research communications
Z)-4-oxo-4-{phenyl[(thiophen-2-yl)methyl]amino}but-2-enoic acid
and Hirshfeld surface analysis of (aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, fDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C15H13NO3S, the molecular conformation is stable with the intramolecular O—H⋯O hydrogen bond forming a S(7) ring motif. In the crystal, molecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction. Cohesion of the packing is provided by weak van der Waals interactions between the chains. A Hirshfeld surface analysis was undertaken to investigate and quantify the intermolecular interactions. The thiophene ring is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°.
CCDC reference: 2352378
1. Chemical context
The heterocyclic moiety of thiophene makes it a versatile building block for pharmaceuticals, polymers, and advanced materials (Abdelhamid et al., 2011; Chawla et al., 2023; Chan & Ng, 1998; Khalilov et al., 2021; Safavora et al., 2019). One of the interesting synthetic directions for thiophene is its introduction into the Diels–Alder reaction. Highly aromatic thiophene cannot undergo thermal or catalytic Diels–Alder reactions at normal pressure; special conditions are therefore required to fully unlock its synthetic potential in concerted cycloaddition reactions (Rulev & Zubkov, 2022; Polyanskii et al., 2019). The first Diels–Alder adduct between thiophene and maleic anhydride, together with some of the simplest dienophiles, was synthesized under 17 kbar pressure and at almost room temperature (Kotsuki et al., 1978; McCluskey et al., 2002; Kumamoto et al., 2004). Not only the thiophene moiety, but also its combination with other functional groups such as –COOH and C=O can be used as a synthetic strategy for the design of new catalysts, sensors or analytical reagents, and building blocks in crystal engineering (Kopylovich et al., 2011, 2012a,b; MacLeod et al., 2012; Mahmoudi et al., 2017a,b; Mahmudov et al., 2010, 2011; Martins et al., 2017). The attached substituents can also participate in weak intermolecular interactions to direct the functional properties of new thiophene derivatives (Maharramov et al., 2010; Mahmoudi et al., 2019, 2021; Shikhaliyev et al., 2019; Velásquez et al., 2019). To further investigate the potential of thiophene derivatives as dienophiles in Diels–Alder reactions (see Krishna et al., 2022), the title compound 1 was specifically designed and synthesized. The present work showcases a facile methodology for the synthesis of compound 1 from a thiophene derivative and maleic anhydride – the title compound was isolated in a 91% yield after a standard treatment of the reaction mixture (Fig. 1).
2. Structural commentary
The molecular conformation of the title compound (Fig. 2) is stabilized by the intramolecular O—H⋯O hydrogen bond, which forms an S(7) ring motif (Bernstein et al., 1995; Table 1). The thiophene ring (S1/C6–C9) is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°. The phenyl ring (C10–C15) makes dihedral angles of 62.45 (8) and 63.1 (5)°, respectively, with the major and minor disorder components (S1/C6–C9 and S1A/C6A–C9A) of the thiophene ring. The sum of the angles around N1 of 359.9° is typical for secondary The N1—C4—C3—C2, C4—C3—C2—C1, C3—C2—C1—O1 and C3—C2—C1—O2 torsion angles are 172.40 (13), −3.2 (2), 14.4 (2) and −165.63 (15)°, respectively. The bond lengths and angles in the title compound are comparable to those of the similar compounds reported in the Database survey.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction (Table 1; Figs. 3 and 4). Cohesion of the packing is provided by weak van der Waals interactions between the chains.
A Hirshfeld surface analysis was performed to further investigate the intermolecular interactions present in the title compound and the two-dimensional fingerprint plots were generated with CrystalExplorer17.5 (Spackman et al., 2021). Fig. 5 shows the three-dimensional Hirshfeld surface of the compound with dnorm (normalized contact distance) plotted over the range −0.2048 (red) to +1.3169 (blue) a.u.
The fingerprint plots (Fig. 6) show that H⋯H [Fig. 6(b); 43.2%], C⋯H/H⋯C [Fig. 6(c); 27.7%] and O⋯H/H⋯O [Fig. 6(d); 23.7%] interactions contribute the most to the surface contacts. The percentage contributions to the Hirshfeld surfaces from other minor interatomic contacts are as follows: S⋯H/H⋯S 2.5%, C⋯O/O⋯C 1.0%, O⋯O 0.8%, C⋯C 0.5%, N⋯O/O⋯N 0.3% and S⋯O/O⋯S 0.2%.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, update of June 2022; Groom et al., 2016) for the N-[(thiophen-2-yl)methyl]aniline unit gave two similar structures, viz. 3,4-dimethyl-N-[1-(1-thiophen-2-yl)ethylidene]aniline (CSD refcode VIKXIY: Su et al., 2013) and N-((E)-{5-[(E)-(pyridin-3-ylimino)methyl]thiophen-2-yl}methylidene)pyridin-3-amine (QIQLAF: Bolduc et al., 2013). In VIKXIY, molecules are linked by non-classical C—H⋯N hydrogen bonds into supramolecular chains. The three-dimensional network of QIQLAF is governed by multiple weak interactions, including π-stacking between intercalated thiophene rings and azomethine bonds. The molecules are oriented in anti or syn orientations as a result of the hydrogen-bonding interactions in the crystal.
5. Synthesis and crystallization
A mixture of N-(thiophen-2-ylmethyl)aniline (1.89 g, 10 mmol) and maleic anhydride (0.98 g, 10 mmol) was refluxed for 4 h in benzene (20 mL) (TLC monitoring). The reaction mixture was then concentrated under reduced pressure and the obtained slightly yellow oil was solidified in hexane. The solid was recrystallized from a mixture of hexane/ethyl acetate (v/v ∼5:4). The title compound was obtained as colourless prisms (2.61 g, 9.09 mmol). Yield 91%, m.p. 374.3–375.8 K. Single crystals were grown from a mixture of hexane/ethyl acetate (∼5:4). 1H NMR (700 MHz, DMSO-d6) (J, Hz): δ 12.75 (s, 1H), 7.41–7.37 (m, 1H), 7.36–7.31 (m, 2H), 7.31–7.26 (m, 1H), 7.18 (d, J = 7.3 Hz, 2H), 6.92–6.87 (m, 2H), 6.38 (d, J = 12.0, 1H), 5.78 (d, J = 12.0, 1H), 5.07 (s, 2H). 13C NMR (175 MHz, CDCl3): δ 165.87, 164.96, 139.69, 136.67, 136.36, 130.31, 129.63, 128.60, 128.50, 127.79, 126.78, 126.70, 48.81. HRMS (ESI–TOF): calculated for C15H13NO3S [M + H]+ 288.0694; found 288.0691. Elemental analysis calculated (%) for C15H13NO3S: C 62.70; H, 4.56; N, 4.87; O, 16.70; S, 11.16; found: C 62.82; H, 4.45; N, 4.94; O, 16.74; S, 11.04.
6. Refinement
Crystal data, data collection and structure . The thiophene ring (S1/C6–C9) is disordered in a ratio of 0.9466 (17): 0.0534 (17) over two positions with a rotation of 180°. C-bound H atoms were placed in their geometrically calculated positions and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms. The H atom of the OH group was found in a difference-Fourier map and refined freely.
details are summarized in Table 2Supporting information
CCDC reference: 2352378
https://doi.org/10.1107/S2056989024003967/jy2046sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024003967/jy2046Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024003967/jy2046Isup3.cml
C15H13NO3S | F(000) = 600 |
Mr = 287.32 | Dx = 1.413 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8042 (8) Å | Cell parameters from 4604 reflections |
b = 9.4258 (8) Å | θ = 2.8–29.0° |
c = 15.4065 (13) Å | µ = 0.25 mm−1 |
β = 108.455 (3)° | T = 100 K |
V = 1350.5 (2) Å3 | Bulk, colourless |
Z = 4 | 0.40 × 0.34 × 0.20 mm |
Bruker Kappa APEXII area-detector diffractometer | 3177 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.2°, θmin = 3.0° |
Tmin = 0.940, Tmax = 1.000 | h = −13→13 |
21582 measured reflections | k = −13→13 |
4012 independent reflections | l = −21→21 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.4392P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4012 reflections | Δρmax = 0.35 e Å−3 |
192 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.27590 (14) | 0.14305 (14) | 0.00355 (9) | 0.0182 (3) | |
C2 | 1.15520 (14) | 0.20128 (14) | −0.07416 (8) | 0.0170 (3) | |
H2 | 1.180897 | 0.219090 | −0.127661 | 0.020* | |
C3 | 1.01839 (14) | 0.23331 (14) | −0.08348 (8) | 0.0158 (2) | |
H3 | 0.964652 | 0.274345 | −0.140347 | 0.019* | |
C4 | 0.93968 (14) | 0.21300 (13) | −0.01641 (8) | 0.0148 (2) | |
C5 | 0.72253 (14) | 0.24616 (15) | 0.02527 (9) | 0.0182 (3) | |
H5A | 0.748802 | 0.153057 | 0.055723 | 0.022* | |
H5B | 0.619115 | 0.242997 | −0.010667 | 0.022* | |
C6 | 0.74604 (14) | 0.35914 (14) | 0.09688 (8) | 0.0158 (2) | 0.9466 (17) |
C7 | 0.6467 (2) | 0.4469 (3) | 0.11431 (18) | 0.0227 (5) | 0.9466 (17) |
H7 | 0.548211 | 0.447362 | 0.078155 | 0.027* | 0.9466 (17) |
C8 | 0.70285 (18) | 0.53646 (15) | 0.19035 (10) | 0.0260 (3) | 0.9466 (17) |
H8 | 0.647063 | 0.602554 | 0.211255 | 0.031* | 0.9466 (17) |
C9 | 0.84581 (17) | 0.51709 (16) | 0.23009 (9) | 0.0247 (3) | 0.9466 (17) |
H9 | 0.902561 | 0.568587 | 0.281969 | 0.030* | 0.9466 (17) |
S1 | 0.91239 (4) | 0.38895 (4) | 0.17591 (2) | 0.01947 (12) | 0.9466 (17) |
C6A | 0.74604 (14) | 0.35914 (14) | 0.09688 (8) | 0.0158 (2) | 0.0534 (17) |
C7A | 0.866 (2) | 0.409 (3) | 0.1685 (14) | 0.0227 (5) | 0.0534 (17) |
H7A | 0.959121 | 0.372099 | 0.176104 | 0.027* | 0.0534 (17) |
C8A | 0.84581 (17) | 0.51709 (16) | 0.23009 (9) | 0.0247 (3) | 0.0534 (17) |
H8A | 0.912101 | 0.560641 | 0.282056 | 0.030* | 0.0534 (17) |
C9A | 0.70285 (18) | 0.53646 (15) | 0.19035 (10) | 0.0260 (3) | 0.0534 (17) |
H9A | 0.654641 | 0.604979 | 0.215253 | 0.031* | 0.0534 (17) |
S1A | 0.6147 (12) | 0.4493 (16) | 0.1046 (9) | 0.01947 (12) | 0.0534 (17) |
C10 | 0.74377 (13) | 0.35644 (14) | −0.11738 (8) | 0.0145 (2) | |
C11 | 0.76237 (15) | 0.50178 (15) | −0.11112 (9) | 0.0218 (3) | |
H11 | 0.815581 | 0.544184 | −0.054609 | 0.026* | |
C12 | 0.70262 (17) | 0.58569 (16) | −0.18818 (11) | 0.0281 (3) | |
H12 | 0.714737 | 0.685746 | −0.184435 | 0.034* | |
C13 | 0.62523 (15) | 0.52269 (17) | −0.27055 (10) | 0.0264 (3) | |
H13 | 0.585703 | 0.579641 | −0.323445 | 0.032* | |
C14 | 0.60560 (15) | 0.37755 (17) | −0.27577 (9) | 0.0248 (3) | |
H14 | 0.551520 | 0.335301 | −0.332142 | 0.030* | |
C15 | 0.66448 (14) | 0.29248 (16) | −0.19901 (9) | 0.0205 (3) | |
H15 | 0.650653 | 0.192624 | −0.202446 | 0.025* | |
N1 | 0.80705 (11) | 0.26905 (12) | −0.03776 (7) | 0.0152 (2) | |
O1 | 1.24869 (11) | 0.08523 (11) | 0.07469 (6) | 0.0217 (2) | |
H1 | 1.153 (3) | 0.100 (2) | 0.0707 (15) | 0.065 (7)* | |
O2 | 1.39697 (11) | 0.14995 (13) | −0.00031 (7) | 0.0295 (3) | |
O3 | 0.99128 (10) | 0.14570 (10) | 0.05663 (6) | 0.0200 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0177 (6) | 0.0198 (6) | 0.0159 (6) | −0.0010 (5) | 0.0038 (5) | −0.0025 (5) |
C2 | 0.0193 (6) | 0.0189 (6) | 0.0136 (6) | −0.0008 (5) | 0.0066 (5) | 0.0015 (5) |
C3 | 0.0178 (6) | 0.0185 (6) | 0.0112 (5) | 0.0003 (5) | 0.0047 (5) | 0.0013 (4) |
C4 | 0.0176 (6) | 0.0137 (6) | 0.0134 (5) | −0.0028 (5) | 0.0054 (5) | −0.0022 (4) |
C5 | 0.0175 (6) | 0.0233 (7) | 0.0168 (6) | −0.0040 (5) | 0.0099 (5) | −0.0021 (5) |
C6 | 0.0172 (6) | 0.0188 (6) | 0.0124 (5) | −0.0013 (5) | 0.0062 (5) | 0.0018 (4) |
C7 | 0.0191 (11) | 0.0285 (9) | 0.0199 (10) | 0.0011 (9) | 0.0052 (9) | 0.0066 (7) |
C8 | 0.0398 (9) | 0.0198 (7) | 0.0266 (7) | 0.0030 (6) | 0.0223 (7) | 0.0014 (5) |
C9 | 0.0383 (8) | 0.0224 (7) | 0.0158 (6) | −0.0067 (6) | 0.0120 (6) | −0.0037 (5) |
S1 | 0.01743 (19) | 0.0253 (2) | 0.01436 (17) | −0.00051 (14) | 0.00317 (13) | −0.00162 (13) |
C6A | 0.0172 (6) | 0.0188 (6) | 0.0124 (5) | −0.0013 (5) | 0.0062 (5) | 0.0018 (4) |
C7A | 0.0191 (11) | 0.0285 (9) | 0.0199 (10) | 0.0011 (9) | 0.0052 (9) | 0.0066 (7) |
C8A | 0.0383 (8) | 0.0224 (7) | 0.0158 (6) | −0.0067 (6) | 0.0120 (6) | −0.0037 (5) |
C9A | 0.0398 (9) | 0.0198 (7) | 0.0266 (7) | 0.0030 (6) | 0.0223 (7) | 0.0014 (5) |
S1A | 0.01743 (19) | 0.0253 (2) | 0.01436 (17) | −0.00051 (14) | 0.00317 (13) | −0.00162 (13) |
C10 | 0.0124 (5) | 0.0188 (6) | 0.0131 (5) | 0.0004 (4) | 0.0051 (4) | −0.0020 (4) |
C11 | 0.0256 (7) | 0.0202 (7) | 0.0179 (6) | −0.0035 (5) | 0.0046 (5) | −0.0031 (5) |
C12 | 0.0340 (8) | 0.0208 (7) | 0.0287 (8) | 0.0009 (6) | 0.0090 (6) | 0.0044 (6) |
C13 | 0.0223 (7) | 0.0383 (9) | 0.0194 (7) | 0.0112 (6) | 0.0077 (5) | 0.0074 (6) |
C14 | 0.0176 (6) | 0.0385 (9) | 0.0154 (6) | 0.0071 (6) | 0.0011 (5) | −0.0072 (6) |
C15 | 0.0168 (6) | 0.0228 (7) | 0.0192 (6) | 0.0020 (5) | 0.0020 (5) | −0.0077 (5) |
N1 | 0.0147 (5) | 0.0185 (5) | 0.0133 (5) | −0.0023 (4) | 0.0059 (4) | −0.0017 (4) |
O1 | 0.0193 (5) | 0.0284 (5) | 0.0159 (4) | 0.0020 (4) | 0.0033 (4) | 0.0047 (4) |
O2 | 0.0152 (5) | 0.0472 (7) | 0.0249 (5) | 0.0013 (5) | 0.0047 (4) | 0.0033 (5) |
O3 | 0.0229 (5) | 0.0231 (5) | 0.0155 (4) | 0.0028 (4) | 0.0080 (4) | 0.0045 (3) |
C1—O2 | 1.2089 (16) | C6A—C7A | 1.414 (17) |
C1—O1 | 1.3246 (16) | C6A—S1A | 1.579 (12) |
C1—C2 | 1.4960 (18) | C7A—C8A | 1.447 (18) |
C2—C3 | 1.3375 (18) | C7A—H7A | 0.9500 |
C2—H2 | 0.9500 | C8A—C9A | 1.353 (2) |
C3—C4 | 1.4848 (17) | C8A—H8A | 0.9500 |
C3—H3 | 0.9500 | C9A—S1A | 1.563 (12) |
C4—O3 | 1.2507 (15) | C9A—H9A | 0.9500 |
C4—N1 | 1.3444 (16) | C10—C11 | 1.3813 (19) |
C5—N1 | 1.4783 (16) | C10—C15 | 1.3895 (17) |
C5—C6 | 1.4978 (18) | C10—N1 | 1.4444 (16) |
C5—C6A | 1.4978 (18) | C11—C12 | 1.392 (2) |
C5—H5A | 0.9900 | C11—H11 | 0.9500 |
C5—H5B | 0.9900 | C12—C13 | 1.389 (2) |
C6—C7 | 1.368 (3) | C12—H12 | 0.9500 |
C6—S1 | 1.7217 (13) | C13—C14 | 1.380 (2) |
C7—C8 | 1.407 (3) | C13—H13 | 0.9500 |
C7—H7 | 0.9500 | C14—C15 | 1.394 (2) |
C8—C9 | 1.353 (2) | C14—H14 | 0.9500 |
C8—H8 | 0.9500 | C15—H15 | 0.9500 |
C9—S1 | 1.7108 (15) | O1—H1 | 0.93 (3) |
C9—H9 | 0.9500 | ||
O2—C1—O1 | 121.40 (12) | C5—C6A—S1A | 120.0 (4) |
O2—C1—C2 | 118.76 (12) | C6A—C7A—C8A | 119.6 (16) |
O1—C1—C2 | 119.85 (12) | C6A—C7A—H7A | 120.2 |
C3—C2—C1 | 132.93 (12) | C8A—C7A—H7A | 120.2 |
C3—C2—H2 | 113.5 | C9A—C8A—C7A | 97.8 (8) |
C1—C2—H2 | 113.5 | C9A—C8A—H8A | 131.1 |
C2—C3—C4 | 128.36 (12) | C7A—C8A—H8A | 131.1 |
C2—C3—H3 | 115.8 | C8A—C9A—S1A | 121.9 (4) |
C4—C3—H3 | 115.8 | C8A—C9A—H9A | 119.1 |
O3—C4—N1 | 120.25 (11) | S1A—C9A—H9A | 119.1 |
O3—C4—C3 | 122.70 (12) | C9A—S1A—C6A | 95.8 (6) |
N1—C4—C3 | 117.04 (11) | C11—C10—C15 | 121.14 (12) |
N1—C5—C6 | 113.11 (10) | C11—C10—N1 | 119.64 (11) |
N1—C5—C6A | 113.11 (10) | C15—C10—N1 | 119.22 (12) |
N1—C5—H5A | 109.0 | C10—C11—C12 | 119.57 (13) |
C6—C5—H5A | 109.0 | C10—C11—H11 | 120.2 |
N1—C5—H5B | 109.0 | C12—C11—H11 | 120.2 |
C6—C5—H5B | 109.0 | C13—C12—C11 | 119.80 (14) |
H5A—C5—H5B | 107.8 | C13—C12—H12 | 120.1 |
C7—C6—C5 | 128.44 (15) | C11—C12—H12 | 120.1 |
C7—C6—S1 | 109.66 (13) | C14—C13—C12 | 120.18 (13) |
C5—C6—S1 | 121.83 (10) | C14—C13—H13 | 119.9 |
C6—C7—C8 | 114.29 (17) | C12—C13—H13 | 119.9 |
C6—C7—H7 | 122.9 | C13—C14—C15 | 120.54 (13) |
C8—C7—H7 | 122.9 | C13—C14—H14 | 119.7 |
C9—C8—C7 | 111.84 (15) | C15—C14—H14 | 119.7 |
C9—C8—H8 | 124.1 | C10—C15—C14 | 118.76 (13) |
C7—C8—H8 | 124.1 | C10—C15—H15 | 120.6 |
C8—C9—S1 | 112.04 (11) | C14—C15—H15 | 120.6 |
C8—C9—H9 | 124.0 | C4—N1—C10 | 123.64 (10) |
S1—C9—H9 | 124.0 | C4—N1—C5 | 118.81 (11) |
C9—S1—C6 | 92.17 (7) | C10—N1—C5 | 117.49 (10) |
C7A—C6A—C5 | 135.0 (9) | C1—O1—H1 | 110.4 (14) |
C7A—C6A—S1A | 104.9 (9) | ||
O2—C1—C2—C3 | −165.63 (15) | C5—C6A—S1A—C9A | 176.9 (3) |
O1—C1—C2—C3 | 14.4 (2) | C15—C10—C11—C12 | −1.0 (2) |
C1—C2—C3—C4 | −3.2 (2) | N1—C10—C11—C12 | 179.31 (12) |
C2—C3—C4—O3 | −8.5 (2) | C10—C11—C12—C13 | −0.1 (2) |
C2—C3—C4—N1 | 172.40 (13) | C11—C12—C13—C14 | 1.0 (2) |
N1—C5—C6—C7 | 121.71 (19) | C12—C13—C14—C15 | −0.8 (2) |
N1—C5—C6—S1 | −61.84 (14) | C11—C10—C15—C14 | 1.2 (2) |
C5—C6—C7—C8 | 176.46 (15) | N1—C10—C15—C14 | −179.09 (11) |
S1—C6—C7—C8 | −0.3 (2) | C13—C14—C15—C10 | −0.3 (2) |
C6—C7—C8—C9 | 0.6 (3) | O3—C4—N1—C10 | 175.49 (11) |
C7—C8—C9—S1 | −0.54 (19) | C3—C4—N1—C10 | −5.36 (17) |
C8—C9—S1—C6 | 0.30 (12) | O3—C4—N1—C5 | −1.68 (17) |
C7—C6—S1—C9 | 0.02 (15) | C3—C4—N1—C5 | 177.47 (11) |
C5—C6—S1—C9 | −177.02 (11) | C11—C10—N1—C4 | −90.21 (15) |
N1—C5—C6A—C7A | −61.1 (16) | C15—C10—N1—C4 | 90.09 (15) |
N1—C5—C6A—S1A | 121.4 (7) | C11—C10—N1—C5 | 87.00 (15) |
C5—C6A—C7A—C8A | −175.6 (8) | C15—C10—N1—C5 | −92.71 (14) |
S1A—C6A—C7A—C8A | 2 (2) | C6—C5—N1—C4 | 89.91 (14) |
C6A—C7A—C8A—C9A | −2 (2) | C6A—C5—N1—C4 | 89.91 (14) |
C7A—C8A—C9A—S1A | 0.9 (13) | C6—C5—N1—C10 | −87.43 (13) |
C8A—C9A—S1A—C6A | 0.2 (10) | C6A—C5—N1—C10 | −87.43 (13) |
C7A—C6A—S1A—C9A | −1.3 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.93 (3) | 1.59 (3) | 2.5153 (15) | 172 (2) |
C5—H5B···O2i | 0.99 | 2.40 | 3.2201 (19) | 140 |
C9—H9···O3ii | 0.95 | 2.48 | 3.3904 (16) | 160 |
C14—H14···O2iii | 0.95 | 2.56 | 3.4261 (17) | 152 |
C15—H15···Cg2iv | 0.95 | 3.00 | 3.504 (6) | 115 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, −y+1/2, z−1/2; (iv) x, −y−1/2, z−3/2. |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AGP and EVN; X-ray analysis, ZA; writing (review and editing of the manuscript), funding acquisition, ZA, EVN, MSG, KIH and NDS; supervision, MA and AB.
Funding information
This research was funded by the Russian Science Foundation (Project No. 23–23-00577). This work was also supported by the Azerbaijan Medical University, the Western Caspian University (Azerbaijan) and Baku State University (Azerbaijan).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196–1199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, H. S. O. & Ng, S. C. (1998). Prog. Polym. Sci. 23, 1167–1231. Web of Science CrossRef CAS Google Scholar
Chawla, S., Sharma, S., Kashid, S., Verma, P. K. & Sapra, A. (2023). Mini Rev. Med. Chem. 23, 1514–1534. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kotsuki, H., Kitagawa, S., Nishizawa, H. & Tokoroyama, T. (1978). J. Org. Chem. 43, 1471–1472. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863. CAS Google Scholar
Kumamoto, K., Fukada, I. & Kotsuki, H. (2004). Angew. Chem. Int. Ed. 43, 2015–2017. Web of Science CrossRef CAS Google Scholar
Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
McCluskey, A., Keane, M. A., Walkom, C. C., Bowyer, M. C., Sim, A. T., Young, D. J. & Sakoff, J. A. (2002). Bioorg. Med. Chem. Lett. 12, 391–393. Web of Science CrossRef PubMed CAS Google Scholar
Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320–2355. Web of Science CrossRef CAS PubMed Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Su, B.-Y., Wang, J.-X., Liu, X. & Li, Q.-D. (2013). Acta Cryst. C69, 1073–1076. Web of Science CSD CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.