research communications
of a three-coordinate lithium complex with monodentate phenyloxazoline and hexamethyldisilylamide ligands
aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900, Curitiba-PR, Brazil
*Correspondence e-mail: francielli.s.santana@ufpr.br
The reaction of lithium hexamethyldisilylamide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexamethyldisilylamido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the of the C2/c the neutral molecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitrogen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyloxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent interactions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features.
Keywords: 4,4-dimethyl-2-phenyl-2-oxazoline; trigonal planar; lithium(I); hexamethyldisilylamide; crystal structure.
CCDC reference: 2354028
1. Chemical context
Oxazolines are a family of cyclic aminoethers characterized by five-membered heterocyclic rings containing one unsaturation. They can be prepared using various methods that typically involve the ). These compounds have been widely used in synthesis, catalysis, and as proligands in coordination chemistry (Connon et al., 2021; Liu et al., 2016; Rasappan et al., 2008; McManus & Guiry, 2004; Gómez et al., 1999).
of an aminoalcohol as a general process (Mulahmetovic & Hargaden, 2019Metal complexes containing monodentate, N-donor monooxazoline ligands are reasonably frequent in the solid state (Huang et al., 2014; Del Río & Gossage, 2009; Barclay et al., 2003; Valk et al., 1994; Michelin et al., 1991). In the case of 2-phenyloxazolines (Phox), which are of interest to this work, the chelating behaviour is more common and involves a second donor atom, generally N, O, S or Se, in the ortho position of the aromatic ring (Volpe et al., 2010; Bottini et al., 2010). Phox complexes of d-block metals have been studied as catalysts (Abu-Elfotoh, 2017; Bagherzadeh et al., 2008; Kandasamy et al., 2004).
Lithium hexamethyldisilylamide (LiHMDS), in turn, was first crystallographically characterized as a cyclic, trimeric compound with alternating nitrogen and lithium atoms in a planar six-membered ring (Mootz et al., 1969). This complex and other bulky MN(SiR3)2 bis(trialkylsilyl)amides (M = alkali metal; R = Me, Et, iPr, tBu, Ph, etc.) are widely used in organic synthesis as deprotonating agents due to their low nucleophilicity and strong Brønsted basicity (Neufeld et al., 2016; Tang et al., 2005; Beak et al., 1996), and in coordination chemistry as sterically demanding starting materials to impose low coordination numbers (Mohamed, 2010; Power, 2004). In both fields, the high solubility conferred by the trimethylsilyl substituents in a wide range of non-polar organic solvents is an advantage of working with HMDS− in synthetic procedures (Ojeda-Amador et al., 2016).
In this paper, we report the synthesis, crystal and molecular structures of the mononuclear, three-coordinate lithium(I) complex [Li{N(Si(CH3)3)2}(Phox)2] (Phox = 4,4-dimethyl-2-phenyl-2-oxazoline). The product crystallized directly from the reaction mixture at 253 K, following an attempt to deprotonate the oxazoline by reaction between [LiN(Si(CH3)3)2] and Phox in hexane.
2. Structural commentary
The [Li{N(Si(CH3)3)2}(Phox)2] complex crystallizes in the C2/c as a discrete molecular unit with no solvent in the The comprises half of the anionic hexamethyldisilylamide ligand, {N0.5(Si(CH3)3)}0.5–, and one neutral 4,4-dimethyl-2-phenyl-2-oxazoline molecule, both coordinated to the lithium centre solely by the nitrogen atoms. Proper rotation about a twofold axis passing through the Li—N1 bond (symmetry operation −x + 1, y, −z + ) leads to the complete, neutral lithium complex molecule. The coordination sphere of lithium(I) presents a trigonal–planar geometry with no deviation from planarity, Fig. 1. In this environment, the two five-membered oxazoline rings (each with a planarity deviation of 0.082°) form a dihedral angle (α) of 35.81 (5)°. At the same time, the distance between the approximately face-to-face phenyl substituents equals 3.908 (5) Å, Fig. 2.
The Li—N bonds are 2.126 (2) and 1.942 (3) Å long for the oxazoline and amide ligands, respectively. Such a significant bond-length variation comes from the stronger interaction of the lithium centre with the anionic amide nitrogen (higher negative density charge) compared to the neutral oxazoline. Similar 0.1–0.2 Å bond-distance differences have been used to distinguish ‘ionic’ from ‘dative’ Li—N bonds (Henderson et al., 1997; Gregory et al., 1991) and were reported earlier for other mononuclear, trigonal planar Li complexes containing an amide (N{SiR3}2−, NArH−) and a neutral ligand such as sparteine, N,N,N′,N′-tetramethylethylenediamine, and N′,N′,N′′,N′′,N′′′-tetramethylethylenediamine (Clark et al., 2009; Henderson et al., 1997; Fjeldberg et al., 1984). The Li—Noxazoline bond is longer than analogous bonds reported for dimeric lithium(I) complexes with bidentate [Jantzi et al., 2006; average 2.044 (3) Å] and tridentate oxazoline ligands [Stol et al., 2005; average 1.996 (3) Å]; the difference can be ascribed to distinct Li+ coordination numbers and ligands' denticities and bulk. To our knowledge, the title compound is the first example of a monodentate oxazoline complex of lithium(I) structurally characterized in the solid state.
In [Li{N(Si(CH3)3)2}(Phox)2], the methyl groups of the hexamethyldisilylamide moieties are nearly eclipsed (Fig. 3), with a dihedral angle of 5.80 (7)° between the C3—Si—N1 and the C3i—Sii—N1 planes. Additionally, if one defines a vector connecting the symmetry-related Si and Sii centres (Randazzo et al., 2006), the relative positions of the C3/C3i, C2/C1i and C1/C2i pairs across this vector produce C—Si⋯Sii—Ci torsion angles of −8.846 (11), −2.52 (7) and −2.52 (7)°, respectively (average value −4.63°). These figures are close to the 0° value attributed to the eclipsed conformation (Eliel & Wilen, 1994). Small torsion angles also appear in the amide ligand of [Cs{N(SiMe3)2}(tmeea)] (tmeea = tris[2-(2-methoxyethoxy)ethyl]amine)], [{K(N{SiMe3}2)(tBu-C6H5)}2], and [{K(N{SiMe3}2)(Me3C6H3)}2], with average values of −3.81 (4), 4.70 and 0.75° respectively (Ojeda-Amador et al., 2016; Randazzo et al., 2006). A larger deviation from 0° appears in [K(18-crown-6)][Li{N(SiMe3)2}2] (mean torsion angle −11.40°; Davison et al., 2023) and in the polymeric [{(Me3Si)2NLi}{(Me3Si)2NK}]∞ (–11.94°; Morris et al., 2007). On the other hand, the methyl groups of unsolvated K(N{SiMe3}2) adopt an intermediate mean torsion angle of 38.29° (Tesh et al., 1990), while in [Li{N(SiMe3)2}(Me6Tren)] (Me6Tren = tris[2-(dimethylamino)ethyl]amine) the average angle is 59.9°, almost exactly the ideal value of 60° for a (Cousins et al., 2010). In the present work, eclipsing implies less repulsion between the bulky methyl groups of both the hexamethyldisilylamide and Phox ligands than in the staggered arrangement.
3. Supramolecular features
Hirshfeld surface analysis performed with the CrystalExplorer 21.5 software (Spackman et al., 2021) allowed a comprehensive examination of the non-covalent bonds governing the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2]. A pivotal aspect of this analysis involves the generation of 2D fingerprint plots (FP), which offer two-dimensional projections of the Hirshfeld surface (Hirshfeld, 1977). This enables meticulous analysis of the non-covalent forces supporting the supramolecular structure by quantifying the percentage contribution of each interaction. For [Li{N(Si(CH3)3)2}(Phox)2], the percentages of the total surface area corresponding to the H⋯H, C⋯H, and O⋯H contacts account for 82.2%, 11.5%, and 6.2%, respectively (Fig. 4). The frail O⋯H contacts occur between the hydrogen atoms of the methylene groups in the oxazoline rings and the oxygen atom of the adjacent molecules at 2.843 Å. Besides those, there is only a weak intramolecular π–π stacking interaction between the aromatic rings of the Phox ligands, as already depicted in Fig. 2, which are 3.908 (5) Å far from one another. There is no classic intra or intermolecular hydrogen bonding in the molecule.
4. Database survey
To the best of our knowledge, this is the first example of a heteroleptic lithium(I)–oxazoline complex in which the Phox ligands are monodentate and the HMDS anion adopts a nearly eclipsed conformation of the methyl groups, giving rise to a trigonal planar coordination environment about the metal. The combination of ten methyl and two phenyl substituents in the ligands efficiently shields the central ion (Fig. 3, right) and prevents significant intermolecular contacts involving the metal.
5. Synthesis and crystallization
The reactions were carried out under dinitrogen (99.999%, Praxair or Air Liquide) using Schlenk techniques. Analytical grade 2-amino-2-methyl-1-propanol, ethyleneglycol, potassium carbonate, glycerol, benzonitrile, n-butyl lithium (2.5 mol L−1 solution in hexanes) and hexamethyldisilazane were acquired from commercial sources (Sigma-Aldrich, Merck, Synth) and used without purification. Hexane (Honeywell) was dried by standard methods (Armarego & Perrin, 1997) and distilled under N2(g) immediately before use. Lithium hexamethyldisilylamide, LiHMDS (Tai et al., 2017), and Phox (Mulahmetovic & Hargaden, 2019) were prepared using procedures adapted from the literature; Phox was distilled twice under vacuum before use. A solution of 0.472 g (2.85 mmol) of LiHMDS in 10 mL of hexane was added slowly to a hexane solution of 0.500 g (2.85 mmol) of Phox at 273 K. The colourless reaction mixture was stirred at room temperature for about 5 h and filtered through Celite. The resulting colourless solution was cooled down to 253 K for two days, after which block-shaped colourless crystals were isolated by filtration and dried under vacuum. Total yield: 0.621g (85.0%) based on the [Li{N(Si(CH3)3)2}(Phox)2] formulation.
6. Refinement
Table 1 summarizes crystal data, data collection, and structure details. The hydrogen atoms were located in difference-Fourier maps and were refined freely, except for the hydrogen atoms attached to C1, C6, C7, C11, C14, and C15 atoms, for which distance restraints (DFIX) were applied.
Supporting information
CCDC reference: 2354028
https://doi.org/10.1107/S2056989024004237/ej2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004237/ej2003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004237/ej2003Isup3.mol
[Li(C6H18NSi2)(C11H13NO)2] | F(000) = 1120 |
Mr = 517.78 | Dx = 1.120 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.612 (2) Å | Cell parameters from 9967 reflections |
b = 12.7649 (17) Å | θ = 2.9–27.7° |
c = 17.180 (4) Å | µ = 0.14 mm−1 |
β = 116.243 (5)° | T = 100 K |
V = 3070.9 (9) Å3 | Parallelepiped, colourless |
Z = 4 | 0.50 × 0.44 × 0.28 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 3522 independent reflections |
Radiation source: fine-focus sealed tube | 2888 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
φ and ω scans | h = −20→20 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.709, Tmax = 0.746 | l = −22→22 |
44358 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.092 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0461P)2 + 1.6645P] where P = (Fo2 + 2Fc2)/3 |
3522 reflections | (Δ/σ)max = 0.001 |
252 parameters | Δρmax = 0.29 e Å−3 |
7 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li | 0.500000 | 0.4524 (2) | 0.250000 | 0.0204 (6) | |
Si | 0.57050 (2) | 0.24246 (3) | 0.21203 (2) | 0.01863 (10) | |
N1 | 0.500000 | 0.30027 (11) | 0.250000 | 0.0182 (3) | |
N2 | 0.37995 (7) | 0.54071 (8) | 0.16385 (7) | 0.0192 (2) | |
O8 | 0.28490 (7) | 0.67752 (8) | 0.09434 (6) | 0.0283 (2) | |
C1 | 0.50526 (11) | 0.15288 (11) | 0.11638 (9) | 0.0283 (3) | |
C2 | 0.66991 (11) | 0.15862 (12) | 0.29266 (10) | 0.0317 (3) | |
C3 | 0.62947 (10) | 0.34286 (12) | 0.17146 (10) | 0.0274 (3) | |
C4 | 0.31661 (9) | 0.50169 (10) | 0.07406 (8) | 0.0238 (3) | |
C5 | 0.37382 (13) | 0.44781 (14) | 0.03410 (10) | 0.0391 (4) | |
C6 | 0.24248 (14) | 0.43000 (18) | 0.08063 (12) | 0.0527 (6) | |
C7 | 0.27067 (11) | 0.60331 (12) | 0.02589 (9) | 0.0307 (3) | |
C9 | 0.35350 (8) | 0.63426 (10) | 0.16790 (8) | 0.0194 (3) | |
C10 | 0.38916 (9) | 0.70370 (10) | 0.24400 (8) | 0.0198 (3) | |
C11 | 0.38259 (10) | 0.81222 (10) | 0.23259 (9) | 0.0255 (3) | |
C12 | 0.41867 (11) | 0.87807 (11) | 0.30369 (10) | 0.0313 (3) | |
C13 | 0.46139 (11) | 0.83697 (12) | 0.38667 (10) | 0.0310 (3) | |
C14 | 0.46664 (10) | 0.72887 (11) | 0.39881 (9) | 0.0280 (3) | |
C15 | 0.43035 (9) | 0.66244 (11) | 0.32782 (8) | 0.0226 (3) | |
H1A | 0.4564 (12) | 0.1901 (13) | 0.0681 (10) | 0.040 (5)* | |
H1B | 0.5497 (14) | 0.1223 (15) | 0.0952 (12) | 0.049 (5)* | |
H1C | 0.4750 (13) | 0.0932 (15) | 0.1312 (12) | 0.041 (5)* | |
H2A | 0.6467 (14) | 0.0989 (15) | 0.3147 (12) | 0.046 (5)* | |
H2B | 0.7134 (16) | 0.1985 (18) | 0.3410 (15) | 0.064 (6)* | |
H2C | 0.7052 (15) | 0.1233 (16) | 0.2666 (13) | 0.054 (6)* | |
H3A | 0.6706 (14) | 0.3083 (15) | 0.1489 (12) | 0.051 (5)* | |
H3B | 0.5826 (14) | 0.3873 (15) | 0.1232 (13) | 0.048 (5)* | |
H3C | 0.6702 (15) | 0.3943 (16) | 0.2176 (13) | 0.052 (5)* | |
H5A | 0.4240 (14) | 0.4948 (15) | 0.0334 (12) | 0.049 (5)* | |
H5B | 0.3314 (14) | 0.4287 (16) | −0.0254 (14) | 0.054 (6)* | |
H5C | 0.4050 (15) | 0.3855 (17) | 0.0682 (14) | 0.058 (6)* | |
H6A | 0.2020 (15) | 0.4040 (16) | 0.0223 (11) | 0.064 (6)* | |
H6B | 0.2736 (14) | 0.3696 (14) | 0.1122 (13) | 0.060 (6)* | |
H6C | 0.204 (2) | 0.465 (2) | 0.110 (2) | 0.101 (10)* | |
H7A | 0.3021 (13) | 0.6319 (14) | −0.0113 (12) | 0.041 (5)* | |
H7B | 0.2033 (10) | 0.5970 (14) | −0.0090 (11) | 0.041 (5)* | |
H11 | 0.3552 (12) | 0.8399 (12) | 0.1757 (9) | 0.033 (4)* | |
H12 | 0.4131 (12) | 0.9517 (14) | 0.2954 (11) | 0.038 (5)* | |
H13 | 0.4891 (13) | 0.8821 (14) | 0.4369 (12) | 0.040 (5)* | |
H14 | 0.4949 (11) | 0.7004 (12) | 0.4566 (9) | 0.030 (4)* | |
H15 | 0.4321 (11) | 0.5886 (10) | 0.3360 (10) | 0.026 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li | 0.0169 (14) | 0.0193 (14) | 0.0197 (14) | 0.000 | 0.0033 (11) | 0.000 |
Si | 0.01801 (18) | 0.01873 (17) | 0.01628 (17) | 0.00254 (12) | 0.00498 (13) | −0.00047 (12) |
N1 | 0.0188 (7) | 0.0169 (7) | 0.0171 (7) | 0.000 | 0.0061 (6) | 0.000 |
N2 | 0.0158 (5) | 0.0211 (5) | 0.0162 (5) | −0.0006 (4) | 0.0028 (4) | 0.0025 (4) |
O8 | 0.0283 (5) | 0.0300 (5) | 0.0190 (4) | 0.0125 (4) | 0.0035 (4) | 0.0056 (4) |
C1 | 0.0322 (8) | 0.0261 (7) | 0.0221 (7) | 0.0030 (6) | 0.0079 (6) | −0.0048 (5) |
C2 | 0.0260 (7) | 0.0296 (7) | 0.0302 (8) | 0.0092 (6) | 0.0040 (6) | 0.0017 (6) |
C3 | 0.0243 (7) | 0.0325 (7) | 0.0284 (7) | 0.0003 (6) | 0.0146 (6) | −0.0001 (6) |
C4 | 0.0207 (6) | 0.0236 (6) | 0.0170 (6) | −0.0013 (5) | −0.0007 (5) | 0.0030 (5) |
C5 | 0.0380 (9) | 0.0391 (9) | 0.0242 (7) | 0.0102 (7) | −0.0007 (7) | −0.0097 (6) |
C6 | 0.0419 (10) | 0.0597 (12) | 0.0316 (9) | −0.0306 (9) | −0.0064 (8) | 0.0109 (8) |
C7 | 0.0322 (8) | 0.0314 (7) | 0.0196 (6) | 0.0088 (6) | 0.0034 (6) | 0.0033 (5) |
C9 | 0.0143 (6) | 0.0238 (6) | 0.0183 (6) | 0.0030 (5) | 0.0057 (5) | 0.0061 (5) |
C10 | 0.0168 (6) | 0.0234 (6) | 0.0208 (6) | 0.0043 (5) | 0.0096 (5) | 0.0028 (5) |
C11 | 0.0271 (7) | 0.0250 (7) | 0.0246 (7) | 0.0072 (5) | 0.0116 (6) | 0.0062 (5) |
C12 | 0.0388 (8) | 0.0220 (7) | 0.0345 (8) | 0.0056 (6) | 0.0176 (7) | 0.0010 (6) |
C13 | 0.0351 (8) | 0.0325 (7) | 0.0277 (7) | 0.0027 (6) | 0.0159 (6) | −0.0065 (6) |
C14 | 0.0322 (7) | 0.0336 (7) | 0.0204 (6) | 0.0070 (6) | 0.0137 (6) | 0.0024 (5) |
C15 | 0.0234 (6) | 0.0240 (6) | 0.0219 (6) | 0.0061 (5) | 0.0116 (5) | 0.0045 (5) |
Li—N1 | 1.942 (3) | C4—C6 | 1.518 (2) |
Li—N2 | 2.1263 (18) | C4—C7 | 1.5353 (18) |
Li—N2i | 2.1264 (18) | C5—H5A | 0.99 (2) |
Li—Sii | 3.074 (3) | C5—H5B | 0.97 (2) |
Si—N1 | 1.6782 (7) | C5—H5C | 0.98 (2) |
Si—C3 | 1.8824 (15) | C6—H6A | 0.976 (15) |
Si—C1 | 1.8881 (14) | C6—H6B | 0.945 (15) |
Si—C2 | 1.8900 (14) | C6—H6C | 1.04 (3) |
N2—C9 | 1.2756 (16) | C7—H7A | 1.029 (19) |
N2—C4 | 1.5022 (16) | C7—H7B | 0.956 (14) |
O8—C9 | 1.3610 (15) | C9—C10 | 1.4700 (18) |
O8—C7 | 1.4486 (17) | C10—C15 | 1.3950 (18) |
C1—H1A | 0.968 (14) | C10—C11 | 1.3964 (18) |
C1—H1B | 1.00 (2) | C11—C12 | 1.381 (2) |
C1—H1C | 0.988 (19) | C11—H11 | 0.944 (13) |
C2—H2A | 0.99 (2) | C12—C13 | 1.383 (2) |
C2—H2B | 0.95 (2) | C12—H12 | 0.949 (18) |
C2—H2C | 0.96 (2) | C13—C14 | 1.392 (2) |
C3—H3A | 0.99 (2) | C13—H13 | 0.967 (18) |
C3—H3B | 1.00 (2) | C14—C15 | 1.3843 (19) |
C3—H3C | 1.01 (2) | C14—H14 | 0.963 (13) |
C4—C5 | 1.511 (2) | C15—H15 | 0.952 (13) |
N1—Li—N2 | 122.02 (7) | C5—C4—C7 | 111.64 (12) |
N1—Li—N2i | 122.02 (7) | C6—C4—C7 | 111.07 (14) |
N2—Li—N2i | 115.95 (14) | C4—C5—H5A | 111.0 (11) |
N1—Li—Sii | 29.36 (3) | C4—C5—H5B | 109.1 (12) |
N2—Li—Sii | 108.77 (5) | H5A—C5—H5B | 108.4 (16) |
N2i—Li—Sii | 127.05 (6) | C4—C5—H5C | 109.6 (12) |
N1—Si—C3 | 110.90 (7) | H5A—C5—H5C | 108.2 (16) |
N1—Si—C1 | 114.23 (6) | H5B—C5—H5C | 110.6 (16) |
C3—Si—C1 | 104.72 (7) | C4—C6—H6A | 107.3 (13) |
N1—Si—C2 | 115.55 (6) | C4—C6—H6B | 108.6 (13) |
C3—Si—C2 | 106.22 (7) | H6A—C6—H6B | 104.3 (17) |
C1—Si—C2 | 104.31 (7) | C4—C6—H6C | 113.5 (16) |
Si—N1—Sii | 127.83 (9) | H6A—C6—H6C | 113 (2) |
Si—N1—Li | 116.09 (4) | H6B—C6—H6C | 109 (2) |
Sii—N1—Li | 116.09 (4) | O8—C7—C4 | 104.34 (10) |
C9—N2—C4 | 106.52 (10) | O8—C7—H7A | 109.1 (10) |
C9—N2—Li | 131.72 (11) | C4—C7—H7A | 113.4 (10) |
C4—N2—Li | 121.09 (9) | O8—C7—H7B | 107.2 (11) |
C9—O8—C7 | 105.29 (10) | C4—C7—H7B | 112.9 (11) |
Si—C1—H1A | 111.5 (11) | H7A—C7—H7B | 109.6 (15) |
Si—C1—H1B | 111.1 (11) | N2—C9—O8 | 118.04 (11) |
H1A—C1—H1B | 107.0 (15) | N2—C9—C10 | 127.49 (11) |
Si—C1—H1C | 112.2 (10) | O8—C9—C10 | 114.47 (11) |
H1A—C1—H1C | 108.4 (15) | C15—C10—C11 | 119.42 (12) |
H1B—C1—H1C | 106.4 (15) | C15—C10—C9 | 120.72 (11) |
Si—C2—H2A | 113.3 (11) | C11—C10—C9 | 119.86 (11) |
Si—C2—H2B | 111.9 (13) | C12—C11—C10 | 120.24 (13) |
H2A—C2—H2B | 108.5 (17) | C12—C11—H11 | 120.5 (10) |
Si—C2—H2C | 112.2 (12) | C10—C11—H11 | 119.2 (10) |
H2A—C2—H2C | 101.5 (16) | C11—C12—C13 | 120.21 (13) |
H2B—C2—H2C | 108.8 (18) | C11—C12—H12 | 119.8 (11) |
Si—C3—H3A | 110.5 (11) | C13—C12—H12 | 120.0 (11) |
Si—C3—H3B | 113.2 (11) | C12—C13—C14 | 120.00 (14) |
H3A—C3—H3B | 106.9 (15) | C12—C13—H13 | 121.0 (11) |
Si—C3—H3C | 113.2 (11) | C14—C13—H13 | 118.9 (11) |
H3A—C3—H3C | 107.8 (16) | C15—C14—C13 | 120.07 (13) |
H3B—C3—H3C | 104.9 (15) | C15—C14—H14 | 120.0 (10) |
N2—C4—C5 | 111.37 (11) | C13—C14—H14 | 119.9 (10) |
N2—C4—C6 | 107.51 (12) | C14—C15—C10 | 120.03 (12) |
C5—C4—C6 | 112.48 (16) | C14—C15—H15 | 120.2 (9) |
N2—C4—C7 | 102.23 (10) | C10—C15—H15 | 119.8 (9) |
C3—Si—N1—Sii | 176.77 (5) | Li—N2—C9—O8 | 165.63 (9) |
C1—Si—N1—Sii | 58.73 (6) | C4—N2—C9—C10 | 175.66 (12) |
C2—Si—N1—Sii | −62.30 (6) | Li—N2—C9—C10 | −13.9 (2) |
C3—Si—N1—Li | −3.23 (5) | C7—O8—C9—N2 | −7.87 (16) |
C1—Si—N1—Li | −121.27 (6) | C7—O8—C9—C10 | 171.71 (11) |
C2—Si—N1—Li | 117.70 (6) | N2—C9—C10—C15 | −24.5 (2) |
C9—N2—C4—C5 | 133.79 (13) | O8—C9—C10—C15 | 155.95 (12) |
Li—N2—C4—C5 | −37.89 (15) | N2—C9—C10—C11 | 154.97 (13) |
C9—N2—C4—C6 | −102.56 (15) | O8—C9—C10—C11 | −24.56 (17) |
Li—N2—C4—C6 | 85.76 (15) | C15—C10—C11—C12 | 1.6 (2) |
C9—N2—C4—C7 | 14.45 (14) | C9—C10—C11—C12 | −177.93 (13) |
Li—N2—C4—C7 | −157.23 (10) | C10—C11—C12—C13 | −0.1 (2) |
C9—O8—C7—C4 | 16.31 (14) | C11—C12—C13—C14 | −1.1 (2) |
N2—C4—C7—O8 | −18.50 (14) | C12—C13—C14—C15 | 0.9 (2) |
C5—C4—C7—O8 | −137.66 (13) | C13—C14—C15—C10 | 0.5 (2) |
C6—C4—C7—O8 | 95.91 (15) | C11—C10—C15—C14 | −1.77 (19) |
C4—N2—C9—O8 | −4.81 (15) | C9—C10—C15—C14 | 177.72 (12) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Acknowledgements
JSCN, EMI, FSS, and JFS thank the Brazilian research agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 314581/2020–0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes, Financial Code 001) for scholarships and financial support.
Funding information
Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant No. 314581/2020-0); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant No. 0347/2021).
References
Abu-Elfotoh, A. M. (2017). Tetrahedron Lett. 58, 4750–4754. CAS Google Scholar
Armarego, W. L. F. & Perrin, D. D. (1997). Purification of Laboratory Chemicals, 4th ed. United Kingdom: Butterworth–Heinemann. Google Scholar
Bagherzadeh, M., Latifi, R., Tahsini, L. & Amini, M. (2008). Catal. Commun. 10, 196–200. Web of Science CrossRef CAS Google Scholar
Barclay, T. M., del Río, I., Gossage, R. A. & Jackson, S. M. (2003). Can. J. Chem. 81, 1482–1491. Web of Science CSD CrossRef CAS Google Scholar
Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. (1996). Acc. Chem. Res. 29, 552–560. CrossRef CAS Web of Science Google Scholar
Bottini, R. C. R., Gariani, R. A., Cavalcanti, C. O., de Oliveira, F., da Rocha, N. L. G., Back, D., Lang, E. S., Hitchcock, P. B., Evans, D. J., Nunes, G. G., Simonelli, F., de Sá, E. L. & Soares, J. F. (2010). Eur. J. Inorg. Chem. 2010, 2476–2487. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, N. M., García-Álvarez, P., Kennedy, A. R., O'Hara, C. T. & Robertson, G. M. (2009). Chem. Commun. pp. 5835–5837. Web of Science CSD CrossRef Google Scholar
Connon, R., Roche, B., Rokade, B. V. & Guiry, P. J. (2021). Chem. Rev. 121, 6373–6521. Web of Science CrossRef CAS PubMed Google Scholar
Cousins, D. M., Davidson, M. G., Frankis, C. J., García-Vivó, D. & Mahon, M. F. (2010). Dalton Trans. 39, 8278–8280. Web of Science CSD CrossRef CAS PubMed Google Scholar
Davison, N., Waddell, P. G. & Lu, E. (2023). J. Am. Chem. Soc. 145, 17007–17012. Web of Science CSD CrossRef CAS PubMed Google Scholar
Eliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds, p. 1197. Hoboken, NJ: Wiley Interscience. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fjeldberg, T., Hitchcock, P. B., Lappert, M. F. & Thorne, A. J. (1984). J. Chem. Soc. Chem. Commun. pp. 822–824. CSD CrossRef Web of Science Google Scholar
Gómez, M., Muller, G. & Rocamora, M. (1999). Coord. Chem. Rev. 193–195, 769–835. Google Scholar
Gregory, K. P., Schleyer, P., v, R. & Snaith, R. (1991). Adv. Inorg. Chem. 37, 47–142. CrossRef CAS Web of Science Google Scholar
Henderson, K. W., Dorigo, A. E., Liu, Q.-L. & Williard, P. G. (1997). J. Am. Chem. Soc. 119, 49, 11855–11863. Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Huang, P., Wang, Y. X., Yu, H. F. & Lu, J. M. (2014). Organometallics, 33, 1587–1593. Web of Science CSD CrossRef CAS Google Scholar
Jantzi, K. L., Guzei, I. A. & Reich, H. J. (2006). Organometallics, 25, 5390–5395. Web of Science CSD CrossRef CAS Google Scholar
Kandasamy, K., Singh, H. B., Butcher, R. J. & Jasinski, J. P. (2004). Inorg. Chem. 43, 5704–5713. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, X., Chen, P. & Wu, F. (2016). Chin. J. Org. Chem. 36, 1797–1804. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McManus, H. A. & Guiry, P. J. (2004). Chem. Rev. 104, 4151–4202. Web of Science CrossRef PubMed CAS Google Scholar
Michelin, R. A., Bertani, R., Mozzon, M., Bombieri, G., Benetollo, F. & Angelici, R. J. (1991). Organometallics, 10, 1751–1757. CSD CrossRef CAS Web of Science Google Scholar
Mohamed, A. H. (2010). Coord. Chem. Rev. 254, 1918–1947. Web of Science CrossRef CAS Google Scholar
Mootz, D., Zinnius, A. & Böttcher, B. (1969). Angew. Chem. 81, 398–399. CrossRef Google Scholar
Morris, J. J., Noll, B. C. & Henderson, K. W. (2007). Acta Cryst. E63, m2477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mulahmetovic, E. & Hargaden, G. C. (2019). Mini-Rev. Org. Chem. 16, 507–526. Web of Science CrossRef CAS Google Scholar
Neufeld, R., Michel, R., Herbst–Irmer, R., Schöne, R. & Stalke, D. (2016). Chem. A Eur. J. 22, 12340–12346. Web of Science CSD CrossRef CAS Google Scholar
Ojeda-Amador, A. I., Martínez-Martínez, A. J., Kennedy, A. R. & O'Hara, C. T. (2016). Inorg. Chem. 55, 5719–5728. Web of Science CAS PubMed Google Scholar
Power, P. P. (2004). J. Organomet. Chem. 689, 3904–3919. Web of Science CrossRef CAS Google Scholar
Randazzo, J. B., Morris, J. J. & Henderson, K. W. (2006). Main Group Chem. 5, 215–220. Web of Science CSD CrossRef CAS Google Scholar
Rasappan, R., Laventine, D. & Reiser, O. (2008). Coord. Chem. Rev. 252, 702–714. Web of Science CrossRef CAS Google Scholar
Río, I. del & Gossage, R. A. (2009). Acta Cryst. E65, m103–m104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stol, M., Snelders, D. J., de Pater, J. J., van Klink, G. P., Kooijman, H., Spek, A. L. & van Koten, G. (2005). Organometallics, 24, 743–749. Web of Science CSD CrossRef CAS Google Scholar
Tai, O., Hopson, R. & Williard, P. G. (2017). J. Org. Chem. 82, 6223–6231. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tang, Y., Zakharov, L. N., Rheingold, A. L. & Kemp, R. A. (2005). Polyhedron, 24, 1739–1748. Web of Science CSD CrossRef CAS Google Scholar
Tesh, K. F., Hanusa, T. P. & Huffman, J. C. (1990). Inorg. Chem. 29, 1584–1586. CSD CrossRef CAS Web of Science Google Scholar
Valk, J. M., Maassarani, F., van der Sluis, P., Spek, A. L., Boersma, J. & van Koten, G. (1994). Organometallics, 13, 2320–2329. CSD CrossRef CAS Web of Science Google Scholar
Volpe, E. C., Manke, D. R., Bartholomew, E. R., Wolczanski, P. T. & Lobkovsky, E. B. (2010). Organometallics, 29, 6642–6652. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.