0.0013 (19)0.019 (2)
C210.019 (2)0.017 (2)0.029 (3)0.0045 (19)0.001 (2)0.007 (2)
C220.023 (3)0.031 (3)0.020 (2)0.003 (2)0.010 (2)0.003 (2)
C230.018 (2)0.013 (2)0.031 (3)0.0003 (18)0.002 (2)0.006 (2)
C310.029 (3)0.042 (3)0.022 (3)0.017 (2)0.006 (2)0.013 (2)
C320.031 (3)0.028 (3)0.026 (3)0.009 (2)0.013 (2)0.009 (2)
C330.028 (3)0.040 (3)0.014 (2)0.012 (2)0.001 (2)0.010 (2)
Au10.01328 (12)0.01668 (12)0.01528 (12)0.00202 (9)0.00327 (9)0.00712 (9)
Br20.0187 (2)0.0374 (3)0.0170 (2)0.0015 (2)0.00159 (18)0.0091 (2)
Br30.0238 (3)0.0246 (2)0.0239 (2)0.00549 (19)0.0082 (2)0.0081 (2)
Au20.01221 (11)0.01496 (12)0.01321 (11)0.00114 (9)0.00191 (9)0.00671 (9)
Br40.0150 (2)0.0181 (2)0.0208 (2)0.00057 (17)0.00566 (17)0.00558 (18)
Br50.0208 (2)0.0268 (2)0.0195 (2)0.01088 (19)0.00610 (18)0.00133 (19)
Geometric parameters (Å, º) top
S1—P12.0973 (16)C21—H21B0.9800
Br1—S12.1934 (13)C21—H21C0.9800
Br1—Br23.3465 (7)C22—H22A0.9800
P1—C31.883 (5)C22—H22B0.9800
P1—C21.888 (5)C22—H22C0.9800
P1—C11.898 (5)C23—H23A0.9800
C1—C121.534 (7)C23—H23B0.9800
C1—C131.535 (7)C23—H23C0.9800
C1—C111.542 (7)C31—H31A0.9800
C2—C221.534 (7)C31—H31B0.9800
C2—C211.541 (6)C31—H31C0.9800
C2—C231.544 (6)C32—H32A0.9800
C3—C321.520 (7)C32—H32B0.9800
C3—C331.537 (7)C32—H32C0.9800
C3—C311.546 (7)C33—H33A0.9800
C11—H11A0.9800C33—H33B0.9800
C11—H11B0.9800C33—H33C0.9800
C11—H11C0.9800Au1—Br22.4178 (5)
C12—H12A0.9800Au1—Br2i2.4178 (5)
C12—H12B0.9800Au1—Br32.4257 (5)
C12—H12C0.9800Au1—Br3i2.4257 (5)
C13—H13A0.9800Au2—Br4ii2.4171 (5)
C13—H13B0.9800Au2—Br42.4171 (5)
C13—H13C0.9800Au2—Br52.4234 (5)
C21—H21A0.9800Au2—Br5ii2.4234 (5)
S1—Br1—Br2157.33 (4)C2—C21—H21C109.5
P1—S1—Br1105.70 (6)H21A—C21—H21C109.5
C3—P1—C2113.0 (2)H21B—C21—H21C109.5
C3—P1—C1113.2 (2)C2—C22—H22A109.5
C2—P1—C1112.6 (2)C2—C22—H22B109.5
C3—P1—S1107.74 (16)H22A—C22—H22B109.5
C2—P1—S1111.85 (16)C2—C22—H22C109.5
C1—P1—S197.27 (15)H22A—C22—H22C109.5
C12—C1—C13106.2 (4)H22B—C22—H22C109.5
C12—C1—C11109.0 (4)C2—C23—H23A109.5
C13—C1—C11109.6 (4)C2—C23—H23B109.5
C12—C1—P1110.8 (3)H23A—C23—H23B109.5
C13—C1—P1110.0 (3)C2—C23—H23C109.5
C11—C1—P1111.2 (3)H23A—C23—H23C109.5
C22—C2—C21109.3 (4)H23B—C23—H23C109.5
C22—C2—C23107.4 (4)C3—C31—H31A109.5
C21—C2—C23107.7 (4)C3—C31—H31B109.5
C22—C2—P1111.0 (3)H31A—C31—H31B109.5
C21—C2—P1108.8 (3)C3—C31—H31C109.5
C23—C2—P1112.6 (3)H31A—C31—H31C109.5
C32—C3—C33106.8 (4)H31B—C31—H31C109.5
C32—C3—C31109.0 (4)C3—C32—H32A109.5
C33—C3—C31109.9 (4)C3—C32—H32B109.5
C32—C3—P1110.4 (4)H32A—C32—H32B109.5
C33—C3—P1109.6 (3)C3—C32—H32C109.5
C31—C3—P1111.0 (3)H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5C3—C33—H33A109.5
H11A—C11—H11B109.5C3—C33—H33B109.5
C1—C11—H11C109.5H33A—C33—H33B109.5
H11A—C11—H11C109.5C3—C33—H33C109.5
H11B—C11—H11C109.5H33A—C33—H33C109.5
C1—C12—H12A109.5H33B—C33—H33C109.5
C1—C12—H12B109.5Br2—Au1—Br2i180.0
H12A—C12—H12B109.5Br2—Au1—Br389.836 (18)
C1—C12—H12C109.5Br2i—Au1—Br390.164 (18)
H12A—C12—H12C109.5Br2—Au1—Br3i90.164 (18)
H12B—C12—H12C109.5Br2i—Au1—Br3i89.836 (18)
C1—C13—H13A109.5Br3—Au1—Br3i180.00 (2)
C1—C13—H13B109.5Au1—Br2—Br1112.62 (2)
H13A—C13—H13B109.5Br4ii—Au2—Br4180.0
C1—C13—H13C109.5Br4ii—Au2—Br590.493 (17)
H13A—C13—H13C109.5Br4—Au2—Br589.507 (17)
H13B—C13—H13C109.5Br4ii—Au2—Br5ii89.507 (17)
C2—C21—H21A109.5Br4—Au2—Br5ii90.493 (17)
C2—C21—H21B109.5Br5—Au2—Br5ii180.0
H21A—C21—H21B109.5
Br2—Br1—S1—P139.96 (14)C3—P1—C2—C2183.6 (4)
Br1—S1—P1—C381.14 (17)C1—P1—C2—C2146.2 (4)
Br1—S1—P1—C243.65 (17)S1—P1—C2—C21154.5 (3)
Br1—S1—P1—C1161.63 (16)C3—P1—C2—C2335.6 (4)
C3—P1—C1—C1271.8 (4)C1—P1—C2—C23165.5 (3)
C2—P1—C1—C12158.5 (4)S1—P1—C2—C2386.2 (3)
S1—P1—C1—C1241.1 (4)C2—P1—C3—C32170.1 (3)
C3—P1—C1—C13171.1 (3)C1—P1—C3—C3240.5 (4)
C2—P1—C1—C1341.3 (4)S1—P1—C3—C3265.9 (4)
S1—P1—C1—C1376.0 (3)C2—P1—C3—C3372.6 (4)
C3—P1—C1—C1149.5 (4)C1—P1—C3—C33157.9 (3)
C2—P1—C1—C1180.2 (4)S1—P1—C3—C3351.5 (4)
S1—P1—C1—C11162.4 (3)C2—P1—C3—C3149.0 (4)
C3—P1—C2—C22156.0 (3)C1—P1—C3—C3180.5 (4)
C1—P1—C2—C2274.2 (4)S1—P1—C3—C31173.1 (3)
S1—P1—C2—C2234.2 (4)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···S10.982.533.036 (5)112
C22—H22B···Br10.982.743.569 (5)143
C23—H23A···Br10.982.803.617 (5)142
C22—H22A···Br2iii0.982.973.739 (5)137
C13—H13C···Br4iv0.982.953.859 (5)154
C21—H21A···Br4v0.982.853.785 (5)160
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x, y1, z.
(Bromoselanyl)tris(propan-2-yl)phosphonium tetrabromidoaurate(III) (21b) top
Crystal data top
(C9H21BrPSe)[AuBr4]Z = 2
Mr = 835.70F(000) = 756
Triclinic, P1Dx = 2.944 Mg m3
a = 7.9212 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0606 (4) ÅCell parameters from 16838 reflections
c = 15.2911 (8) Åθ = 2.6–30.8°
α = 76.817 (5)°µ = 20.39 mm1
β = 82.668 (5)°T = 100 K
γ = 87.728 (4)°Plate, red
V = 942.78 (9) Å30.1 × 0.1 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5661 independent reflections
Radiation source: Enhance (Mo) X-ray Source4881 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.057
ω scanθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1111
Tmin = 0.434, Tmax = 1.000k = 1111
69642 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0173P)2 + 0.8539P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5661 reflectionsΔρmax = 1.53 e Å3
164 parametersΔρmin = 1.01 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00116 (7)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.69684 (11)0.75293 (10)0.25729 (6)0.01015 (16)
Se10.89396 (4)0.54763 (4)0.28517 (2)0.01562 (8)
Br10.85395 (5)0.42244 (4)0.16722 (2)0.01794 (8)
C10.7009 (4)0.8501 (4)0.3543 (2)0.0149 (7)
H10.8236460.8661980.3589890.018*
C20.4967 (4)0.6579 (4)0.2481 (2)0.0124 (6)
H20.5154330.6145460.1912610.015*
C30.7589 (4)0.9128 (4)0.1533 (2)0.0124 (6)
H30.6844161.0150950.1560990.015*
C110.6179 (5)1.0273 (4)0.3422 (3)0.0203 (8)
H11A0.4961821.0182680.3382420.031*
H11B0.6717101.1015720.2864960.031*
H11C0.6325811.0754110.3940260.031*
C120.6281 (5)0.7327 (5)0.4448 (2)0.0199 (7)
H12A0.6626650.7744160.4952040.030*
H12B0.6719870.6164910.4474760.030*
H12C0.5036200.7327660.4492400.030*
C210.4418 (5)0.5047 (4)0.3243 (3)0.0187 (7)
H21A0.4044080.5433590.3800780.028*
H21B0.5380220.4251730.3339560.028*
H21C0.3477230.4472350.3079760.028*
C220.3559 (5)0.7941 (4)0.2344 (3)0.0189 (7)
H22A0.2531040.7433210.2226200.028*
H22B0.3939050.8868880.1828710.028*
H22C0.3305990.8390650.2891140.028*
C310.9421 (4)0.9693 (4)0.1496 (2)0.0164 (7)
H31A1.0201340.8738400.1439930.025*
H31B0.9554421.0059730.2051760.025*
H31C0.9682121.0642980.0972710.025*
C320.7299 (5)0.8572 (4)0.0675 (2)0.0181 (7)
H32A0.7548860.9520600.0149950.027*
H32B0.6110200.8234210.0719680.027*
H32C0.8050430.7603640.0605000.027*
Au10.5000000.5000000.0000000.01216 (5)
Br20.75282 (5)0.32913 (4)0.02174 (2)0.02058 (8)
Br30.39035 (5)0.28624 (4)0.13212 (2)0.01930 (8)
Au21.0000000.0000000.5000000.01012 (5)
Br41.11176 (4)0.13772 (4)0.34673 (2)0.01553 (7)
Br51.08990 (5)0.27636 (4)0.47199 (2)0.01712 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0091 (4)0.0110 (3)0.0099 (4)0.0006 (3)0.0010 (3)0.0017 (3)
Se10.01397 (17)0.01460 (15)0.01786 (18)0.00421 (12)0.00391 (14)0.00242 (13)
Br10.01892 (18)0.01379 (15)0.02116 (18)0.00242 (12)0.00027 (15)0.00571 (13)
C10.0148 (17)0.0170 (15)0.0135 (17)0.0009 (13)0.0024 (14)0.0044 (13)
C20.0105 (16)0.0122 (14)0.0152 (17)0.0020 (12)0.0025 (13)0.0036 (12)
C30.0156 (17)0.0112 (14)0.0099 (15)0.0001 (12)0.0002 (13)0.0021 (12)
C110.025 (2)0.0156 (16)0.023 (2)0.0032 (14)0.0040 (16)0.0100 (14)
C120.0208 (19)0.0255 (18)0.0142 (18)0.0045 (15)0.0009 (15)0.0063 (14)
C210.0156 (18)0.0158 (15)0.0231 (19)0.0059 (13)0.0021 (15)0.0027 (14)
C220.0124 (17)0.0197 (16)0.0226 (19)0.0023 (13)0.0001 (15)0.0020 (14)
C310.0145 (17)0.0179 (16)0.0148 (17)0.0008 (13)0.0017 (14)0.0013 (13)
C320.026 (2)0.0162 (15)0.0108 (16)0.0042 (14)0.0005 (15)0.0015 (13)
Au10.01495 (10)0.01110 (8)0.01053 (9)0.00066 (6)0.00267 (7)0.00217 (6)
Br20.02075 (19)0.02002 (16)0.01994 (18)0.00683 (13)0.00135 (15)0.00417 (14)
Br30.02334 (19)0.01676 (15)0.01494 (17)0.00107 (13)0.00055 (15)0.00151 (13)
Au20.00935 (9)0.01033 (8)0.01101 (9)0.00037 (6)0.00181 (7)0.00286 (6)
Br40.01799 (18)0.01418 (14)0.01292 (16)0.00031 (12)0.00141 (14)0.00183 (12)
Br50.02189 (18)0.01260 (14)0.01684 (17)0.00474 (12)0.00159 (14)0.00453 (12)
Geometric parameters (Å, º) top
P1—C21.823 (3)C21—H21A0.9800
P1—C31.829 (3)C21—H21B0.9800
P1—C11.832 (3)C21—H21C0.9800
P1—Se12.2364 (9)C22—H22A0.9800
Se1—Br12.3179 (5)C22—H22B0.9800
Br1—Br23.3445 (6)C22—H22C0.9800
C1—C111.530 (4)C31—H31A0.9800
C1—C121.545 (5)C31—H31B0.9800
C1—H11.0000C31—H31C0.9800
C2—C211.527 (5)C32—H32A0.9800
C2—C221.533 (4)C32—H32B0.9800
C2—H21.0000C32—H32C0.9800
C3—C321.526 (5)Au1—Br2i2.4162 (4)
C3—C311.529 (5)Au1—Br22.4162 (4)
C3—H31.0000Au1—Br32.4264 (4)
C11—H11A0.9800Au1—Br3i2.4264 (4)
C11—H11B0.9800Au2—Br42.4230 (4)
C11—H11C0.9800Au2—Br4ii2.4230 (4)
C12—H12A0.9800Au2—Br52.4258 (3)
C12—H12B0.9800Au2—Br5ii2.4258 (3)
C12—H12C0.9800
C2—P1—C3109.07 (16)C2—C21—H21A109.5
C2—P1—C1116.58 (16)C2—C21—H21B109.5
C3—P1—C1108.74 (15)H21A—C21—H21B109.5
C2—P1—Se1109.29 (10)C2—C21—H21C109.5
C3—P1—Se1112.43 (11)H21A—C21—H21C109.5
C1—P1—Se1100.60 (11)H21B—C21—H21C109.5
P1—Se1—Br196.32 (3)C2—C22—H22A109.5
Se1—Br1—Br2166.590 (17)C2—C22—H22B109.5
C11—C1—C12111.0 (3)H22A—C22—H22B109.5
C11—C1—P1113.7 (2)C2—C22—H22C109.5
C12—C1—P1112.8 (2)H22A—C22—H22C109.5
C11—C1—H1106.2H22B—C22—H22C109.5
C12—C1—H1106.2C3—C31—H31A109.5
P1—C1—H1106.2C3—C31—H31B109.5
C21—C2—C22112.1 (3)H31A—C31—H31B109.5
C21—C2—P1114.8 (2)C3—C31—H31C109.5
C22—C2—P1110.6 (2)H31A—C31—H31C109.5
C21—C2—H2106.2H31B—C31—H31C109.5
C22—C2—H2106.2C3—C32—H32A109.5
P1—C2—H2106.2C3—C32—H32B109.5
C32—C3—C31111.8 (3)H32A—C32—H32B109.5
C32—C3—P1113.5 (2)C3—C32—H32C109.5
C31—C3—P1110.8 (2)H32A—C32—H32C109.5
C32—C3—H3106.8H32B—C32—H32C109.5
C31—C3—H3106.8Br2i—Au1—Br2180.0
P1—C3—H3106.8Br2i—Au1—Br389.238 (13)
C1—C11—H11A109.5Br2—Au1—Br390.763 (13)
C1—C11—H11B109.5Br2i—Au1—Br3i90.762 (13)
H11A—C11—H11B109.5Br2—Au1—Br3i89.237 (13)
C1—C11—H11C109.5Br3—Au1—Br3i180.0
H11A—C11—H11C109.5Au1—Br2—Br185.485 (12)
H11B—C11—H11C109.5Br4—Au2—Br4ii180.000 (16)
C1—C12—H12A109.5Br4—Au2—Br590.629 (12)
C1—C12—H12B109.5Br4ii—Au2—Br589.371 (12)
H12A—C12—H12B109.5Br4—Au2—Br5ii89.372 (12)
C1—C12—H12C109.5Br4ii—Au2—Br5ii90.628 (12)
H12A—C12—H12C109.5Br5—Au2—Br5ii179.999 (17)
H12B—C12—H12C109.5
C2—P1—Se1—Br151.37 (12)Se1—P1—C2—C2148.5 (3)
C3—P1—Se1—Br169.89 (12)C3—P1—C2—C2260.0 (3)
C1—P1—Se1—Br1174.59 (11)C1—P1—C2—C2263.6 (3)
C2—P1—C1—C1178.8 (3)Se1—P1—C2—C22176.7 (2)
C3—P1—C1—C1144.9 (3)C2—P1—C3—C3241.5 (3)
Se1—P1—C1—C11163.2 (2)C1—P1—C3—C32169.6 (2)
C2—P1—C1—C1248.8 (3)Se1—P1—C3—C3279.9 (3)
C3—P1—C1—C12172.6 (2)C2—P1—C3—C31168.3 (2)
Se1—P1—C1—C1269.2 (3)C1—P1—C3—C3163.6 (3)
C3—P1—C2—C21171.8 (2)Se1—P1—C3—C3146.9 (2)
C1—P1—C2—C2164.6 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···Br10.983.343.927 (4)120
C3—H3···Br2iii1.003.273.788 (3)114
C31—H31C···Br2iii0.983.083.836 (3)135
C32—H32A···Br2iii0.982.963.740 (3)137
C1—H1···Br4iii1.003.184.045 (3)145
C21—H21C···Br4iv0.983.083.953 (3)149
C31—H31B···Br4iii0.983.033.972 (4)162
C1—H1···Br5iii1.002.933.756 (4)140
C22—H22C···Br5v0.983.153.893 (4)134
Symmetry codes: (iii) x, y+1, z; (iv) x1, y, z; (v) x1, y+1, z.
(Bromoselanyl)(tert-butyl)bis(propan-2-yl)phosphonium tetrabromidoaurate(III) (22b) top
Crystal data top
(C10H23BrPSe)[AuBr4]Z = 2
Mr = 849.73F(000) = 772
Triclinic, P1Dx = 2.822 Mg m3
a = 7.8155 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1505 (3) ÅCell parameters from 21572 reflections
c = 15.5221 (5) Åθ = 2.4–30.8°
α = 85.965 (2)°µ = 19.23 mm1
β = 80.294 (3)°T = 100 K
γ = 66.049 (3)°Plate, red
V = 999.97 (6) Å30.3 × 0.2 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5847 independent reflections
Radiation source: Enhance (Mo) X-ray Source5198 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.050
ω scansθmax = 30.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1111
Tmin = 0.202, Tmax = 1.000k = 1313
52431 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0295P)2 + 3.0506P]
where P = (Fo2 + 2Fc2)/3
5847 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 1.44 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50396 (13)0.10486 (11)0.24702 (6)0.01234 (17)
Se10.37707 (5)0.06510 (4)0.30872 (3)0.01717 (8)
Br10.14096 (5)0.10400 (5)0.41193 (3)0.01896 (8)
C10.7420 (5)0.0300 (4)0.1909 (2)0.0154 (7)
C20.5064 (6)0.2349 (5)0.3307 (3)0.0202 (8)
H20.3705360.3034270.3519020.024*
C30.3564 (6)0.2349 (4)0.1684 (3)0.0173 (7)
H30.4303480.2923760.1340400.021*
C110.8062 (6)0.0571 (5)0.1123 (3)0.0229 (9)
H11A0.8034910.1576760.1317750.034*
H11B0.7206300.0798310.0690050.034*
H11C0.9354290.0106480.0858450.034*
C120.8846 (6)0.0773 (5)0.2559 (3)0.0212 (8)
H12A1.0061720.1578710.2292240.032*
H12B0.8358370.1213940.3090790.032*
H12C0.9023460.0174040.2708700.032*
C130.7354 (6)0.1838 (5)0.1604 (3)0.0218 (8)
H13A0.6346620.1556920.1244300.033*
H13B0.7097700.2453460.2114170.033*
H13C0.8574040.2481590.1258200.033*
C210.5911 (6)0.1508 (6)0.4122 (3)0.0271 (10)
H21A0.7296680.1041620.3984480.041*
H21B0.5465410.0659560.4306720.041*
H21C0.5510200.2286930.4595410.041*
C220.5960 (7)0.3499 (6)0.2896 (3)0.0273 (9)
H22A0.5845260.4259510.3338870.041*
H22B0.5305190.4082860.2413270.041*
H22C0.7302400.2888390.2674320.041*
C310.3155 (7)0.1397 (5)0.1030 (3)0.0256 (9)
H31A0.2417600.0822440.1343540.038*
H31B0.4353360.0628810.0723870.038*
H31C0.2432020.2132350.0605970.038*
C320.1709 (6)0.3628 (5)0.2133 (3)0.0226 (9)
H32A0.1005810.4317340.1689050.034*
H32B0.1995530.4274090.2518450.034*
H32C0.0941040.3108460.2478350.034*
Au10.0000000.5000000.5000000.01431 (5)
Br20.17342 (6)0.34529 (5)0.57133 (3)0.02321 (9)
Br30.22409 (6)0.39711 (5)0.60184 (3)0.02503 (9)
Au20.5000000.5000000.0000000.01293 (5)
Br40.34937 (6)0.69967 (5)0.11370 (3)0.02330 (9)
Br50.80787 (5)0.45789 (5)0.03378 (3)0.01988 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0121 (4)0.0126 (4)0.0121 (4)0.0049 (3)0.0017 (3)0.0003 (3)
Se10.01440 (17)0.01364 (17)0.02165 (19)0.00536 (14)0.00047 (14)0.00209 (14)
Br10.01548 (17)0.02158 (18)0.01890 (18)0.00821 (14)0.00178 (14)0.00010 (14)
C10.0126 (16)0.0155 (17)0.0146 (17)0.0026 (14)0.0007 (13)0.0004 (13)
C20.0192 (19)0.0231 (19)0.0190 (19)0.0096 (16)0.0008 (15)0.0032 (15)
C30.0183 (18)0.0143 (17)0.0166 (18)0.0031 (14)0.0052 (14)0.0024 (14)
C110.021 (2)0.023 (2)0.020 (2)0.0072 (16)0.0031 (16)0.0031 (16)
C120.0127 (17)0.025 (2)0.024 (2)0.0048 (15)0.0039 (15)0.0001 (16)
C130.0193 (19)0.0181 (18)0.022 (2)0.0024 (15)0.0013 (16)0.0047 (15)
C210.024 (2)0.047 (3)0.0137 (19)0.016 (2)0.0047 (16)0.0043 (18)
C220.027 (2)0.029 (2)0.031 (2)0.0158 (19)0.0029 (19)0.0076 (19)
C310.032 (2)0.0193 (19)0.022 (2)0.0027 (17)0.0143 (18)0.0022 (16)
C320.0182 (19)0.0193 (19)0.024 (2)0.0013 (15)0.0039 (16)0.0030 (16)
Au10.01577 (10)0.01210 (9)0.01502 (10)0.00555 (7)0.00218 (7)0.00049 (7)
Br20.0242 (2)0.02110 (19)0.0269 (2)0.01315 (16)0.00151 (16)0.00323 (16)
Br30.0259 (2)0.0288 (2)0.0240 (2)0.01270 (17)0.01168 (17)0.00647 (16)
Au20.00891 (9)0.01081 (9)0.01807 (10)0.00374 (7)0.00046 (7)0.00113 (7)
Br40.01693 (18)0.02185 (19)0.0283 (2)0.00550 (15)0.00196 (16)0.00920 (16)
Br50.01169 (16)0.01865 (18)0.0301 (2)0.00635 (14)0.00504 (15)0.00129 (15)
Geometric parameters (Å, º) top
P1—C21.829 (4)C13—H13B0.9800
P1—C31.841 (4)C13—H13C0.9800
P1—C11.866 (4)C21—H21A0.9800
P1—Se12.2453 (10)C21—H21B0.9800
Se1—Br12.3237 (5)C21—H21C0.9800
Br1—Br23.3687 (6)C22—H22A0.9800
C1—C111.536 (6)C22—H22B0.9800
C1—C131.539 (6)C22—H22C0.9800
C1—C121.540 (6)C31—H31A0.9800
C2—C221.536 (6)C31—H31B0.9800
C2—C211.538 (6)C31—H31C0.9800
C2—H21.0000C32—H32A0.9800
C3—C311.533 (6)C32—H32B0.9800
C3—C321.534 (5)C32—H32C0.9800
C3—H31.0000Au1—Br32.4162 (4)
C11—H11A0.9800Au1—Br3i2.4162 (4)
C11—H11B0.9800Au1—Br22.4287 (4)
C11—H11C0.9800Au1—Br2i2.4287 (4)
C12—H12A0.9800Au2—Br42.4178 (4)
C12—H12B0.9800Au2—Br4ii2.4179 (4)
C12—H12C0.9800Au2—Br5ii2.4202 (4)
C13—H13A0.9800Au2—Br52.4202 (4)
C2—P1—C3107.07 (19)C1—C13—H13C109.5
C2—P1—C1115.23 (19)H13A—C13—H13C109.5
C3—P1—C1111.45 (17)H13B—C13—H13C109.5
C2—P1—Se1109.82 (14)C2—C21—H21A109.5
C3—P1—Se1109.70 (14)C2—C21—H21B109.5
C1—P1—Se1103.51 (13)H21A—C21—H21B109.5
P1—Se1—Br199.52 (3)C2—C21—H21C109.5
Se1—Br1—Br2175.31 (2)H21A—C21—H21C109.5
C11—C1—C13109.9 (3)H21B—C21—H21C109.5
C11—C1—C12109.6 (3)C2—C22—H22A109.5
C13—C1—C12108.2 (3)C2—C22—H22B109.5
C11—C1—P1109.6 (3)H22A—C22—H22B109.5
C13—C1—P1110.4 (3)C2—C22—H22C109.5
C12—C1—P1109.0 (3)H22A—C22—H22C109.5
C22—C2—C21111.9 (4)H22B—C22—H22C109.5
C22—C2—P1110.4 (3)C3—C31—H31A109.5
C21—C2—P1116.2 (3)C3—C31—H31B109.5
C22—C2—H2105.8H31A—C31—H31B109.5
C21—C2—H2105.8C3—C31—H31C109.5
P1—C2—H2105.8H31A—C31—H31C109.5
C31—C3—C32110.4 (4)H31B—C31—H31C109.5
C31—C3—P1112.4 (3)C3—C32—H32A109.5
C32—C3—P1112.6 (3)C3—C32—H32B109.5
C31—C3—H3107.0H32A—C32—H32B109.5
C32—C3—H3107.0C3—C32—H32C109.5
P1—C3—H3107.0H32A—C32—H32C109.5
C1—C11—H11A109.5H32B—C32—H32C109.5
C1—C11—H11B109.5Br3—Au1—Br3i180.0
H11A—C11—H11B109.5Br3—Au1—Br290.432 (15)
C1—C11—H11C109.5Br3i—Au1—Br289.568 (15)
H11A—C11—H11C109.5Br3—Au1—Br2i89.568 (15)
H11B—C11—H11C109.5Br3i—Au1—Br2i90.432 (15)
C1—C12—H12A109.5Br2—Au1—Br2i180.000 (13)
C1—C12—H12B109.5Au1—Br2—Br175.542 (13)
H12A—C12—H12B109.5Br4—Au2—Br4ii179.999 (15)
C1—C12—H12C109.5Br4—Au2—Br5ii89.894 (14)
H12A—C12—H12C109.5Br4ii—Au2—Br5ii90.105 (14)
H12B—C12—H12C109.5Br4—Au2—Br590.106 (14)
C1—C13—H13A109.5Br4ii—Au2—Br589.895 (14)
C1—C13—H13B109.5Br5ii—Au2—Br5180.0
H13A—C13—H13B109.5
C2—P1—Se1—Br137.67 (15)C3—P1—C2—C2261.9 (3)
C3—P1—Se1—Br179.74 (13)C1—P1—C2—C2262.6 (3)
C1—P1—Se1—Br1161.21 (13)Se1—P1—C2—C22179.0 (3)
C2—P1—C1—C1187.6 (3)C3—P1—C2—C21169.3 (3)
C3—P1—C1—C1134.6 (3)C1—P1—C2—C2166.1 (4)
Se1—P1—C1—C11152.5 (3)Se1—P1—C2—C2150.2 (3)
C2—P1—C1—C13151.1 (3)C2—P1—C3—C31170.6 (3)
C3—P1—C1—C1386.7 (3)C1—P1—C3—C3162.5 (4)
Se1—P1—C1—C1331.2 (3)Se1—P1—C3—C3151.5 (3)
C2—P1—C1—C1232.4 (3)C2—P1—C3—C3245.2 (4)
C3—P1—C1—C12154.7 (3)C1—P1—C3—C32172.0 (3)
Se1—P1—C1—C1287.5 (3)Se1—P1—C3—C3274.0 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Se10.982.703.167 (4)109
C2—H2···Br11.003.053.540 (4)112
C3—H3···Au21.002.853.783 (4)155
C32—H32C···Br10.983.053.788 (4)134
C21—H21C···Br30.983.033.848 (4)142
C11—H11A···Br50.983.053.787 (4)133
C2—H2···Br2i1.003.173.901 (4)131
C22—H22A···Br3iii0.982.923.764 (4)144
C12—H12B···Br3iv0.982.963.826 (4)148
C13—H13B···Br3iv0.983.154.051 (4)153
C12—H12A···Br4v0.982.823.761 (4)160
C13—H13A···Br4vi0.983.053.771 (5)132
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y1, z; (vi) x, y1, z.
(Bromoselanyl)bis(tert-butyl)(propan-2-yl)phosphonium tetrabromidoaurate(III) (23b) top
Crystal data top
(C11H25BrPSe)[AuBr4]F(000) = 1576
Mr = 863.76Dx = 2.711 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3529 (4) ÅCell parameters from 13739 reflections
b = 10.4233 (4) Åθ = 2.1–30.8°
c = 16.4635 (5) ŵ = 18.18 mm1
β = 93.453 (3)°T = 101 K
V = 2115.97 (12) Å3Plate, dichroic red/orange
Z = 40.2 × 0.1 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7063 independent reflections
Radiation source: Enhance (Mo) X-ray Source4089 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.0000
ω scanθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1616
Tmin = 0.122, Tmax = 0.713k = 1313
7063 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
7063 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 1.72 e Å3
66 restraintsΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal was a two-component non-merohedral twin (by 180 degree rotation about the a* axis). The data reduction generated all non- overlapped reflections from the larger component, together with all overlapped reflections. The number of data used for refinement should therefore be interpreted with caution. All equivalents were merged during the untwinning process, and the R(int) value is thus meaningless.

The "HKLF 5" method was used for structure refinement. The relative volume of the smaller twin component refined to 0.0807 (6).

The U values of the carbon atoms were restrained to be less anisotropic using the command "ISOR $C 0.005".

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.47957 (15)0.09088 (17)0.25502 (11)0.0126 (5)
Se10.44215 (7)0.27120 (7)0.18322 (4)0.01936 (19)
Br10.51433 (7)0.42888 (7)0.27054 (5)0.0248 (2)
C20.3787 (6)0.0765 (7)0.3332 (4)0.0218 (19)
C10.4675 (6)0.0298 (6)0.1701 (4)0.0176 (18)
C30.6156 (6)0.1003 (6)0.3049 (4)0.0153 (17)
H30.6077810.1524370.3552160.018*
C210.4077 (8)0.0295 (8)0.3953 (4)0.039 (3)
H21A0.3518650.0340080.4349860.059*
H21B0.4780240.0104410.4234180.059*
H21C0.4117860.1120030.3670100.059*
C220.2654 (6)0.0530 (7)0.2937 (5)0.030 (2)
H22A0.2623120.0327580.2692690.045*
H22B0.2494110.1175420.2513520.045*
H22C0.2118050.0591720.3350330.045*
C230.3763 (7)0.2033 (7)0.3804 (5)0.036 (2)
H23A0.3319790.1928790.4273760.054*
H23B0.3449710.2706640.3447230.054*
H23C0.4502860.2272820.3992100.054*
C110.5717 (7)0.0224 (7)0.1231 (4)0.029 (2)
H11A0.5628720.0748400.0737910.044*
H11B0.6332000.0544520.1576400.044*
H11C0.5851080.0669710.1081190.044*
C120.4547 (7)0.1648 (6)0.2060 (4)0.025 (2)
H12A0.3823330.1733520.2266970.038*
H12B0.5097710.1779570.2506310.038*
H12C0.4639640.2291580.1635840.038*
C130.3680 (7)0.0002 (7)0.1136 (4)0.0282 (19)
H13A0.3775660.0838270.0877310.042*
H13B0.3032900.0023930.1451690.042*
H13C0.3594490.0662720.0716170.042*
C310.6995 (6)0.1702 (7)0.2571 (4)0.0236 (19)
H31A0.7607210.1959710.2941560.035*
H31B0.6663880.2465980.2313290.035*
H31C0.7252900.1130570.2151660.035*
C320.6621 (6)0.0294 (7)0.3344 (4)0.028 (2)
H32A0.6799900.0811710.2873640.041*
H32B0.6081230.0746740.3649540.041*
H32C0.7277180.0150470.3696360.041*
Au10.5000000.5000000.5000000.01339 (10)
Br20.60826 (7)0.63241 (8)0.41494 (5)0.0277 (2)
Br30.64014 (7)0.33828 (8)0.50404 (5)0.0293 (2)
Au20.5000000.5000000.0000000.01182 (10)
Br40.63241 (6)0.32858 (7)0.01148 (5)0.01770 (19)
Br50.35622 (6)0.34365 (7)0.02110 (4)0.01917 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0157 (13)0.0116 (10)0.0107 (10)0.0009 (8)0.0023 (9)0.0006 (8)
Se10.0256 (5)0.0129 (4)0.0191 (4)0.0043 (4)0.0032 (3)0.0009 (3)
Br10.0270 (5)0.0136 (4)0.0336 (5)0.0007 (4)0.0005 (4)0.0034 (3)
C20.020 (4)0.026 (4)0.019 (4)0.003 (3)0.004 (3)0.004 (3)
C10.028 (4)0.009 (4)0.015 (3)0.002 (3)0.002 (3)0.004 (3)
C30.016 (4)0.013 (3)0.017 (3)0.002 (3)0.001 (3)0.000 (3)
C210.055 (6)0.043 (6)0.021 (4)0.010 (4)0.011 (4)0.010 (4)
C220.028 (5)0.029 (4)0.035 (5)0.009 (4)0.014 (4)0.013 (4)
C230.038 (5)0.034 (5)0.039 (5)0.005 (4)0.026 (4)0.016 (4)
C110.046 (5)0.018 (5)0.025 (4)0.000 (4)0.012 (4)0.008 (3)
C120.035 (5)0.022 (4)0.018 (4)0.005 (4)0.006 (4)0.003 (3)
C130.043 (5)0.024 (4)0.016 (4)0.002 (4)0.014 (3)0.001 (4)
C310.017 (4)0.021 (4)0.033 (4)0.003 (3)0.004 (4)0.002 (3)
C320.022 (4)0.023 (5)0.037 (5)0.004 (3)0.010 (4)0.011 (3)
Au10.0126 (2)0.0117 (2)0.0160 (2)0.0003 (2)0.00209 (17)0.0027 (2)
Br20.0375 (6)0.0214 (4)0.0256 (4)0.0115 (4)0.0142 (4)0.0048 (4)
Br30.0203 (5)0.0212 (5)0.0456 (6)0.0078 (4)0.0036 (4)0.0058 (4)
Au20.0129 (2)0.0111 (2)0.0116 (2)0.0027 (2)0.00226 (16)0.00071 (19)
Br40.0162 (5)0.0147 (4)0.0224 (4)0.0009 (3)0.0028 (4)0.0025 (3)
Br50.0163 (4)0.0153 (4)0.0256 (5)0.0061 (4)0.0020 (3)0.0010 (3)
Geometric parameters (Å, º) top
P1—C31.828 (7)C11—H11A0.9800
P1—C21.851 (7)C11—H11B0.9800
P1—C11.880 (7)C11—H11C0.9800
P1—Se12.2534 (19)C12—H12A0.9800
Se1—Br12.3255 (10)C12—H12B0.9800
Br1—Br23.3416 (11)C12—H12C0.9800
C2—C221.528 (10)C13—H13A0.9800
C2—C211.533 (10)C13—H13B0.9800
C2—C231.533 (9)C13—H13C0.9800
C1—C131.528 (10)C31—H31A0.9800
C1—C121.538 (9)C31—H31B0.9800
C1—C111.543 (10)C31—H31C0.9800
C3—C311.524 (9)C32—H32A0.9800
C3—C321.536 (9)C32—H32B0.9800
C3—H31.0000C32—H32C0.9800
C21—H21A0.9800Au1—Br3i2.4142 (8)
C21—H21B0.9800Au1—Br32.4142 (8)
C21—H21C0.9800Au1—Br2i2.4249 (8)
C22—H22A0.9800Au1—Br22.4249 (8)
C22—H22B0.9800Au2—Br5ii2.4201 (7)
C22—H22C0.9800Au2—Br52.4201 (7)
C23—H23A0.9800Au2—Br42.4221 (7)
C23—H23B0.9800Au2—Br4ii2.4221 (7)
C23—H23C0.9800
C3—P1—C2109.3 (3)C1—C11—H11A109.5
C3—P1—C1113.6 (3)C1—C11—H11B109.5
C2—P1—C1115.9 (3)H11A—C11—H11B109.5
C3—P1—Se1110.2 (2)C1—C11—H11C109.5
C2—P1—Se1107.9 (3)H11A—C11—H11C109.5
C1—P1—Se199.4 (2)H11B—C11—H11C109.5
P1—Se1—Br1101.91 (6)C1—C12—H12A109.5
Se1—Br1—Br2172.85 (4)C1—C12—H12B109.5
C22—C2—C21109.8 (6)H12A—C12—H12B109.5
C22—C2—C23108.0 (6)C1—C12—H12C109.5
C21—C2—C23107.2 (6)H12A—C12—H12C109.5
C22—C2—P1110.7 (5)H12B—C12—H12C109.5
C21—C2—P1112.4 (6)C1—C13—H13A109.5
C23—C2—P1108.5 (5)C1—C13—H13B109.5
C13—C1—C12108.9 (6)H13A—C13—H13B109.5
C13—C1—C11110.4 (6)C1—C13—H13C109.5
C12—C1—C11110.3 (6)H13A—C13—H13C109.5
C13—C1—P1109.9 (5)H13B—C13—H13C109.5
C12—C1—P1109.4 (5)C3—C31—H31A109.5
C11—C1—P1107.9 (5)C3—C31—H31B109.5
C31—C3—C32109.3 (6)H31A—C31—H31B109.5
C31—C3—P1115.4 (5)C3—C31—H31C109.5
C32—C3—P1114.3 (5)H31A—C31—H31C109.5
C31—C3—H3105.6H31B—C31—H31C109.5
C32—C3—H3105.6C3—C32—H32A109.5
P1—C3—H3105.6C3—C32—H32B109.5
C2—C21—H21A109.5H32A—C32—H32B109.5
C2—C21—H21B109.5C3—C32—H32C109.5
H21A—C21—H21B109.5H32A—C32—H32C109.5
C2—C21—H21C109.5H32B—C32—H32C109.5
H21A—C21—H21C109.5Br3i—Au1—Br3180.00 (3)
H21B—C21—H21C109.5Br3i—Au1—Br2i89.64 (3)
C2—C22—H22A109.5Br3—Au1—Br2i90.36 (3)
C2—C22—H22B109.5Br3i—Au1—Br290.36 (3)
H22A—C22—H22B109.5Br3—Au1—Br289.64 (3)
C2—C22—H22C109.5Br2i—Au1—Br2180.0
H22A—C22—H22C109.5Au1—Br2—Br182.51 (3)
H22B—C22—H22C109.5Br5ii—Au2—Br5180.0
C2—C23—H23A109.5Br5ii—Au2—Br489.96 (2)
C2—C23—H23B109.5Br5—Au2—Br490.04 (2)
H23A—C23—H23B109.5Br5ii—Au2—Br4ii90.04 (2)
C2—C23—H23C109.5Br5—Au2—Br4ii89.96 (2)
H23A—C23—H23C109.5Br4—Au2—Br4ii180.0
H23B—C23—H23C109.5
C3—P1—Se1—Br140.8 (2)Se1—P1—C1—C1343.0 (5)
C2—P1—Se1—Br178.4 (3)C3—P1—C1—C1280.4 (6)
C1—P1—Se1—Br1160.4 (2)C2—P1—C1—C1247.3 (7)
C3—P1—C2—C22173.5 (5)Se1—P1—C1—C12162.6 (5)
C1—P1—C2—C2243.7 (6)C3—P1—C1—C1139.6 (6)
Se1—P1—C2—C2266.7 (5)C2—P1—C1—C11167.3 (5)
C3—P1—C2—C2150.2 (6)Se1—P1—C1—C1177.4 (5)
C1—P1—C2—C2179.6 (6)C2—P1—C3—C31153.5 (5)
Se1—P1—C2—C21170.0 (5)C1—P1—C3—C3175.4 (6)
C3—P1—C2—C2368.2 (6)Se1—P1—C3—C3135.2 (5)
C1—P1—C2—C23162.0 (5)C2—P1—C3—C3278.5 (6)
Se1—P1—C2—C2351.6 (6)C1—P1—C3—C3252.6 (6)
C3—P1—C1—C13160.0 (5)Se1—P1—C3—C32163.2 (4)
C2—P1—C1—C1372.2 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Se10.982.603.163 (8)116
C31—H31B···Br10.982.783.551 (7)137
C23—H23B···Br10.982.983.476 (8)112
C3—H3···Br31.003.134.108 (7)166
C23—H23C···Br30.983.053.994 (9)161
C11—H11C···Br40.983.234.182 (7)165
C31—H31C···Br2iii0.983.063.825 (7)136
C23—H23A···Br4iv0.982.913.824 (7)156
C13—H13C···Br4v0.983.063.998 (8)160
C32—H32C···Br4iii0.983.013.782 (7)136
C11—H11A···Br5v0.983.123.874 (7)135
C32—H32C···Br5vi0.982.933.804 (8)149
Symmetry codes: (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1/2.
Compositions of the [R1R2R3PEX][AuX4] structures presented in this paper (see Scheme) top
CompoundR1R2R3EX
17aiPriPriPrSCl
18aiPriPrtBuSCl
19aiPrtButBuSCl
20atButButBuSCl
21aiPriPriPrSeCl
22aiPriPrtBuSeCl
23aiPrtButBuSeCl
17biPriPriPrSBr
18biPriPrtBuSBr
19biPrtButBuSBr
20btButButBuSBr
21biPriPriPrSeBr
22biPriPrtBuSeBr
23biPrtButBuSeBr
Selected dimensions (Å, °) of published structures of halochalcogenylphosphonium cations top
CompoundP—EEXP—EXReference
[Ph3PSCl][AuCl4]2.0912 (12)2.2278 (13)99.87 (5)Taouss et al. (2015)
[Ph3PSBr][AuBr4]2.0854 (16)2.2023 (14)101.31 (6)Taouss et al. (2015)
[Ph3PSeBr][AuBr4]2.2250 (7)2.3121 (4)97.10 (2)Taouss et al. (2015)
[Ph3PSeCl]2[Au4Se2Cl10]2.216 (2)2.222 (3)96.83 (9)Taouss et al. (2015)
[(PCP)iPr2PSeCl][AuCl4]a2.257 (2)2.207 (2)94.69 (9)Upmann et al. (2019)
Note: (a) PCP = [2.2]paracyclophanyl.
Dimensions (Å, °) of halogen···halogen contacts between cations and anions top
The halogen atoms are numbered such that the contact is always X1···X2. For references, see Table 16.
CompoundX···XEX···XX···X—AuX···X—Au—Xcisb
18a (X = Cl)3.3964 (8)171.74 (3)75.21 (2)86.61 (2)
20a (X = Cl)3.2652 (14)159.83 (6)115.19 (4)8.88 (5)
21a (X = Cl)3.6071 (5)164.28 (2)72.72 (2)74.65 (2)
22a (X = Cl)3.4465 (10)171.45 (3)73.52 (2)85.07 (3)
17b (X = Br)3.3206 (5)165.22 (2)86.52 (1)69.07 (1)
18b (X = Br)3.2874 (6)174.89 (3)78.06 (1)89.71 (1)
19b (X = Br)3.2696 (7)173.07 (4)84.19 (2)76.31 (2)
20b (X = Br)3.3465 (7)157.33 (3)112.62 (2)9.80 (2)
21b (X = Br)3.3445 (6)166.59 (2)85.49 (1)69.34 (1)
22b (X = Br)3.3687 (6)175.31 (2)75.54 (1)88.46 (1)
23b (X = Br)3.3416 (11)172.85 (4)82.51 (3)77.96 (3)
[Ph3PSCl][AuCl4]3.2489 (13)169.81 (5)105.99 (4)79.74 (4)
[(PCP)iPr2PSeCl][AuCl4]a3.696 (3)162.71 (11)72.40 (4)87.76 (9)
[Ph3PSBr][AuBr4]3.1509 (7)174.79 (4)99.41 (2)80.04 (2)
[Ph3PSeBr][AuBr4]3.4009 (5)160.89 (1)98.79 (1)48.32 (1)
Notes: (a) PCP = [2.2]paracyclophanyl; (b) the smaller absolute torsion angle (of two) is shown; the value to the other Xcis is the complementary angle (exactly or approximately, depending on the symmetry) with the opposite sign.
Dimensions (Å, °) of chalcogen···chlorine contacts between cations and anions top
CompoundE···ClP—E···ClE···Cl—AuE···Cl—Au—Clcisb
17a (E = S)S1···Cl5 3.553 (3)152.59 (11)109.61 (7)26.54 (8)
19a (E = S)aS1···Cl2 3.3240 (17)162.69 (7)95.10 (4)61.7 (2)
23a (E = Se)aSe1···Cl2 3.3052 (6)164.50 (2)95.40 (6)59.37 (2)
[Ph3PSeCl]2[Au4Se2Cl10]cSe1···Cl6 3.308 (3)158.99 (9)116.86 (9)55.06 (10)
Notes: (a) Compounds 19a and 23a are isotypic. In both structures, the cis chlorines are disordered. (b) The smaller absolute torsion angle (of two) is shown; the value to the other Clcis is the complementary angle (exactly or approximately, depending on the symmetry) with the opposite sign. (c) Upmann et al. (2019).
 

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

First citationAakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892.  Web of Science CrossRef CAS Google Scholar
First citationBombicz, P. (2024). IUCrJ, 11, 3–6.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDance, I. (2003). New J. Chem. 27, 22–27.  Web of Science CrossRef CAS Google Scholar
First citationDillon, K. B., Mathey, F. & Nixon, J. F. (1998). Phosphorus: The Carbon Copy. Hoboken: John Wiley & Sons.  Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLegon, A. C. (2010). Phys. Chem. Chem. Phys. 12, 7736–7747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationMont, W.-W. du, Bätcher, M., Daniliuc, C., Devillanova, F. A., Druckenbrodt, C., Jeske, J., Jones, P. G., Lippolis, V., Ruthe, F. & Seppälä, E. (2008). Eur. J. Inorg. Chem. pp. 4562–4577.  Google Scholar
First citationPanda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993.  Web of Science CSD CrossRef CAS Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Version 1.171.38.43 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.  Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmøkel, M. S., Cenedese, S., Overgaard, J., Jørgensen, M. R. V., Chen, Y.-S., Gatti, C., Stalke, D. & Iversen, B. B. (2012). Inorg. Chem. 51, 8607–8616.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911–927.  Web of Science CSD CrossRef CAS Google Scholar
First citationUpmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall­komplexe. Dissertation, Technical University of Braunschweig, Braunschweig, Niedersachsen, Germany. ISBN: 978-3-8439-1972-2.  Google Scholar
First citationUpmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526–7528.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUpmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34–49.  CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355–369.  CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationVogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed.58, 1880–1891.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds