research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(2-oxo-2H-chromen-6-yl)­­oxy]acetate

crossmark logo

aDepartment of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: ngoyal@xula.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 17 April 2024; accepted 20 May 2024; online 31 May 2024)

Ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate, C13H12O5, a member of the pharmacologically important class of coumarins, crystallizes in the monoclinic C2/c space group in the form of sheets, within which mol­ecules are related by inversion centers and 21 axes. Multiple C—H⋯O weak hydrogen-bonding inter­actions reinforce this pattern. The planes of these sheets are oriented in the approximate direction of the ac face diagonal. Inter­sheet inter­actions are a combination of coumarin system ππ stacking and additional C—H⋯O weak hydrogen bonds between ethyl acet­oxy groups.

1. Chemical context

Chromen-2-one, also known as coumarin, and its derivatives hold considerable significance in both natural product and synthetic organic chemistry. Coumarin's structure is characterized by a benzene ring fused to an α-pyrone ring, which makes it valuable in pharmaceutical research (Murray et al., 1982[Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry. Chichester: John Wiley and Sons.]). Coumarin derivatives have shown biological activity as anti­cancer (Emami & Dadashpour, 2015[Emami, S. & Dadashpour, S. (2015). Eur. J. Med. Chem. 102, 611-630.]), anti­oxidant (Matos et al., 2017[Matos, M. J., Vazquez-Rodriguez, S., Fonseca, A., Uriarte, E., Santana, L. & Borges, F. (2017). Curr. Org. Chem. 21, 311-324.]), anti­coagulant (Satish, 2016[Satish, G. (2016). Advances in Structure and Activity Relationship of Coumarin Derivatives, edited by S. Penta, ch. 8 Anticoagulant Agents, pp. 151-159. Boston: Academic Press.]) and anti­neuro­degenerative agents (Jameel et al., 2016[Jameel, E., Umar, T., Kumar, J. & Hoda, N. (2016). Chem. Biol. Drug Des. 87, 21-38.]). We have previously reported a number of synthetically derived mol­ecules based on coumarin, chromene and flavone as substrates/inhibitors of several important cytochrome P450 enzymes, including P450s 1A1, 1A2, and 2A6 (Goyal et al., 2023[Goyal, N., Do, C., Sridhar, J., Shaik, S., Thompson, A., Perry, T., Carter, L. & Foroozesh, M. (2023). Chem. Res. Toxicol. 36, 1973-1979.]; Foroozesh et al., 1997[Foroozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91-102.]). As part of an ongoing program of research into the pharmacological properties of coumarin derivatives, we have undertaken the synthesis of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate, the structural characterization of which we report herein.

[Scheme 1]

2. Structural commentary

Ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate deposits in the form of colorless blocks by slow cooling of a 2:1 ethyl acetate:hexa­nes solution. The mol­ecule crystallizes in completely ordered fashion with the appended ethyl oxyacetate group at the 6-position arranged in a fully extended, linear arrangement (Fig. 1[link]). Thus, all non-hydrogen atoms of the mol­ecule reside within the same plane with an average deviation of 0.0457 Å.

[Figure 1]
Figure 1
Displacement ellipsoid plot of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate with complete labeling of non-hydrogen atoms. Ellipsoids are shown at the 50% probability level.

Coplanar pairs of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate mol­ecules are organized in a head-to-tail fashion by apparent C5—H5⋯O4 and C6—H6⋯O3 weak hydrogen-bonding inter­actions around an inversion center (Table 1[link], Fig. 2[link]). The adjoining rows of mol­ecules above and below those shown in Fig. 2[link] are related by 21 screw axes to those in these centrosymmetric dyads, with which they form C8—H8⋯O1 and C1—H1⋯O1 hydrogen bonds (Fig. 3[link]). The replication of these rows of mol­ecules, which are alternately related by inversion centers and 21 axes, creates sheets whose planes lie approximately in the direction of the ac face diagonal of the unit cell (Fig. 4[link]). Mol­ecules between sheets are also related by inversion centers (Fig. 5[link]) and enjoy pairs of C12—H12A⋯O3 hydrogen-bond contacts. The layered packing arrangement is guided by ππ stacking between the coumarin ring systems, with a separation of 3.4460 (6) Å between the centroids of the α-pyrone rings (C1–C3/O2/C4/C9) of adjacent mol­ecules, as assessed by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). This distance is only modestly greater than the 3.35 Å separation between the sheets of carbon atoms in graphite (Chung, 2002[Chung, D. D. L. (2002). J. Mater. Sci. 37, 1-15.]) and is reinforced by the hydrogen bonding between extended ethyl oxyacetate chains in adjacent layers (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.47 3.1973 (12) 133
C6—H6⋯O3i 0.95 2.65 3.5965 (11) 172
C1—H1⋯O1ii 0.95 2.61 3.3951 (15) 140
C8—H8⋯O1ii 0.95 2.27 3.1536 (12) 154
C12—H12A⋯O3iii 0.99 2.57 3.5156 (13) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Planar centrosymmetric dyads of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate showing the C—H⋯O weak inter­actions that guide the packing arrangement. The H5⋯O4 and H6⋯O3 distances are 2.47 and 2.65 Å, respectively. The symmetry transformation relating mol­ecules through these hydrogen bonds is −x + [{1\over 2}], −y + [{3\over 2}], −z + 1. Displacement ellipsoids are presented at the 50% probability level.
[Figure 3]
Figure 3
Rows of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate mol­ecules to both sides of, and in the same plane as, the centrosymmetric diads in Fig. 2[link]. These mol­ecules are related to those in the centrosymmetric dyads by a 21 operation, the position for one such axis being shown. This patterned arrangement is assisted by C8—H8⋯O1 and by C1—H1⋯O1 close contacts, in which the corresponding H8⋯O1 and H1⋯O1 distances are 2.27 and 2.61 Å. The symmetry transformation whereby one mol­ecule is converted to the other across these hydrogen bonds is −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]. Ellipsoids are shown at the 50% probability level.
[Figure 4]
Figure 4
Packing diagram for ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate illustrating the arrangement of mol­ecules into sheets in the approximate direction of the ac face diagonal of the unit cell. All H atoms are omitted for clarity, and displacement ellipsoids are drawn at 50% probability.
[Figure 5]
Figure 5
Weak C—H⋯O inter­actions between centrosymmetric pairs of mol­ecules of ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate in different sheets. The H12A⋯O3 distance is 2.57 Å, and the symmetry transformation relating these mol­ecules is −x + 1, −y + 1, −z + 1. Displacement ellipsoids are presented at the 50% probability level.

A Hirshfeld surface, generated by use of CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate is presented in Fig. 6[link] with a normalized contact distance (dnorm) set between −0.3446 and 1.3365. Adjacent mol­ecules, both within the plane and above the plane of that depicted with the Hirshfeld surface, are shown along with close C—H⋯O contacts. The C—H⋯O hydrogen bonds that are separately illustrated in Figs. 2[link], 3[link] and 5[link] are collectively shown in Fig. 6[link] and emphasize the packing efficiency enabled by the abundance of such juxtapositions. Fig. 7[link] illustrates a fingerprint plot with all inter­molecular contacts presented in the upper left panel and the O⋯H/H⋯O, C⋯H/H⋯C, and H⋯H contacts parsed into separate panels (clockwise, respectively). Of these contacts, the O⋯H/H⋯O contribute most importantly to the packing energetics, both because they represent the greatest percentage of the total and because they account for the closest inter­molecular contacts. The distinctive blue fingers observed in the de + di ≃ 2.2–2.6 territory of Fig. 7[link], upper right, have their origin in these non-classical C—H⋯O hydrogen bonds.

[Figure 6]
Figure 6
Hirshfeld surface for ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate with dnorm set between −0.3446 and 1.3365. Close inter­molecular contacts are depicted with dashed lines.
[Figure 7]
Figure 7
Fingerprint plot for ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate with all inter­molecular contacts presented in the upper left panel and the O⋯H/H⋯O, C⋯H/H⋯C, and H⋯H contacts illustrated in separate panels (clockwise, respectively).

3. Database survey

A variety of chromen-2-ones that are substituted in the 6-position of the ring system have been characterized structurally by X-ray diffraction. Examples include 6-meth­oxy­coumarin (Baures et al., 2002[Baures, P. W., Rush, J. R., Schroeder, S. D. & Beatty, A. M. (2002). Cryst. Growth Des. 2, 107-110.]), 6-benzyl­oxycoumarin (Adfa et al., 2010[Adfa, M., Koketsu, M. & Ebihara, M. (2010). Acta Cryst. E66, o2190.]), 6-acet­oxy­coumarin (Murthy et al., 1988[Murthy, G. S., Ramamurthy, V. & Venkatesan, K. (1988). Acta Cryst. C44, 307-311.]), 6-(quin­oxalin-2-yl)coumarin (Bandaru et al., 2019[Bandaru, S. S. M., Chrysochos, N. & Schulzke, C. (2019). CSD Communication (CCDC 1842722). CCDC, Cambridge, England.]), 6-(4-tert- butyl­benzoate)coumarin (Kenfack Tsobnang et al., 2024[Kenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106-109.]), and 6-(2-iodo­phen­oxy)coumarin (Wang et al., 2022[Wang, Y., Zhang, Y., Wang, L. & Han, J. (2022). Asian J. Org. Chem. 11, e202100669.]). Of these, only 6-meth­oxy­coumarin has a planar mol­ecular structure and therefore a sheetlike packing arrangement in the crystalline state that is analogous to that observed for ethyl 2-[(2-oxo-2H-chromen-6-yl)­oxy]acetate. Because ar­yloxy substituents in the 6-position of the coumarin ring system are typically not oriented to be in the same plane as the coumarin core, a pattern that such derivatives display is packing as centrosymmetric dyads with with parallel coplanar arrangement of the coumarin cores.

4. Synthesis and crystallization

Potassium carbonate (0.512 g, 3.70 mmol) was added to a stirred solution of 6-hy­droxy-2H-chromen-2-one (0.200 g, 1.233 mmol) in 10 mL of acetone, and stirring was continued for 30 minutes at 298 K. Bromo­ethyl acetate (0.309 g, 1.850 mmol) was added slowly to the reaction mixture, and upon completion, the temperature was elevated to 313 K with stirring for 12 h. The reaction mixture was filtered, and the filtrate was concentrated to dryness under reduced pressure. The resulting crude solid was purified via flash chromatography on silica gel with 20:80 ethyl acetate:hexa­nes as the eluting solvent to yield ethyl 2-[(2-oxo-2H-chrome-6-yl)­oxy]acetate as a white solid, m.p. 377–380 K. 1H NMR [300 MHz, δ (ppm, in CDCl3)]: 7.53 (d, J = 8.0 Hz, 1 H), 7.21 (d, J = 8.0 Hz, 1 H), 7.14–7.10 (m, 1 H), 6.93 (d, J = 6.9 Hz, 1 H), 6.39 (d, J = 7.0 Hz, 1 H), 4.64 (s, 2 H), 4.28 (q, J = 7.4 Hz, 2 H), 1.28 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, δ (ppm, in CDCl3)): 168.4, 160.7, 154.3, 149.0, 143.0, 119.8, 119.2, 117.9, 117.2, 111.6, 65.9, 61.5, 14.1. Diffraction-quality white needle-shaped crystals were obtained by slow cooling of a warm solution of the product in 2:1 ethyl acetate:hexa­nes.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were refined isotropically with displacement parameters 1.2–1.5 times those of the carbon atoms to which they are attached.

Table 2
Experimental details

Crystal data
Chemical formula C13H12O5
Mr 248.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 8.2188 (4), 13.8709 (7), 20.8370 (11)
β (°) 96.062 (2)
V3) 2362.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.22 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.95, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 30310, 3031, 2517
Rint 0.031
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.08
No. of reflections 3031
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.18
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisncosin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Ethyl 2-[(2-oxo-2H-chromen-6-yl)oxy]acetate top
Crystal data top
C13H12O5F(000) = 1040
Mr = 248.23Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.2188 (4) ÅCell parameters from 9847 reflections
b = 13.8709 (7) Åθ = 2.9–28.7°
c = 20.8370 (11) ŵ = 0.11 mm1
β = 96.062 (2)°T = 150 K
V = 2362.2 (2) Å3Block, clear colourless
Z = 80.22 × 0.11 × 0.07 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.3910 pixels mm-1θmax = 28.8°, θmin = 2.9°
φ and ω scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.95, Tmax = 0.99l = 2828
30310 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.7919P]
where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were obtained from 6 sets of frames, each of width 0.50 ° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 10.00 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75633 (12)1.09654 (7)0.74589 (4)0.0550 (3)
O20.61257 (9)1.00599 (5)0.67405 (3)0.0340 (2)
O30.39172 (8)0.65701 (5)0.57181 (3)0.02737 (17)
O40.30429 (9)0.48767 (5)0.51199 (3)0.03335 (19)
O50.43669 (8)0.40506 (5)0.59491 (3)0.02889 (18)
C10.72524 (12)0.84028 (8)0.74031 (5)0.0296 (2)
H10.7644450.7838250.7626710.036*
C20.77358 (13)0.92769 (8)0.76270 (5)0.0341 (2)
H20.8464040.9320700.8011500.041*
C30.71754 (14)1.01526 (8)0.72973 (5)0.0366 (3)
C40.56065 (11)0.91657 (7)0.65061 (4)0.0261 (2)
C50.45308 (12)0.91484 (7)0.59435 (5)0.0288 (2)
H50.4179460.9731410.5733360.035*
C60.39835 (11)0.82698 (7)0.56963 (4)0.0268 (2)
H60.3247880.8246560.5312980.032*
C70.45074 (11)0.74109 (7)0.60079 (4)0.0238 (2)
C80.55704 (11)0.74335 (7)0.65691 (4)0.0246 (2)
H80.5913890.6850460.6781110.030*
C90.61368 (11)0.83234 (7)0.68224 (4)0.0246 (2)
C100.45751 (12)0.57113 (7)0.60081 (4)0.0258 (2)
H10A0.4300900.5669850.6458690.031*
H10B0.5781540.5715360.6015790.031*
C110.38763 (11)0.48537 (7)0.56293 (4)0.0249 (2)
C120.38869 (13)0.31449 (7)0.56288 (5)0.0316 (2)
H12A0.4264990.3127690.5193320.038*
H12B0.2680950.3078320.5582700.038*
C130.46617 (15)0.23374 (8)0.60369 (6)0.0411 (3)
H13A0.4347140.1717480.5834830.062*
H13B0.4287070.2364710.6467690.062*
H13C0.5854890.2404490.6073640.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0740 (6)0.0406 (5)0.0461 (5)0.0193 (4)0.0137 (4)0.0108 (4)
O20.0400 (4)0.0273 (4)0.0323 (4)0.0061 (3)0.0069 (3)0.0044 (3)
O30.0308 (4)0.0226 (3)0.0261 (3)0.0025 (2)0.0093 (3)0.0009 (2)
O40.0369 (4)0.0320 (4)0.0283 (4)0.0025 (3)0.0101 (3)0.0005 (3)
O50.0350 (4)0.0239 (3)0.0263 (3)0.0031 (3)0.0039 (3)0.0020 (3)
C10.0275 (5)0.0371 (5)0.0229 (4)0.0028 (4)0.0034 (4)0.0001 (4)
C20.0325 (5)0.0440 (6)0.0242 (4)0.0084 (4)0.0044 (4)0.0043 (4)
C30.0395 (6)0.0400 (6)0.0291 (5)0.0112 (4)0.0029 (4)0.0079 (4)
C40.0261 (4)0.0259 (5)0.0254 (4)0.0044 (3)0.0014 (3)0.0038 (3)
C50.0306 (5)0.0256 (5)0.0285 (5)0.0000 (4)0.0059 (4)0.0020 (4)
C60.0263 (4)0.0277 (5)0.0245 (4)0.0011 (3)0.0071 (3)0.0017 (3)
C70.0226 (4)0.0244 (4)0.0235 (4)0.0025 (3)0.0024 (3)0.0005 (3)
C80.0244 (4)0.0265 (4)0.0218 (4)0.0006 (3)0.0029 (3)0.0027 (3)
C90.0220 (4)0.0309 (5)0.0203 (4)0.0022 (3)0.0015 (3)0.0009 (3)
C100.0288 (5)0.0245 (4)0.0226 (4)0.0024 (3)0.0043 (3)0.0025 (3)
C110.0251 (4)0.0257 (4)0.0233 (4)0.0024 (3)0.0001 (3)0.0022 (3)
C120.0384 (5)0.0247 (5)0.0317 (5)0.0034 (4)0.0036 (4)0.0026 (4)
C130.0418 (6)0.0289 (5)0.0534 (7)0.0043 (4)0.0082 (5)0.0041 (5)
Geometric parameters (Å, º) top
O1—C31.2096 (13)C5—H50.9500
O2—C31.3769 (12)C6—C71.4026 (13)
O2—C41.3838 (11)C6—H60.9500
O3—C71.3778 (11)C7—C81.3842 (12)
O3—C101.4169 (11)C8—C91.4025 (13)
O4—C111.2013 (11)C8—H80.9500
O5—C111.3383 (11)C10—C111.5074 (12)
O5—C121.4573 (11)C10—H10A0.9900
C1—C21.3440 (14)C10—H10B0.9900
C1—C91.4432 (12)C12—C131.5062 (15)
C1—H10.9500C12—H12A0.9900
C2—C31.4467 (16)C12—H12B0.9900
C2—H20.9500C13—H13A0.9800
C4—C91.3888 (13)C13—H13B0.9800
C4—C51.3920 (12)C13—H13C0.9800
C5—C61.3798 (13)
C3—O2—C4121.57 (8)C9—C8—H8120.2
C7—O3—C10115.08 (7)C4—C9—C8119.14 (8)
C11—O5—C12115.90 (7)C4—C9—C1118.25 (9)
C2—C1—C9119.89 (9)C8—C9—C1122.61 (9)
C2—C1—H1120.1O3—C10—C11109.44 (7)
C9—C1—H1120.1O3—C10—H10A109.8
C1—C2—C3121.67 (8)C11—C10—H10A109.8
C1—C2—H2119.2O3—C10—H10B109.8
C3—C2—H2119.2C11—C10—H10B109.8
O1—C3—O2116.42 (10)H10A—C10—H10B108.2
O1—C3—C2126.09 (10)O4—C11—O5125.15 (9)
O2—C3—C2117.48 (9)O4—C11—C10126.30 (9)
O2—C4—C9121.13 (8)O5—C11—C10108.54 (7)
O2—C4—C5117.22 (9)O5—C12—C13107.74 (8)
C9—C4—C5121.64 (9)O5—C12—H12A110.2
C6—C5—C4118.87 (9)C13—C12—H12A110.2
C6—C5—H5120.6O5—C12—H12B110.2
C4—C5—H5120.6C13—C12—H12B110.2
C5—C6—C7120.35 (8)H12A—C12—H12B108.5
C5—C6—H6119.8C12—C13—H13A109.5
C7—C6—H6119.8C12—C13—H13B109.5
O3—C7—C8123.44 (8)H13A—C13—H13B109.5
O3—C7—C6116.07 (7)C12—C13—H13C109.5
C8—C7—C6120.49 (8)H13A—C13—H13C109.5
C7—C8—C9119.51 (9)H13B—C13—H13C109.5
C7—C8—H8120.2
C9—C1—C2—C30.47 (16)C6—C7—C8—C90.63 (14)
C4—O2—C3—O1179.55 (10)O2—C4—C9—C8179.62 (8)
C4—O2—C3—C20.72 (15)C5—C4—C9—C80.16 (15)
C1—C2—C3—O1178.93 (12)O2—C4—C9—C10.21 (14)
C1—C2—C3—O20.23 (16)C5—C4—C9—C1180.00 (8)
C3—O2—C4—C90.50 (15)C7—C8—C9—C40.50 (14)
C3—O2—C4—C5179.29 (9)C7—C8—C9—C1179.67 (8)
O2—C4—C5—C6179.84 (9)C2—C1—C9—C40.69 (14)
C9—C4—C5—C60.05 (15)C2—C1—C9—C8179.14 (9)
C4—C5—C6—C70.08 (15)C7—O3—C10—C11177.82 (7)
C10—O3—C7—C84.68 (13)C12—O5—C11—O42.60 (14)
C10—O3—C7—C6174.59 (8)C12—O5—C11—C10176.17 (7)
C5—C6—C7—O3178.87 (8)O3—C10—C11—O48.06 (14)
C5—C6—C7—C80.43 (15)O3—C10—C11—O5173.20 (7)
O3—C7—C8—C9178.61 (8)C11—O5—C12—C13175.57 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.473.1973 (12)133
C6—H6···O3i0.952.653.5965 (11)172
C1—H1···O1ii0.952.613.3951 (15)140
C8—H8···O1ii0.952.273.1536 (12)154
C12—H12A···O3iii0.992.573.5156 (13)159
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The research reported has been supported by the National Institutes of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under award numbers 5RL5GM118966 and TL4GM118968. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions. The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which Tulane University's Bruker SMART APEX CCD X-ray diffractometer was purchased. Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.

Funding information

Funding for this research was provided by: National Institute of General Medical Sciences (award Nos. 5RL5GM118966 and TL4GM118968).

References

First citationAdfa, M., Koketsu, M. & Ebihara, M. (2010). Acta Cryst. E66, o2190.  CrossRef IUCr Journals Google Scholar
First citationBandaru, S. S. M., Chrysochos, N. & Schulzke, C. (2019). CSD Communication (CCDC 1842722). CCDC, Cambridge, England.  Google Scholar
First citationBaures, P. W., Rush, J. R., Schroeder, S. D. & Beatty, A. M. (2002). Cryst. Growth Des. 2, 107–110.  CrossRef CAS Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisncosin, USA.  Google Scholar
First citationChung, D. D. L. (2002). J. Mater. Sci. 37, 1–15.  Google Scholar
First citationEmami, S. & Dadashpour, S. (2015). Eur. J. Med. Chem. 102, 611–630.  Web of Science CrossRef CAS PubMed Google Scholar
First citationForoozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91–102.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGoyal, N., Do, C., Sridhar, J., Shaik, S., Thompson, A., Perry, T., Carter, L. & Foroozesh, M. (2023). Chem. Res. Toxicol. 36, 1973–1979.  CrossRef CAS PubMed Google Scholar
First citationJameel, E., Umar, T., Kumar, J. & Hoda, N. (2016). Chem. Biol. Drug Des. 87, 21–38.  CrossRef CAS PubMed Google Scholar
First citationKenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106–109.  CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMatos, M. J., Vazquez-Rodriguez, S., Fonseca, A., Uriarte, E., Santana, L. & Borges, F. (2017). Curr. Org. Chem. 21, 311–324.  CAS Google Scholar
First citationMurray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry. Chichester: John Wiley and Sons.  Google Scholar
First citationMurthy, G. S., Ramamurthy, V. & Venkatesan, K. (1988). Acta Cryst. C44, 307–311.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSatish, G. (2016). Advances in Structure and Activity Relationship of Coumarin Derivatives, edited by S. Penta, ch. 8 Anticoagulant Agents, pp. 151–159. Boston: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y., Zhang, Y., Wang, L. & Han, J. (2022). Asian J. Org. Chem. 11, e202100669.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds