research communications
H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis(trifluoroacetate) trifluoroacetic acid disolvate
of bis{2-[5-(3,4,5-trimethoxyphenyl)-4aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: vassilyeva@univ.kiev.ua
The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic P with the containing half the cation (PdII Ci), one trifluoroactetate anion and one co-crystallized trifluoroacetic acid molecule. Two neutral chelating 2-[5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intramolecular C—H⋯N hydrogen bonds. In the crystal, the π–π-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the trifluoroacetic acid–trifluoroacetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding interactions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both trifluoroacetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.
Keywords: crystal structure; PdII complex; 3-(pyridin-2-yl)-1,2,4-triazole; trifluoroacetate anion; hydrogen bonding.
CCDC reference: 2352083
1. Chemical context
Triazoles are five-membered ; Leenders et al., 2021) to materials science (Farooq, 2020). Versatile coordination behaviour due to the presence of neutral, anionic or cationic nitrogen donors (N-coordination) as well as carbanionic donors (C-coordination) makes 1,2,4-triazoles appealing ligands for the construction of metal complexes with useful functionalities (Song et al., 2019; Feltham et al., 2017; Kumar et al., 2015; Wen et al., 2017). Substitution reactions at the azole ring create a virtually unlimited range of chemical and structural variations to tune the desired characteristics of the resulting complexes.
containing three nitrogen atoms and two carbon atoms in the ring. They can exist in different isomeric forms, such as 1,2,3-triazole and 1,2,4-triazole. 1,2,4-Triazole derivatives are of interest in various research fields ranging from medicinal chemistry and pharmaceuticals (Aggarwal & Sumran, 2020In our ongoing project exploring the rich potential of 1,2,4-triazoles in coordination and supramolecular chemistry, a number of new metal complexes bearing 3-(pyridin-2-yl)-1,2,4-triazole derivatives as ligands were prepared. The CuII, RuII, PdII, EuIII, TbIII and PtII compounds revealed promising magnetic (Petrenko et al., 2021), catalytic (Zakharchenko et al., 2019) and luminescent properties (Khomenko et al., 2015, 2023), as well as antiproliferative activity against several human cancer cell lines (Ohorodnik et al., 2022, 2023).
In the present study, the L)2](CF3COO)2·2CF3COOH, (I), where HL is 2-[5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine, is reported. The title compound was isolated in an attempt to recrystallize its neutral precursor PdL2 from trifluoroacetic acid (TFA). PdL2 was prepared and studied with IR, UV–Vis, NMR and spectroscopy, as well as MALDI in solution and solid state but not structurally characterized (Zakharchenko et al., 2016).
of [Pd(H2. Structural commentary
The title compound is assembled from discrete [Pd(HL)2]2+ cations (the PdII atom is located on a special position with Ci site symmetry), CF3COO− anions, and CF3COOH molecules of crystallization in a 1:2:2 ratio (Fig. 1). Both neutral HL molecules are coordinated to the metal atom as bidentate ligands through the triazole-N2 and pyridine-N1 atoms in a trans-configuration. The square-planar N4 environment of the PdII centre is moderately distorted with the two Pd—N distances and two cis N—Pd—N angles differing by 0.046 (2) Å and 20.70 (8)°, respectively (Table 1). The [Pd(HL)2]2+ cation, except for the methoxo groups, is almost planar with the largest deviation from the mean plane being 0.117 Å (C11). Two intramolecular hydrogen bonds, C1—H1⋯N3i and C15—H15B⋯O1, with an S(6) graph-set motif are observed (Fig. 2, Table 2; symmetry code as given in Table 2) (Etter, 1990). The C—H⋯N S(6) rings support the planar configuration of the cation.
The C—O bond distances for disordered carboxylic [1.177 (7)/1.174 (8), 1.273 (7)/1.275 (8) Å] and carboxylate units [1.223 (4), 1.227 (11)/1.231 (13) Å] unequivocally confirm the molecular and anionic forms of the TFA and TFA− anion, respectively.
3. Supramolecular features
The ab plane. In the cationic layer (Fig. 3), the face-to-face aromatic stacking between triazole and benzene rings of the centrosymmetrically related ligands is significantly offset, as evidenced by a centroid-to-centroid distance of 3.566 (2) Å with the interplanar distance and tilt angle being 3.263 Å and 76.26°, respectively. The [Pd(HL)2]2+ cations are additionally intertwined by weak C15—H15A⋯N3ii and C15—H15C⋯O3iii hydrogen-bonding interactions (Table 2; symmetry codes as given in Table 2) forming rings of R44(18) and R22(12) graph-set motifs. The closest Pd⋯Pd separation in the layer exceeds 10 Å.
is built up of an alternate arrangement of distinct cationic and anionic supramolecular layers oriented in theWithin the anionic layer, the TFA molecule acts as a proton donor in hydrogen bonding towards the TFA− anion (O6—H6⋯O5; Fig. 2). The TFA–TFA− pairs stack on both sides of the cationic layers and create a three-dimensional C/N—H⋯F/O hydrogen-bonded network (Fig. 4). C4—H4A⋯O4, N4—H4⋯O4, C9—H9⋯O4 and C14—H14A⋯O7 interactions between the cation and anion generate interconnected rings exhibiting R21(7) and R33(13) graph-set motifs (Fig. 2).
4. Database survey
More than 1400 crystal structures of metal complexes featuring the 3-(pyridin-2-yl)-1,2,4-triazole backbone having various substituents in the rings are found in the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016) with the nuclearity up to 24 metal (Co) centres (BIBHUS; Yao et al., 2018). The only solid-state structure comprising HL, the ReI carbonyl [ReBr(HL)(CO)3]·CH3OH (GAMTOG; Kharlova et al., 2017), differs from (I) in the position of the acidic NH function in the triazole ring. Of nine palladium compounds with 3-(pyridin-2-yl)-1,2,4-triazole derivatives, eight were reported by our research group. In the PdII complexes, the substituted 3-(pyridin-2-yl)-1,2,4-triazole ligands in the neutral or anionic form coordinate to the metal atom through the pyridine-N and either triazole-N1 (TOFXUK, TOFYAR, TOGNEL, TOGNIP; Zakharchenko et al., 2019) or triazole-N4 atoms (CAMSUI; Zakharchenko et al., 2021a). Another example of the N4 protonation is found in hydrogen bis{2-[3-(pyridin-2-yl)-1,2,4-triazol-1-yl]propanoate} (CIPCUA; Gallagher et al., 2007), which is a of a neutral molecule and a zwitterion with a protonated N4 atom. Most similar, but not isomorphous, to the title compound is [Pd(HL′)2](CF3COO)2·4CF3COOH with the neutral ligand HL′ having a phenyl group instead of the trimethoxyphenyl substituent in (I), which also crystallizes in the triclinic P (KEFKUF; Zakharchenko et al., 2021b).
5. Synthesis and crystallization
The initial complex PdL2 was synthesized according to the previously published method (Zakharchenko et al., 2016). X-ray quality crystals of the title compound were obtained by recrystallization of PdL2 from TFA. The compound was characterized by IR and 1H NMR spectroscopy; it starts to decompose above 548 K. FT–IR (KBr pellet), ν (cm−1): 3434br, 3104, 3110, 3010, 2948, 2926, 2850, 1776, 1676, 1638, 1618, 1596, 1490s, 1470, 1430, 1292, 1196s, 1178s, 1130vs, 1036, 1006, 842, 796, 726, 704, 598, 568, 524.
The IR spectrum of (I) (Fig. 5) is dominated by peaks associated with trifluoroacetic moieties, which are absent in the spectrum of PdL2 (Zakharchenko et al., 2016). TFA molecules are detected by an intense broad band due to ν(O—H) vibration centred at about 3430 cm−1 and a smaller band at 1776 cm−1 ascribed to ν(C=O) stretching. Two medium intensity bands observed at 1676 and 1430 cm−1 are assigned to νas(COO) and νs(COO) stretching modes of the TFA− anion, respectively. As expected, major absorption peaks at 1196, 1178 and 1130 cm−1 are present in the C—F stretching region (1110–1220 cm−1). ν(C=N) and ν(C=C) stretching frequencies of the 1,2,4-triazole ligand in the range 1638–1596 cm−1 cannot be easily distinguished. Several bands observed above and below 3000 cm−1 are assigned to aromatic and methyl group ν(C—H) vibrations, respectively. A low intensity broad absorption at 3104 cm−1 can be ascribed to ν(N—H) stretching of the hydrogen-bonded N4H group of the triazole ring.
Due to very poor solubility of the title compound in organic solvents, it was not possible to obtain its satisfactory 1H NMR spectrum in CDCl3. Only the protons of the methoxy groups are distinctly observed as two singlets in a 2:1 ratio at 4.01 and 3.96 ppm while the aromatic protons in the 10–7 ppm range were indistinguishable from the background. The presence of TFA molecules and trace amounts of water in the solvent leads to significant broadening of the N4H signal to the point of disappearing in the spectrum. On the contrary, in the 1H NMR spectrum of the free HL ligand in CDCl3 the acidic N2-bound proton appears as a broadened singlet at 13.31 ppm (Zakharchenko et al., 2016).
6. Refinement
Crystal data, data collection and structure . Both trifluoroacetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively. The disorder was restrained using SIMU and RIGU commands in SHELXL for the ten resulting atoms except for C19 and O4 of the trifluoroacetic anion and twelve resulting atoms except for C17 of the trifluoroacetic acid. The four-atom C—COO fragments were restrained to be nearly planar by a FLAT command. Bond distances in the disordered fragments were restrained by the SAME command to be similar in length. Anisotropic displacement parameters were employed for the non-hydrogen atoms. Anisotropic displacement parameters for pairs of the disordered atoms were constrained to be the same. The H atom bound to O was found in difference-Fourier maps, C/N-bound H atoms were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.93 Å, N/O—H = 0.86 Å, Uiso(H) = 1.2UeqC for CH, NH and OH; C—H = 0.96 Å, Uiso(H) = 1.5UeqC for CH3]. Idealised methyl groups were refined as rotating groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2352083
https://doi.org/10.1107/S205698902400392X/jw2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400392X/jw2005Isup2.hkl
[Pd(C16H16N4O3)2](C2F3O2)2·2C2HF3O2 | Z = 1 |
Mr = 1185.15 | F(000) = 596 |
Triclinic, P1 | Dx = 1.662 Mg m−3 |
a = 8.6173 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6265 (6) Å | Cell parameters from 3996 reflections |
c = 13.1312 (4) Å | θ = 1.6–28.8° |
α = 93.384 (4)° | µ = 0.51 mm−1 |
β = 98.121 (3)° | T = 293 K |
γ = 94.090 (4)° | Irregular, clear light yellow |
V = 1184.46 (9) Å3 | 0.4 × 0.3 × 0.3 mm |
Xcalibur, Eos diffractometer | 4615 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | θmax = 26.7°, θmin = 1.9° |
Tmin = 0.968, Tmax = 1.000 | h = −10→10 |
9462 measured reflections | k = −13→13 |
5010 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5877P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5010 reflections | Δρmax = 0.39 e Å−3 |
444 parameters | Δρmin = −0.45 e Å−3 |
382 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pd1 | 1.000000 | 1.000000 | 0.500000 | 0.02885 (10) | |
C19 | 0.8894 (4) | 0.4302 (3) | 0.1535 (2) | 0.0488 (8) | |
C20 | 0.9655 (9) | 0.3470 (9) | 0.0791 (6) | 0.081 (2) | 0.530 (6) |
F4 | 1.1096 (6) | 0.3858 (7) | 0.0705 (5) | 0.109 (2) | 0.530 (6) |
F5 | 0.9508 (14) | 0.2294 (9) | 0.1005 (8) | 0.139 (3) | 0.530 (6) |
F6 | 0.8973 (9) | 0.3527 (8) | −0.0170 (4) | 0.108 (2) | 0.530 (6) |
O5 | 0.7452 (12) | 0.425 (3) | 0.140 (2) | 0.066 (4) | 0.530 (6) |
C20X | 0.9676 (14) | 0.3301 (10) | 0.0963 (10) | 0.081 (2) | 0.470 (6) |
F4X | 0.9952 (15) | 0.3563 (10) | 0.0080 (8) | 0.134 (3) | 0.470 (6) |
F5X | 1.0921 (8) | 0.2898 (7) | 0.1463 (6) | 0.110 (3) | 0.470 (6) |
F6X | 0.8690 (10) | 0.2246 (8) | 0.0722 (7) | 0.107 (3) | 0.470 (6) |
O5X | 0.7498 (15) | 0.441 (3) | 0.123 (3) | 0.074 (6) | 0.470 (6) |
O4 | 0.9779 (3) | 0.4896 (2) | 0.22379 (16) | 0.0580 (6) | |
C17 | 0.4530 (4) | 0.2377 (4) | 0.0206 (3) | 0.0643 (10) | |
C18 | 0.3492 (9) | 0.1637 (9) | −0.0678 (6) | 0.095 (2) | 0.587 (17) |
F1 | 0.3053 (15) | 0.2296 (12) | −0.1475 (7) | 0.136 (3) | 0.587 (17) |
F2 | 0.4262 (13) | 0.0721 (12) | −0.1043 (11) | 0.143 (3) | 0.587 (17) |
F3 | 0.2162 (9) | 0.1158 (12) | −0.0410 (7) | 0.118 (3) | 0.587 (17) |
O7 | 0.442 (2) | 0.2093 (17) | 0.1046 (6) | 0.100 (5) | 0.587 (17) |
O6 | 0.5404 (17) | 0.3257 (15) | −0.0093 (13) | 0.094 (5) | 0.587 (17) |
H6 | 0.613798 | 0.359574 | 0.035314 | 0.113* | 0.587 (17) |
C18X | 0.3438 (13) | 0.1690 (10) | −0.0676 (7) | 0.101 (3) | 0.413 (17) |
F1X | 0.4166 (17) | 0.1293 (19) | −0.1438 (10) | 0.125 (4) | 0.413 (17) |
F2X | 0.2443 (16) | 0.2475 (14) | −0.1086 (13) | 0.132 (4) | 0.413 (17) |
F3X | 0.278 (2) | 0.0643 (15) | −0.0378 (12) | 0.141 (4) | 0.413 (17) |
O7X | 0.428 (3) | 0.241 (2) | 0.1062 (8) | 0.078 (4) | 0.413 (17) |
O6X | 0.574 (2) | 0.288 (2) | −0.0120 (18) | 0.081 (5) | 0.413 (17) |
H6X | 0.646340 | 0.324285 | 0.033784 | 0.097* | 0.413 (17) |
O1 | 0.5903 (3) | 0.3676 (2) | 0.69590 (17) | 0.0607 (7) | |
O2 | 0.6094 (3) | 0.15652 (19) | 0.57418 (17) | 0.0506 (5) | |
O3 | 0.7086 (3) | 0.16746 (19) | 0.39566 (16) | 0.0543 (6) | |
N4 | 0.9103 (3) | 0.6437 (2) | 0.37512 (15) | 0.0306 (5) | |
H4 | 0.916011 | 0.589624 | 0.324689 | 0.037* | |
N3 | 0.8561 (3) | 0.7280 (2) | 0.52237 (16) | 0.0329 (5) | |
N2 | 0.9308 (3) | 0.81692 (19) | 0.47212 (15) | 0.0300 (5) | |
N1 | 1.0785 (3) | 0.9649 (2) | 0.36266 (15) | 0.0311 (5) | |
C10 | 0.7119 (3) | 0.2797 (3) | 0.4517 (2) | 0.0386 (6) | |
C15 | 0.4529 (4) | 0.1298 (4) | 0.5844 (4) | 0.0795 (13) | |
H15A | 0.387704 | 0.144900 | 0.521519 | 0.119* | |
H15B | 0.426681 | 0.183175 | 0.640017 | 0.119* | |
H15C | 0.435939 | 0.042788 | 0.598890 | 0.119* | |
C7 | 0.8445 (3) | 0.6231 (2) | 0.46214 (19) | 0.0303 (6) | |
C12 | 0.6508 (3) | 0.3838 (3) | 0.6071 (2) | 0.0409 (7) | |
C14 | 0.7558 (5) | 0.1699 (3) | 0.2963 (2) | 0.0638 (10) | |
H14A | 0.687992 | 0.219861 | 0.253864 | 0.096* | |
H14B | 0.749120 | 0.085221 | 0.265300 | 0.096* | |
H14C | 0.862275 | 0.206258 | 0.302706 | 0.096* | |
C4 | 1.0995 (3) | 0.8044 (3) | 0.2315 (2) | 0.0388 (7) | |
H4A | 1.077270 | 0.721198 | 0.204347 | 0.047* | |
C9 | 0.7732 (3) | 0.3943 (3) | 0.4228 (2) | 0.0365 (6) | |
H9 | 0.813638 | 0.398525 | 0.360914 | 0.044* | |
C2 | 1.2150 (4) | 1.0120 (3) | 0.2234 (2) | 0.0497 (8) | |
H2 | 1.272046 | 1.071011 | 0.190832 | 0.060* | |
C13 | 0.7108 (3) | 0.4976 (3) | 0.5783 (2) | 0.0382 (6) | |
H13 | 0.709298 | 0.571194 | 0.620054 | 0.046* | |
C1 | 1.1601 (4) | 1.0467 (3) | 0.3140 (2) | 0.0403 (7) | |
H1 | 1.180841 | 1.129773 | 0.341708 | 0.048* | |
C3 | 1.1847 (4) | 0.8902 (3) | 0.1821 (2) | 0.0492 (8) | |
H3 | 1.221162 | 0.865472 | 0.121268 | 0.059* | |
C5 | 1.0485 (3) | 0.8437 (2) | 0.32096 (18) | 0.0293 (5) | |
C11 | 0.6520 (3) | 0.2734 (3) | 0.5440 (2) | 0.0384 (6) | |
C8 | 0.7734 (3) | 0.5023 (2) | 0.4872 (2) | 0.0322 (6) | |
C16 | 0.5794 (5) | 0.4776 (4) | 0.7613 (3) | 0.0674 (11) | |
H16A | 0.519452 | 0.536517 | 0.723050 | 0.101* | |
H16B | 0.683090 | 0.516035 | 0.786165 | 0.101* | |
H16C | 0.528455 | 0.454170 | 0.818594 | 0.101* | |
C6 | 0.9639 (3) | 0.7659 (2) | 0.38500 (18) | 0.0292 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.04096 (18) | 0.01711 (15) | 0.02989 (16) | −0.00198 (11) | 0.01369 (12) | −0.00184 (10) |
C19 | 0.064 (2) | 0.0396 (18) | 0.0431 (17) | −0.0077 (16) | 0.0198 (16) | −0.0102 (14) |
C20 | 0.110 (4) | 0.077 (4) | 0.058 (4) | 0.005 (4) | 0.035 (4) | −0.034 (4) |
F4 | 0.074 (3) | 0.144 (5) | 0.105 (4) | 0.008 (3) | 0.032 (3) | −0.064 (4) |
F5 | 0.189 (8) | 0.086 (5) | 0.153 (7) | 0.043 (5) | 0.057 (6) | −0.014 (5) |
F6 | 0.111 (5) | 0.153 (5) | 0.052 (3) | −0.007 (4) | 0.021 (3) | −0.057 (3) |
O5 | 0.059 (5) | 0.079 (9) | 0.057 (6) | −0.014 (4) | 0.013 (4) | −0.010 (5) |
C20X | 0.108 (5) | 0.063 (5) | 0.070 (5) | 0.000 (4) | 0.023 (4) | −0.028 (4) |
F4X | 0.187 (8) | 0.130 (5) | 0.101 (6) | 0.022 (6) | 0.079 (6) | −0.014 (5) |
F5X | 0.103 (4) | 0.089 (5) | 0.133 (5) | 0.049 (4) | 0.001 (4) | −0.046 (4) |
F6X | 0.124 (6) | 0.067 (4) | 0.115 (5) | −0.011 (4) | 0.001 (4) | −0.058 (3) |
O5X | 0.076 (7) | 0.072 (9) | 0.073 (12) | −0.012 (5) | 0.021 (5) | −0.015 (8) |
O4 | 0.0708 (16) | 0.0521 (15) | 0.0483 (13) | −0.0024 (12) | 0.0127 (11) | −0.0217 (11) |
C17 | 0.053 (2) | 0.075 (3) | 0.063 (2) | −0.0078 (19) | 0.0090 (18) | 0.004 (2) |
C18 | 0.079 (5) | 0.117 (5) | 0.083 (5) | −0.024 (4) | 0.013 (4) | −0.019 (4) |
F1 | 0.124 (6) | 0.186 (7) | 0.083 (4) | −0.025 (5) | −0.024 (4) | 0.010 (5) |
F2 | 0.151 (6) | 0.131 (7) | 0.132 (7) | −0.006 (5) | 0.001 (5) | −0.058 (5) |
F3 | 0.068 (4) | 0.142 (7) | 0.131 (4) | −0.045 (4) | 0.004 (3) | −0.010 (5) |
O7 | 0.099 (7) | 0.123 (11) | 0.075 (6) | −0.035 (7) | 0.006 (5) | 0.040 (6) |
O6 | 0.097 (8) | 0.116 (9) | 0.059 (5) | −0.046 (7) | −0.002 (5) | 0.022 (6) |
C18X | 0.086 (6) | 0.122 (6) | 0.088 (6) | −0.023 (6) | 0.010 (5) | −0.019 (5) |
F1X | 0.125 (6) | 0.151 (9) | 0.089 (6) | −0.018 (7) | 0.017 (5) | −0.042 (6) |
F2X | 0.087 (6) | 0.176 (7) | 0.115 (7) | 0.012 (6) | −0.031 (5) | −0.022 (6) |
F3X | 0.132 (8) | 0.129 (8) | 0.147 (7) | −0.064 (6) | 0.017 (7) | −0.008 (6) |
O7X | 0.099 (8) | 0.076 (8) | 0.065 (7) | −0.007 (6) | 0.039 (6) | −0.012 (5) |
O6X | 0.062 (6) | 0.116 (12) | 0.057 (6) | −0.028 (7) | 0.013 (5) | −0.013 (7) |
O1 | 0.0919 (18) | 0.0384 (13) | 0.0582 (14) | −0.0097 (12) | 0.0406 (13) | 0.0027 (10) |
O2 | 0.0538 (13) | 0.0281 (11) | 0.0716 (15) | −0.0050 (10) | 0.0154 (11) | 0.0121 (10) |
O3 | 0.0882 (17) | 0.0208 (11) | 0.0522 (13) | −0.0098 (11) | 0.0160 (11) | −0.0074 (9) |
N4 | 0.0412 (13) | 0.0206 (11) | 0.0288 (11) | −0.0052 (9) | 0.0084 (9) | −0.0058 (8) |
N3 | 0.0463 (13) | 0.0196 (11) | 0.0345 (11) | −0.0037 (9) | 0.0148 (10) | 0.0010 (9) |
N2 | 0.0410 (13) | 0.0181 (11) | 0.0323 (11) | −0.0024 (9) | 0.0139 (9) | −0.0017 (8) |
N1 | 0.0429 (13) | 0.0206 (11) | 0.0311 (11) | −0.0022 (9) | 0.0131 (9) | −0.0012 (8) |
C10 | 0.0488 (17) | 0.0232 (14) | 0.0419 (15) | −0.0044 (12) | 0.0057 (13) | −0.0013 (11) |
C15 | 0.054 (2) | 0.042 (2) | 0.143 (4) | −0.0146 (17) | 0.026 (2) | 0.006 (2) |
C7 | 0.0371 (15) | 0.0202 (13) | 0.0332 (13) | −0.0012 (11) | 0.0068 (11) | −0.0010 (10) |
C12 | 0.0465 (17) | 0.0322 (16) | 0.0460 (16) | −0.0022 (13) | 0.0162 (13) | 0.0044 (13) |
C14 | 0.105 (3) | 0.0382 (19) | 0.0460 (19) | −0.0013 (19) | 0.0120 (18) | −0.0093 (15) |
C4 | 0.0528 (18) | 0.0307 (15) | 0.0322 (14) | −0.0040 (13) | 0.0113 (12) | −0.0064 (11) |
C9 | 0.0494 (17) | 0.0244 (14) | 0.0351 (14) | −0.0046 (12) | 0.0087 (12) | −0.0005 (11) |
C2 | 0.071 (2) | 0.0403 (18) | 0.0423 (16) | −0.0079 (16) | 0.0301 (15) | 0.0003 (13) |
C13 | 0.0506 (17) | 0.0238 (14) | 0.0407 (15) | −0.0027 (12) | 0.0135 (13) | −0.0026 (11) |
C1 | 0.0583 (19) | 0.0241 (14) | 0.0403 (15) | −0.0054 (13) | 0.0197 (13) | −0.0011 (11) |
C3 | 0.070 (2) | 0.0453 (19) | 0.0349 (15) | −0.0060 (16) | 0.0272 (15) | −0.0070 (13) |
C5 | 0.0341 (14) | 0.0248 (13) | 0.0289 (12) | 0.0010 (11) | 0.0055 (10) | 0.0003 (10) |
C11 | 0.0420 (16) | 0.0239 (14) | 0.0488 (16) | −0.0052 (12) | 0.0067 (13) | 0.0067 (12) |
C8 | 0.0391 (15) | 0.0216 (13) | 0.0352 (14) | −0.0029 (11) | 0.0061 (11) | 0.0011 (10) |
C16 | 0.093 (3) | 0.057 (2) | 0.059 (2) | 0.001 (2) | 0.040 (2) | −0.0033 (18) |
C6 | 0.0369 (14) | 0.0209 (13) | 0.0291 (12) | −0.0016 (10) | 0.0071 (10) | −0.0033 (10) |
Pd1—N2 | 1.991 (2) | N4—H4 | 0.8600 |
Pd1—N2i | 1.991 (2) | N4—C7 | 1.367 (3) |
Pd1—N1 | 2.037 (2) | N4—C6 | 1.340 (3) |
Pd1—N1i | 2.037 (2) | N3—N2 | 1.360 (3) |
C19—C20 | 1.526 (9) | N3—C7 | 1.317 (3) |
C19—O5 | 1.227 (11) | N2—C6 | 1.313 (3) |
C19—C20X | 1.517 (11) | N1—C1 | 1.328 (3) |
C19—O5X | 1.231 (13) | N1—C5 | 1.362 (3) |
C19—O4 | 1.223 (4) | C10—C9 | 1.388 (4) |
C20—F4 | 1.303 (7) | C10—C11 | 1.385 (4) |
C20—F5 | 1.298 (7) | C15—H15A | 0.9600 |
C20—F6 | 1.321 (7) | C15—H15B | 0.9600 |
C20X—F4X | 1.258 (12) | C15—H15C | 0.9600 |
C20X—F5X | 1.290 (12) | C7—C8 | 1.458 (3) |
C20X—F6X | 1.351 (11) | C12—C13 | 1.376 (4) |
C17—C18 | 1.504 (7) | C12—C11 | 1.397 (4) |
C17—O7 | 1.177 (7) | C14—H14A | 0.9600 |
C17—O6 | 1.273 (7) | C14—H14B | 0.9600 |
C17—C18X | 1.501 (8) | C14—H14C | 0.9600 |
C17—O7X | 1.174 (8) | C4—H4A | 0.9300 |
C17—O6X | 1.275 (8) | C4—C3 | 1.378 (4) |
C18—F1 | 1.320 (6) | C4—C5 | 1.365 (3) |
C18—F2 | 1.321 (6) | C9—H9 | 0.9300 |
C18—F3 | 1.323 (6) | C9—C8 | 1.384 (4) |
O6—H6 | 0.8428 | C2—H2 | 0.9300 |
C18X—F1X | 1.319 (7) | C2—C1 | 1.380 (4) |
C18X—F2X | 1.321 (7) | C2—C3 | 1.366 (4) |
C18X—F3X | 1.319 (7) | C13—H13 | 0.9300 |
O6X—H6X | 0.8555 | C13—C8 | 1.383 (4) |
O1—C12 | 1.357 (3) | C1—H1 | 0.9300 |
O1—C16 | 1.425 (4) | C3—H3 | 0.9300 |
O2—C15 | 1.385 (4) | C5—C6 | 1.446 (3) |
O2—C11 | 1.367 (3) | C16—H16A | 0.9600 |
O3—C10 | 1.360 (3) | C16—H16B | 0.9600 |
O3—C14 | 1.421 (4) | C16—H16C | 0.9600 |
N2—Pd1—N2i | 180.00 (12) | O3—C10—C9 | 124.2 (3) |
N2—Pd1—N1i | 100.35 (8) | O3—C10—C11 | 115.4 (2) |
N2i—Pd1—N1 | 100.35 (8) | C11—C10—C9 | 120.4 (3) |
N2i—Pd1—N1i | 79.65 (8) | O2—C15—H15A | 109.5 |
N2—Pd1—N1 | 79.65 (8) | O2—C15—H15B | 109.5 |
N1i—Pd1—N1 | 180.00 (12) | O2—C15—H15C | 109.5 |
O5—C19—C20 | 116.4 (14) | H15A—C15—H15B | 109.5 |
O5X—C19—C20X | 116.7 (16) | H15A—C15—H15C | 109.5 |
O4—C19—C20 | 116.6 (4) | H15B—C15—H15C | 109.5 |
O4—C19—O5 | 126.9 (14) | N4—C7—C8 | 125.5 (2) |
O4—C19—C20X | 113.6 (6) | N3—C7—N4 | 110.5 (2) |
O4—C19—O5X | 129.6 (17) | N3—C7—C8 | 123.9 (2) |
F4—C20—C19 | 114.3 (6) | O1—C12—C13 | 124.8 (3) |
F4—C20—F6 | 100.3 (7) | O1—C12—C11 | 115.1 (3) |
F5—C20—C19 | 110.6 (7) | C13—C12—C11 | 120.0 (2) |
F5—C20—F4 | 112.8 (8) | O3—C14—H14A | 109.5 |
F5—C20—F6 | 107.0 (9) | O3—C14—H14B | 109.5 |
F6—C20—C19 | 111.1 (6) | O3—C14—H14C | 109.5 |
F4X—C20X—C19 | 115.2 (10) | H14A—C14—H14B | 109.5 |
F4X—C20X—F5X | 108.9 (11) | H14A—C14—H14C | 109.5 |
F4X—C20X—F6X | 100.6 (11) | H14B—C14—H14C | 109.5 |
F5X—C20X—C19 | 116.1 (9) | C3—C4—H4A | 120.6 |
F5X—C20X—F6X | 103.9 (9) | C5—C4—H4A | 120.6 |
F6X—C20X—C19 | 110.5 (9) | C5—C4—C3 | 118.8 (3) |
O7—C17—C18 | 117.9 (10) | C10—C9—H9 | 120.4 |
O7—C17—O6 | 129.6 (11) | C8—C9—C10 | 119.1 (2) |
O6—C17—C18 | 112.5 (9) | C8—C9—H9 | 120.4 |
O7X—C17—C18X | 123.2 (13) | C1—C2—H2 | 120.3 |
O7X—C17—O6X | 126.8 (15) | C3—C2—H2 | 120.3 |
O6X—C17—C18X | 110.0 (12) | C3—C2—C1 | 119.4 (3) |
F1—C18—C17 | 114.7 (7) | C12—C13—H13 | 120.1 |
F1—C18—F2 | 105.2 (8) | C12—C13—C8 | 119.8 (3) |
F1—C18—F3 | 104.8 (8) | C8—C13—H13 | 120.1 |
F2—C18—C17 | 109.5 (7) | N1—C1—C2 | 121.9 (3) |
F2—C18—F3 | 109.9 (8) | N1—C1—H1 | 119.0 |
F3—C18—C17 | 112.4 (6) | C2—C1—H1 | 119.0 |
C17—O6—H6 | 116.1 | C4—C3—H3 | 120.3 |
F1X—C18X—C17 | 113.1 (9) | C2—C3—C4 | 119.4 (3) |
F1X—C18X—F2X | 105.1 (10) | C2—C3—H3 | 120.3 |
F1X—C18X—F3X | 103.9 (10) | N1—C5—C4 | 122.1 (2) |
F2X—C18X—C17 | 109.2 (8) | N1—C5—C6 | 111.5 (2) |
F3X—C18X—C17 | 110.4 (9) | C4—C5—C6 | 126.3 (2) |
F3X—C18X—F2X | 114.9 (12) | O2—C11—C10 | 117.9 (3) |
C17—O6X—H6X | 116.5 | O2—C11—C12 | 122.1 (3) |
C12—O1—C16 | 117.7 (2) | C10—C11—C12 | 119.6 (2) |
C11—O2—C15 | 117.5 (3) | C9—C8—C7 | 120.7 (2) |
C10—O3—C14 | 117.7 (2) | C13—C8—C7 | 118.3 (2) |
C7—N4—H4 | 127.3 | C13—C8—C9 | 120.9 (2) |
C6—N4—H4 | 127.3 | O1—C16—H16A | 109.5 |
C6—N4—C7 | 105.5 (2) | O1—C16—H16B | 109.5 |
C7—N3—N2 | 105.36 (19) | O1—C16—H16C | 109.5 |
N3—N2—Pd1 | 135.44 (16) | H16A—C16—H16B | 109.5 |
C6—N2—Pd1 | 114.75 (16) | H16A—C16—H16C | 109.5 |
C6—N2—N3 | 109.8 (2) | H16B—C16—H16C | 109.5 |
C1—N1—Pd1 | 126.23 (18) | N4—C6—C5 | 132.4 (2) |
C1—N1—C5 | 118.4 (2) | N2—C6—N4 | 108.8 (2) |
C5—N1—Pd1 | 115.29 (16) | N2—C6—C5 | 118.8 (2) |
Pd1—N2—C6—N4 | −179.45 (16) | N3—C7—C8—C9 | −176.4 (3) |
Pd1—N2—C6—C5 | 1.7 (3) | N3—C7—C8—C13 | 1.6 (4) |
Pd1—N1—C1—C2 | 176.7 (2) | N2—N3—C7—N4 | 0.1 (3) |
Pd1—N1—C5—C4 | −177.2 (2) | N2—N3—C7—C8 | 179.1 (2) |
Pd1—N1—C5—C6 | 0.6 (3) | N1—C5—C6—N4 | 179.9 (3) |
O5—C19—C20—F4 | 156.2 (17) | N1—C5—C6—N2 | −1.5 (3) |
O5—C19—C20—F5 | −75.1 (18) | C10—C9—C8—C7 | 176.6 (3) |
O5—C19—C20—F6 | 43.6 (18) | C10—C9—C8—C13 | −1.3 (4) |
O5X—C19—C20X—F4X | 73 (2) | C15—O2—C11—C10 | −118.1 (4) |
O5X—C19—C20X—F5X | −158 (2) | C15—O2—C11—C12 | 68.1 (4) |
O5X—C19—C20X—F6X | −40 (2) | C7—N4—C6—N2 | −0.8 (3) |
O4—C19—C20—F4 | −27.5 (8) | C7—N4—C6—C5 | 177.9 (3) |
O4—C19—C20—F5 | 101.2 (8) | C7—N3—N2—Pd1 | 179.9 (2) |
O4—C19—C20—F6 | −140.1 (6) | C7—N3—N2—C6 | −0.6 (3) |
O4—C19—C20X—F4X | −106.0 (11) | C12—C13—C8—C7 | −176.4 (3) |
O4—C19—C20X—F5X | 22.9 (12) | C12—C13—C8—C9 | 1.6 (4) |
O4—C19—C20X—F6X | 140.8 (9) | C14—O3—C10—C9 | −6.8 (5) |
O7—C17—C18—F1 | 147.3 (16) | C14—O3—C10—C11 | 174.6 (3) |
O7—C17—C18—F2 | −94.6 (16) | C4—C5—C6—N4 | −2.4 (5) |
O7—C17—C18—F3 | 27.8 (18) | C4—C5—C6—N2 | 176.2 (3) |
O6—C17—C18—F1 | −31.6 (16) | C9—C10—C11—O2 | −172.8 (3) |
O6—C17—C18—F2 | 86.4 (15) | C9—C10—C11—C12 | 1.2 (5) |
O6—C17—C18—F3 | −151.2 (15) | C13—C12—C11—O2 | 172.9 (3) |
O7X—C17—C18X—F1X | −151.8 (19) | C13—C12—C11—C10 | −0.8 (5) |
O7X—C17—C18X—F2X | 91.5 (19) | C1—N1—C5—C4 | 0.1 (4) |
O7X—C17—C18X—F3X | −36 (2) | C1—N1—C5—C6 | 177.9 (2) |
O6X—C17—C18X—F1X | 27 (2) | C1—C2—C3—C4 | 0.2 (5) |
O6X—C17—C18X—F2X | −89.8 (19) | C3—C4—C5—N1 | 0.2 (4) |
O6X—C17—C18X—F3X | 142.9 (19) | C3—C4—C5—C6 | −177.2 (3) |
O1—C12—C13—C8 | 178.3 (3) | C3—C2—C1—N1 | 0.1 (5) |
O1—C12—C11—O2 | −6.0 (4) | C5—N1—C1—C2 | −0.3 (4) |
O1—C12—C11—C10 | −179.7 (3) | C5—C4—C3—C2 | −0.3 (5) |
O3—C10—C9—C8 | −178.6 (3) | C11—C10—C9—C8 | −0.1 (4) |
O3—C10—C11—O2 | 5.8 (4) | C11—C12—C13—C8 | −0.5 (5) |
O3—C10—C11—C12 | 179.8 (3) | C16—O1—C12—C13 | 3.9 (5) |
N4—C7—C8—C9 | 2.5 (4) | C16—O1—C12—C11 | −177.2 (3) |
N4—C7—C8—C13 | −179.5 (3) | C6—N4—C7—N3 | 0.4 (3) |
N3—N2—C6—N4 | 0.9 (3) | C6—N4—C7—C8 | −178.5 (2) |
N3—N2—C6—C5 | −178.0 (2) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···F6 | 0.84 | 2.63 | 3.085 (15) | 115 |
O6—H6···O5 | 0.84 | 1.73 | 2.56 (3) | 172 |
O6X—H6X···F6X | 0.86 | 2.27 | 2.77 (3) | 118 |
O6X—H6X···O5X | 0.86 | 1.76 | 2.58 (4) | 160 |
N4—H4···O4 | 0.86 | 1.81 | 2.655 (3) | 166 |
C15—H15A···N3ii | 0.96 | 2.59 | 3.334 (5) | 134 |
C15—H15B···O1 | 0.96 | 2.35 | 2.929 (5) | 118 |
C15—H15C···O3iii | 0.96 | 2.49 | 3.400 (4) | 158 |
C14—H14A···O7 | 0.96 | 2.67 | 3.492 (17) | 144 |
C4—H4A···F6iv | 0.93 | 2.58 | 3.193 (6) | 124 |
C4—H4A···O4 | 0.93 | 2.59 | 3.425 (4) | 150 |
C9—H9···O4 | 0.93 | 2.63 | 3.510 (4) | 158 |
C2—H2···O7v | 0.93 | 2.44 | 3.363 (14) | 174 |
C2—H2···O7Xv | 0.93 | 2.57 | 3.498 (19) | 178 |
C1—H1···N3i | 0.93 | 2.34 | 3.146 (3) | 145 |
C16—H16B···F4vi | 0.96 | 2.52 | 3.400 (7) | 152 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+2, −y+1, −z; (v) x+1, y+1, z; (vi) −x+2, −y+1, −z+1. |
Acknowledgements
This work was supported by a grant from the Ministry of Research, Innovation and Digitization, CCCDI – UEFISCDI, project No. PN-III-P2–2.1-PED-2021–3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037–06).
References
Aggarwal, R. & Sumran, G. (2020). Eur. J. Med. Chem. 205, 112652. Web of Science CrossRef PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farooq, T. (2020). Triazoles in Material Sciences. In Advances in Triazole Chemistry, 1st Edition, pp. 223–244. Amsterdam: Elsevier Science. Google Scholar
Feltham, H. L., Barltrop, A. S. & Brooker, S. (2017). Coord. Chem. Rev. 344, 26–53. Web of Science CrossRef CAS Google Scholar
Gallagher, J. F., Duff, T. & Vos, J. G. (2007). CSD Communication (refcode CIPCUA). CCDC, Cambridge, England. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kharlova, M. I., Piletska, K. O., Domasevitch, K. V. & Shtemenko, A. V. (2017). Acta Cryst. E73, 484–487. CSD CrossRef IUCr Journals Google Scholar
Khomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2015). Polyhedron, 100, 82–88. Web of Science CSD CrossRef CAS Google Scholar
Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Tsapko, M. D., Smokal, V. O., Kutsevol, N. V., Smola, S. S., Rusakova, N. V. & Lampeka, R. D. (2023). Mol. Cryst. Liq. Cryst. 767, 139–146. Web of Science CrossRef CAS Google Scholar
Kumar, A., Bheeter, L. P., Gangwar, M. K., Sortais, J. B., Darcel, C. & Ghosh, P. (2015). J. Organomet. Chem. 786, 63–70. Web of Science CSD CrossRef CAS Google Scholar
Leenders, R. G., Brinch, S. A., Sowa, S. T., Amundsen-Isaksen, E., Galera-Prat, A., Murthy, S., Aertssen, S., Smits, J. N., Nieczypor, P., Damen, E., Wegert, A., Nazaré, M., Lehtiö, L., Waaler, J. & Krauss, S. (2021). J. Med. Chem. 64, 17936–17949. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohorodnik, Y. M., Alexander, S. A., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V. & Lampeka, R. D. (2022). Transit. Met. Chem. 47, 213–221. Web of Science CSD CrossRef CAS Google Scholar
Ohorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646. Web of Science CSD CrossRef Google Scholar
Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, C., Chen, Y., Li, J., Zhao, F. & Zhang, H. (2019). Inorg. Chem. Front. 6, 2776–2787. Web of Science CrossRef CAS Google Scholar
Wen, S. Z., Kan, W. Q., Zhang, L. L. & He, Y. C. (2017). Cryst. Res. Technol. 52, 1700105. Web of Science CrossRef Google Scholar
Yao, P. F., Chen, Y. K., Lai, C. F., Li, H. Y., Bian, H. D., Liu, H. F., Yao, D. & Huang, F. P. (2018). Inorg. Chem. 57, 9182–9189. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021a). Chem. Pap. 75, 4899–4906. Web of Science CSD CrossRef CAS Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021b). Theor. Exp. Chem. 57, 358–365. Web of Science CSD CrossRef CAS Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984. Web of Science CSD CrossRef CAS Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28–33. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.