research communications
The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives
aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com
Three new 1H-indole derivatives, namely, 2-(bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for intermolecular bonding involving sets of slipped π–π interactions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supramolecular columns with every pair of successive molecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π interactions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of interactions agree with the results of a Hirshfeld surface analysis and the calculated interaction energies. In particular, the largest interaction energies (up to −60.8 kJ mol−1) are associated with pairing of antiparallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π interactions are comparable and account for 13–34 kJ mol−1.
1. Chemical context
Derivatives of indole exhibit antibacterial (Okabe & Adachi, 1998) and antitumour (Schollmeyer et al., 1995) activities. In particular, 1-(phenylsulfonyl)indoles are applicable to the synthesis of biologically active and their analogues, including pyridocarbazoles, such as the anticancer alkaloid ellipticine, carbazoles, furoindoles, pyrroloindoles, indolocarbazoles and other species. Some of the phenylsulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993). In such systems, the phenylsulfonyl moiety may act either as a protecting or an activating group (Jasinski et al., 2009). Since the related halogen-substituted indoles also demonstrate antibacterial and antifungal activity (Piscopo et al., 1990), one can anticipate a range of functional benefits from the halogen derivatization. Thus, substitution by bromine atoms may significantly enhance in vitro blood–brain barrier permeability, providing evidence for improved delivery to the central nervous system (Bouthenet et al., 2011). Bromination on the phenol ring is important for the antimicrobial activity (Gentry et al., 1999). The incorporation of heavy atoms, such as bromine, increases the generation of reactive species during photosensitization (Semenova et al., 2021). In particular, fluorescent Br-substituted dyes are utilized for photodynamic therapy applications (Liu et al., 2021). The fluorescent 4,6-dibromoindolenine cyanine revealed excellent properties for optical tumour imaging (Guerrero et al., 2017). Recognizing the importance of such compounds for biochemical applications and drug discovery and our ongoing research into the construction of indole derivatives have prompted us to investigate a series of Br-substituted species. We report herein the crystal structures determination and Hirshfeld surface analysis of three new indoles: 2-(bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole (III).
2. Structural commentary
The molecular structures of the title compounds, C16H14BrNO2S, (I), C24H20BrNO3S, (II) and C23H18BrNO2S, (III), are illustrated in Figs. 1, 2 and 3, respectively. In all the cases, the indole ring systems (N1/C1–C8) are essentially planar, with a maximum deviation from the corresponding mean plane of 0.0393 (17) Å, observed for N1 atom in III. The sulfonyl-bound phenyl rings (C9–C14) are almost orthogonal to the carrier indole ring systems (N1/C1–C8), with respective interplanar angles of 76.40 (9)° for I, 73.35 (7)° for II and 87.68 (8)° for III. The ethenyl-bound phenyl rings (C17–C22) in II and III are also actually orthogonal to the indole frameworks, subtending dihedral angles of 72.48 (7) and 79.50 (8)°, respectively. As a consequence, the planes of these outer phenyl rings (C9–C14 and C17–C22) are nearly parallel, subtending angles of 9.56 (16) in II and 18.45 (6)° in III.
The torsion angles O2—S1—N1—C1 and O1—S1—N1—C8 [55.3 (2) and −21.1 (2)°, respectively, for I, −46.74 (19) and 45.94 (19)° for II and 42.9 (2) and −41.8 (2)° for III] indicate the syn conformation of the sulfonyl moiety. In all three compounds, the tetrahedral configuration around S1 atom is somewhat distorted. The increase in the O2—S1—O1 angles [120.11 (14)° for I, 119.67 (12)° for II and 119.60 (13)° for III], with a simultaneous decrease in the N1—S1—C9 angles [104.46 (12)° for I, 103.78 (10)° for II and 105.70 (10)° for III] from the ideal tetrahedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interaction between the two short S=O bonds.
In all three compounds, the sum of the bond angles around N1 [355.88 (11), 348.62 (17) and 352.89 (12)° for I, II and III, respectively] indicate sp2 (Beddoes et al., 1986). At the same time, as a result of the electron-withdrawing character of the phenylsulfonyl groups, the N1—Csp2 bonds are longer than the standard length value of 1.355 (14) Å [N1—C1 = 1.419 (3) for I, 1.425 (3) for II and 1.428 (3) Å for III and N1—C8 = 1.434 (3) for I, 1.438 (3) for II and 1.437 (3) Å for III] (Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016). In all the compounds, the certain expansion of the ipso angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981). The geometric parameters of the present compounds agree well with those reported for related structures (Madhan et al., 2022, 2023a,b). In all three compounds, the molecular conformations are stabilized by weak C2—H2⋯O2 intramolecular interactions with C2⋯O2 = 2.950 (2)–3.057 (4) Å.
3. Supramolecular features
With a lack of conventional hydrogen-bond donor functionality, the supramolecular structures of all three compounds are dominated by weaker interactions, namely by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds (Tables 1–3) and slipped π–π stacking interactions (Table 4).
|
|
|
In the structure of I, molecules are linked via double bonds involving C2—H2 and C10—H10 donors and O1i acceptors [C⋯O = 3.306 (4) and 3.503 (4) Å; symmetry code: (i) −x + 1, y − , −z + ] into the chains propagating along the b-axis direction in the crystal (Table 1). The most salient feature of the array is infinite stacking of the indole moieties, which yields columns down the a-axis. Within these columns, pairs of adjacent molecules are held together by π–π interactions or by double CH3⋯π bonds, in alternate sequence (Fig. 4). The counterparts of every such pairs are related by inversion [symmetry codes: (iii) −x + 1, −y + 1, −x + 1; (v) −x, −y + 1, −z + 1, respectively.] For the dimer of the first kind, the geometry parameters are consistent with weak slipped π–π interactions. The shortest intercentroid distance is observed between the pyrrole rings (Table 4). However, the centroid of the N1/C1–C8 group (Cg1) is situated almost above the midpoint of the C1 and C6 bridgehead atoms of the neighbouring molecule and therefore both pyrrole–pyrrole [Cg1⋯Cg1iii = 3.628 (3) Å] and pyrrole–benzo [Cg1⋯Cg2iii = 3.831 (3) Å] interactions may be considered. The entire π–π and CH3⋯π bonded stack is additionally stabilized by weak hydrogen bonding of the sulfonyl O atoms [C⋯O = 3.302 (5)–3.702 (4) Å]. One can note the functional importance of the methyl group, which is a donor of three highly directional interactions, viz. the C—H⋯O bond and two C—H⋯π bonds (Table 1).
The structure of II inherits the above motif (Fig. 5). In particular, a combination of π–π and CH3⋯π interactions assembles the molecules into columns propagating along the a-axis direction in the crystal, in exactly the same manner as observed for compound I. In this case, the interactions are slightly weaker and the corresponding intercentroid distances [Cg1⋯Cg1v = 3.692 (3) Å; symmetry code: (v) −x + 1, −y + 1, −z + 1] are slightly larger compared with II (Table 4). The outer 2-bromo-5-methoxyphenyl rings also contribute to the packing pattern since they afford π–π interactions with the sulfonyl-bound C9–C14 rings, with typical intercentroid separations of 3.836 (2) Å and a relatively small slippage angle of 18.1 (2)° (Table 4). This stacking complements the weak C3—H3⋯O2i hydrogen bonds [C⋯O = 3.448 (3) Å; symmetry code: (i) −x + 1, −y + 1, −z], linking the columns of molecules in the c-axis direction (Fig. 5). There are no hydrogen-bonding interactions with the methoxy O3 atoms, which instead are involved in relatively short Br⋯O contacts of 3.3066 (19) Å. Very distal contacts of the type C24⋯Cg4ix [4.098 (3) Å; Cg4 is the ring C17–C22 centroid; symmetry code: (ix) x, −y + , z + ] possibly indicate weak C—H⋯π interactions.
In the structure of III, the π–π interactions of the indole ring systems are eliminated since the shortest intercentroid distance exceeds 4.4 Å. However, the structure retains the double CH3⋯π bonding between inversion-related molecules with C23⋯Cg1v = 3.560 (3) Å [Cg1 is the centroid of the pyrrole ring N1/C1/C6–8; symmetry code: (v) −x + 1, −y + 2, −z + 1]. Moreover, these methyl groups also establish distal mutual contacts with the C1–C6 rings [C23⋯Cg2iv = 3.999 (3) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1], which likely represent very weak CH3⋯π bonding. These interactions act in synergy with a set of weak C13—H13⋯O1i and C19—H19⋯Br1iii bonds (Table 3) to link the molecules into the columns down the b-axis direction (Fig. 6). Therefore, the main features of the patterns seen for I and II are preserved for III with only minor variations. At the same time, beyond the supramolecular columns, which are nearly intact for all three compounds, the bonding features for III are essentially different. Both kinds of the phenyl rings afford a set of π–π interactions with the generation of discrete tetramers (Fig. 6), with the central duo representing a stack of two antiparallel inversion-related bromophenyl groups [Cg4⋯Cg4vii = 3.691 (2) Å; symmetry code: (vii) −x + 2, −y + 2, −z + 1.] This central fragment is extended by incorporation of two outer sulfonyl-bound phenyl groups [Cg4⋯Cg3vi = 3.742 (2) Å; symmetry code: (vi) −x + , y + 0.5, −z + ].
4. Hirshfeld surface analysis
The supramolecular interactions in the title structure were further assessed by Hirshfeld surface analysis. The Hirshfeld surfaces and 2D fingerprint plots were generated using CrystalExplorer21 software (Spackman et al., 2021).
The two-dimensional fingerprint plots (Parkin et al., 2007) detailing the various interactions for the molecules are shown in Fig. 7. For all three compounds, Hirshfeld surfaces suggest the dominance of contacts with the hydrogen atoms, accounting for over 90% of the contacts. Beyond the largest fractions of H⋯H contacts (38.7–44.7%), the principal contributors are C⋯H/H⋯C (20.4–25.7%), O⋯H/H⋯O (14.6–17.9%) and Br⋯H/H⋯Br (8.2–12.6%) contacts corresponding to the different kinds of C—H⋯π, C—H⋯O or C—H⋯Br bonds. Every type of such bonding is readily identified by the plots representing pairs of diffuse spikes pointing to the lower left. One can note a common trend for suppression of such hydrogen bonding in II and III. For example, the contribution of the O⋯H/H⋯O contacts for I (17.9%) is perceptibly larger than for II (14.6%), which incorporates an additional methoxy O atom. This effect may be attributed to the increasing significance of π–π interactions for the crystal packing in the case of II and III, in line with the increased number of aromatic groups. In addition, a slight reduction in the Br⋯H/H⋯Br contacts (12.6% for I versus 8.2% and 8.6% for II and III, respectively) may be reflective of a weaker acceptor ability of the phenyl-bound Br atoms with respect to the bromomethyl moieties in I. An overlap between nearly parallel aromatic frames, due to the slipped π–π stacking, is clearly indicated by the C⋯C plots for all compounds, in the form of the blue–green area centred at ca de = di = 1.85 Å. The plots suggest a progressive growth of the significance of these interactions, when moving from I to II and III. In line with this, the contributions of the C⋯C contacts to the entire surfaces are 2.5%, 6.3% and 8.2%, respectively. In the case of II, the peculiar short Br⋯O contacts are also readily identified by the fingerprint plots and they contribute as much as 1.6% to the surface area (Fig. 7).
The interaction energy between the molecules is expressed in terms of four components: electrostatic, polarization, dispersion and exchange repulsion. These energies were obtained using monomer wavefunctions calculated at the B3LYP/6-31G(d,p) level. The total interaction energy, which is the sum of scaled components, was calculated for a 3.8 Å radius cluster of molecules around the selected molecule. The scale factors used in the CE-B3LYP bench research marked energy model (Mackenzie et al., 2017) are given in Table 5. The principal interaction pathways for I–III are shown in Figs. 8–10, respectively. The interaction energies calculated by the energy model reveal that the interactions in the crystal have a significant contribution from dispersion components. It is worth noting that the primary forces for the crystal packing are associated with different stackings of the indole moieties. Either π–π or double CH⋯π interactions of the inversion-related molecules are equally important and they are particularly prevalent in the case of I. Thus, the highest energy Etot = −60.8 kJ mol−1 corresponds to the pairing pattern of type A (Fig. 8), with contributions from slipped π–π interactions and double C—H⋯O hydrogen bonding. In addition, short contacts of the methylene groups C15 and C3—C4 bonds [C15⋯Cg(C3/C4)iii = 3.412 (2) Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1] possibly reflect a kind of weak tetrel C⋯π bonding. The energies of other types of indole/indole interactions for II and III are comparable [Etot = −43.1 to −55.1 kJ mol−1] and the primary contributor here is London dispersion [up to −78.4 kJ mol−1], in accordance with the very large interaction areas. The energies of the slipped π–π interactions of the phenyl rings in II and III are very similar and they account for −28.9 to −33.9 kJ mol−1 (Table 4). The significance of these interactions is comparable with weak C—H⋯O hydrogen bonds. The energies of the latter themselves are only medium, for example −13.1 kJ mol−1 (Type D) in I and −15.7 kJ mol−1 (Type F) in II. However, pairing of the molecules via multiple hydrogen bonding increases the interaction energies up to −28.9 kJ mol−1 (Type C in II, Fig. 9). This rich landscape of bonding modes, with a specific hierarchy of interaction energies, could be applicable as a model for supramolecular interactions of phenylsulfonyl-substituted indoles and their targeting of biomedical substrates.
|
5. Database survey
A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016). indicated 123 compounds incorporating a phenylsulfonyl-1H-indole moiety. Of these compounds, several similar structures have been reported earlier, i.e. ethyl 2-acetoxymethyl-1-phenylsulfonyl-1H-indole-3-carboxylate (Gunasekaran et al., 2009), 3-iodo-2-methyl-1-phenylsulfonyl-1H-indole (Ramathilagam et al., 2011) and 1-(2-bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)propan-1-one (Umadevi et al., 2013). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems, with corresponding dihedral angles of 83.35 (5), 82.84 (9) and 89.91 (11)°, respectively, being comparable with those in the present three compounds.
6. Synthesis and crystallization
Compound I: To a mixture of N-phenylsulfonyl-3-methylindole (6.00 g, 22.22 mmol) and paraformaldehyde (3.33 g, 111.1 mmol) in 50 ml of dry CCl4, a 33 wt % solution HBr in acetic acid (13.46 ml) was added rapidly. The mixture was kept at room temperature for 6 h. After completion of the reaction (monitored by TLC), the mixture was poured into 100 ml of ice–water and then extracted with CCl4 (2 × 20 ml). The extract was dried with Na2SO4. Removal of the solvent in vacuo followed by crystallization from methanol (4 ml) afforded compound I as a colourless solid (yield: 6.9 g, 86%).
Compound II: To a suspension of hexane (5 mL) washed NaH (0.43 g, 10.92 mmol) in dry THF (5 ml), a solution of diethyl {[3-methyl-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}phosphonate (2.30 g, 5.46 mmol) in dry THF (10 ml) was slowly added via an addition funnel at 283 K under an N2 atmosphere and stirred for 15 min. Then a solution of 2-bromo-5-methoxybenzaldehyde (1.39 g, 6.55 mmol) in dry THF (5 ml) was added and the mixture was allowed to stir for an additional 1 h. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g) containing concentrated HCl (1 ml). The solid formed was filtered and washed with methanol. Recrystallization from methanol (4 ml) afforded compound II as a bright-yellow solid (yield: 2.00 g, 76%). M.p. = 425–427 K.
Compound III: To a suspension of hexane (5 mL) washed NaH (0.38 g, 9.50 mmol) in dry THF (5 ml), a solution of diethyl {[3-methyl-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}phosphonate (2.00 g, 4.75 mmol) in dry THF (10 ml) was slowly added via an addition funnel at 283 K under an N2 atmosphere and stirred for 15 min. Then a solution of 2-bromobenzaldehyde (1.05 g, 5.70 mmol) in dry THF (5 ml) was added and the mixture was allowed to stir for an additional 1 h. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g) containing concentrated HCl (1 ml). The solid formed was filtered and washed with methanol to afford ethenylindole III as a bright-yellow solid (yield: 1.72 g, 71%). M.p. = 419-421 K.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989024004985/nu2005sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004985/nu2005Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024004985/nu2005IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989024004985/nu2005IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004985/nu2005Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004985/nu2005IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004985/nu2005IIIsup7.cml
C16H14BrNO2S | F(000) = 736 |
Mr = 364.25 | Dx = 1.577 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.979 (6) Å | Cell parameters from 66991 reflections |
b = 11.100 (8) Å | θ = 1.4–25.0° |
c = 17.540 (14) Å | µ = 2.82 mm−1 |
β = 99.04 (3)° | T = 298 K |
V = 1534 (2) Å3 | Prism, colorless |
Z = 4 | 0.30 × 0.24 × 0.07 mm |
Bruker D8 Venture Diffractometer | 3158 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.049 |
ω and φ scans | θmax = 30.0°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→10 |
Tmin = 0.589, Tmax = 0.753 | k = −15→15 |
66991 measured reflections | l = −24→24 |
4464 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0434P)2 + 1.2291P] where P = (Fo2 + 2Fc2)/3 |
4464 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3530 (3) | 0.4783 (2) | 0.58255 (14) | 0.0345 (5) | |
C2 | 0.3824 (3) | 0.3757 (2) | 0.62843 (16) | 0.0439 (6) | |
H2 | 0.446932 | 0.378932 | 0.677377 | 0.053* | |
C3 | 0.3113 (4) | 0.2684 (2) | 0.59810 (18) | 0.0513 (7) | |
H3 | 0.328360 | 0.198413 | 0.627406 | 0.062* | |
C4 | 0.2149 (4) | 0.2635 (3) | 0.5247 (2) | 0.0570 (7) | |
H4 | 0.168902 | 0.190393 | 0.505784 | 0.068* | |
C5 | 0.1868 (4) | 0.3654 (3) | 0.47978 (18) | 0.0526 (7) | |
H5 | 0.122660 | 0.361549 | 0.430761 | 0.063* | |
C6 | 0.2562 (3) | 0.4750 (2) | 0.50893 (14) | 0.0387 (5) | |
C7 | 0.2515 (3) | 0.5952 (2) | 0.47726 (15) | 0.0428 (6) | |
C8 | 0.3405 (3) | 0.6691 (2) | 0.53034 (14) | 0.0398 (5) | |
C9 | 0.2921 (3) | 0.6242 (2) | 0.73345 (14) | 0.0385 (5) | |
C10 | 0.2971 (4) | 0.5343 (3) | 0.78836 (17) | 0.0537 (7) | |
H10 | 0.395387 | 0.489561 | 0.803309 | 0.064* | |
C11 | 0.1513 (5) | 0.5123 (3) | 0.8207 (2) | 0.0656 (9) | |
H11 | 0.151977 | 0.452309 | 0.857811 | 0.079* | |
C12 | 0.0065 (4) | 0.5786 (3) | 0.7982 (2) | 0.0620 (8) | |
H12 | −0.090984 | 0.562026 | 0.819260 | 0.074* | |
C13 | 0.0053 (4) | 0.6692 (3) | 0.74490 (18) | 0.0585 (8) | |
H13 | −0.092489 | 0.714723 | 0.730838 | 0.070* | |
C14 | 0.1477 (3) | 0.6933 (3) | 0.71194 (15) | 0.0482 (6) | |
H14 | 0.146765 | 0.754810 | 0.675899 | 0.058* | |
C15 | 0.3845 (4) | 0.7966 (2) | 0.51928 (19) | 0.0540 (7) | |
H15A | 0.397273 | 0.808599 | 0.465716 | 0.065* | |
H15B | 0.493150 | 0.813659 | 0.550710 | 0.065* | |
C16 | 0.1665 (5) | 0.6285 (3) | 0.39759 (17) | 0.0642 (9) | |
H16A | 0.177941 | 0.713609 | 0.389959 | 0.096* | |
H16B | 0.048275 | 0.607924 | 0.391753 | 0.096* | |
H16C | 0.218751 | 0.585444 | 0.360103 | 0.096* | |
N1 | 0.4082 (3) | 0.59886 (17) | 0.59670 (12) | 0.0369 (4) | |
O1 | 0.5039 (3) | 0.77321 (19) | 0.68162 (13) | 0.0614 (6) | |
O2 | 0.6017 (2) | 0.5675 (2) | 0.72121 (13) | 0.0596 (6) | |
S1 | 0.47047 (8) | 0.64724 (6) | 0.68698 (4) | 0.04217 (16) | |
Br1 | 0.21361 (5) | 0.91337 (3) | 0.54636 (2) | 0.07195 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0357 (11) | 0.0336 (11) | 0.0354 (12) | −0.0001 (9) | 0.0087 (9) | −0.0030 (9) |
C2 | 0.0492 (14) | 0.0417 (13) | 0.0413 (13) | 0.0019 (11) | 0.0085 (11) | 0.0015 (11) |
C3 | 0.0574 (17) | 0.0350 (13) | 0.0632 (18) | 0.0002 (12) | 0.0148 (14) | 0.0037 (12) |
C4 | 0.0605 (18) | 0.0385 (14) | 0.071 (2) | −0.0082 (13) | 0.0083 (15) | −0.0132 (14) |
C5 | 0.0523 (16) | 0.0507 (16) | 0.0517 (16) | 0.0003 (13) | −0.0014 (13) | −0.0157 (13) |
C6 | 0.0379 (12) | 0.0400 (13) | 0.0385 (13) | 0.0043 (10) | 0.0069 (10) | −0.0064 (10) |
C7 | 0.0480 (14) | 0.0442 (14) | 0.0369 (12) | 0.0126 (11) | 0.0086 (11) | −0.0006 (11) |
C8 | 0.0486 (14) | 0.0343 (12) | 0.0395 (13) | 0.0082 (10) | 0.0162 (11) | 0.0029 (10) |
C9 | 0.0442 (13) | 0.0389 (12) | 0.0319 (11) | −0.0030 (10) | 0.0042 (10) | −0.0091 (10) |
C10 | 0.0686 (19) | 0.0485 (16) | 0.0460 (15) | 0.0103 (14) | 0.0153 (14) | 0.0029 (13) |
C11 | 0.092 (3) | 0.0532 (18) | 0.0582 (19) | −0.0030 (17) | 0.0335 (18) | 0.0052 (15) |
C12 | 0.0607 (19) | 0.074 (2) | 0.0563 (18) | −0.0052 (16) | 0.0254 (15) | −0.0081 (16) |
C13 | 0.0460 (15) | 0.077 (2) | 0.0536 (17) | 0.0048 (15) | 0.0101 (13) | −0.0018 (16) |
C14 | 0.0479 (14) | 0.0577 (17) | 0.0382 (13) | 0.0023 (13) | 0.0042 (11) | 0.0022 (12) |
C15 | 0.0698 (19) | 0.0387 (14) | 0.0599 (18) | 0.0037 (13) | 0.0303 (15) | 0.0048 (12) |
C16 | 0.079 (2) | 0.070 (2) | 0.0418 (15) | 0.0249 (18) | 0.0027 (14) | 0.0042 (15) |
N1 | 0.0430 (11) | 0.0327 (10) | 0.0356 (10) | −0.0025 (8) | 0.0082 (8) | −0.0037 (8) |
O1 | 0.0733 (14) | 0.0497 (12) | 0.0623 (13) | −0.0260 (11) | 0.0137 (11) | −0.0174 (10) |
O2 | 0.0384 (10) | 0.0789 (15) | 0.0577 (12) | 0.0025 (10) | −0.0047 (9) | −0.0067 (11) |
S1 | 0.0380 (3) | 0.0465 (4) | 0.0413 (3) | −0.0093 (3) | 0.0036 (2) | −0.0100 (3) |
Br1 | 0.1035 (3) | 0.03893 (17) | 0.0794 (3) | 0.01814 (16) | 0.0331 (2) | 0.00174 (15) |
C1—C2 | 1.393 (4) | C10—C11 | 1.394 (5) |
C1—C6 | 1.397 (4) | C10—H10 | 0.9300 |
C1—N1 | 1.419 (3) | C11—C12 | 1.374 (5) |
C2—C3 | 1.388 (4) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—C13 | 1.372 (5) |
C3—C4 | 1.393 (5) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—C14 | 1.379 (4) |
C4—C5 | 1.377 (5) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—C6 | 1.399 (4) | C15—Br1 | 1.992 (3) |
C5—H5 | 0.9300 | C15—H15A | 0.9700 |
C6—C7 | 1.444 (4) | C15—H15B | 0.9700 |
C7—C8 | 1.355 (4) | C16—H16A | 0.9600 |
C7—C16 | 1.501 (4) | C16—H16B | 0.9600 |
C8—N1 | 1.434 (3) | C16—H16C | 0.9600 |
C8—C15 | 1.478 (4) | N1—S1 | 1.672 (2) |
C9—C10 | 1.384 (4) | O1—S1 | 1.429 (2) |
C9—C14 | 1.386 (4) | O2—S1 | 1.430 (2) |
C9—S1 | 1.766 (3) | ||
C2—C1—C6 | 122.0 (2) | C10—C11—H11 | 119.8 |
C2—C1—N1 | 130.6 (2) | C13—C12—C11 | 120.2 (3) |
C6—C1—N1 | 107.3 (2) | C13—C12—H12 | 119.9 |
C3—C2—C1 | 117.3 (3) | C11—C12—H12 | 119.9 |
C3—C2—H2 | 121.4 | C12—C13—C14 | 120.6 (3) |
C1—C2—H2 | 121.4 | C12—C13—H13 | 119.7 |
C2—C3—C4 | 121.4 (3) | C14—C13—H13 | 119.7 |
C2—C3—H3 | 119.3 | C13—C14—C9 | 118.9 (3) |
C4—C3—H3 | 119.3 | C13—C14—H14 | 120.6 |
C5—C4—C3 | 120.9 (3) | C9—C14—H14 | 120.6 |
C5—C4—H4 | 119.6 | C8—C15—Br1 | 113.97 (19) |
C3—C4—H4 | 119.6 | C8—C15—H15A | 108.8 |
C4—C5—C6 | 119.1 (3) | Br1—C15—H15A | 108.8 |
C4—C5—H5 | 120.5 | C8—C15—H15B | 108.8 |
C6—C5—H5 | 120.5 | Br1—C15—H15B | 108.8 |
C1—C6—C5 | 119.4 (2) | H15A—C15—H15B | 107.7 |
C1—C6—C7 | 108.0 (2) | C7—C16—H16A | 109.5 |
C5—C6—C7 | 132.7 (2) | C7—C16—H16B | 109.5 |
C8—C7—C6 | 108.4 (2) | H16A—C16—H16B | 109.5 |
C8—C7—C16 | 127.0 (3) | C7—C16—H16C | 109.5 |
C6—C7—C16 | 124.5 (3) | H16A—C16—H16C | 109.5 |
C7—C8—N1 | 108.6 (2) | H16B—C16—H16C | 109.5 |
C7—C8—C15 | 126.8 (3) | C1—N1—C8 | 107.7 (2) |
N1—C8—C15 | 124.0 (3) | C1—N1—S1 | 120.44 (16) |
C10—C9—C14 | 121.4 (3) | C8—N1—S1 | 127.74 (17) |
C10—C9—S1 | 119.2 (2) | O1—S1—O2 | 120.11 (14) |
C14—C9—S1 | 119.4 (2) | O1—S1—N1 | 106.42 (12) |
C9—C10—C11 | 118.4 (3) | O2—S1—N1 | 106.72 (12) |
C9—C10—H10 | 120.8 | O1—S1—C9 | 110.12 (13) |
C11—C10—H10 | 120.8 | O2—S1—C9 | 107.87 (14) |
C12—C11—C10 | 120.5 (3) | N1—S1—C9 | 104.46 (12) |
C12—C11—H11 | 119.8 | ||
C6—C1—C2—C3 | 0.0 (4) | C10—C9—C14—C13 | −1.6 (4) |
N1—C1—C2—C3 | −179.5 (2) | S1—C9—C14—C13 | 175.7 (2) |
C1—C2—C3—C4 | 0.2 (4) | C7—C8—C15—Br1 | 90.8 (3) |
C2—C3—C4—C5 | −0.1 (5) | N1—C8—C15—Br1 | −98.9 (3) |
C3—C4—C5—C6 | −0.2 (5) | C2—C1—N1—C8 | −179.5 (2) |
C2—C1—C6—C5 | −0.3 (4) | C6—C1—N1—C8 | 0.8 (3) |
N1—C1—C6—C5 | 179.3 (2) | C2—C1—N1—S1 | −20.7 (4) |
C2—C1—C6—C7 | −179.7 (2) | C6—C1—N1—S1 | 159.66 (17) |
N1—C1—C6—C7 | −0.1 (3) | C7—C8—N1—C1 | −1.3 (3) |
C4—C5—C6—C1 | 0.4 (4) | C15—C8—N1—C1 | −173.2 (2) |
C4—C5—C6—C7 | 179.6 (3) | C7—C8—N1—S1 | −158.14 (19) |
C1—C6—C7—C8 | −0.8 (3) | C15—C8—N1—S1 | 30.0 (3) |
C5—C6—C7—C8 | 179.9 (3) | C1—N1—S1—O1 | −175.28 (19) |
C1—C6—C7—C16 | 177.2 (3) | C8—N1—S1—O1 | −21.1 (2) |
C5—C6—C7—C16 | −2.1 (5) | C1—N1—S1—O2 | 55.3 (2) |
C6—C7—C8—N1 | 1.3 (3) | C8—N1—S1—O2 | −150.5 (2) |
C16—C7—C8—N1 | −176.6 (3) | C1—N1—S1—C9 | −58.8 (2) |
C6—C7—C8—C15 | 172.8 (2) | C8—N1—S1—C9 | 95.4 (2) |
C16—C7—C8—C15 | −5.0 (5) | C10—C9—S1—O1 | −136.9 (2) |
C14—C9—C10—C11 | 1.5 (4) | C14—C9—S1—O1 | 45.7 (2) |
S1—C9—C10—C11 | −175.9 (2) | C10—C9—S1—O2 | −4.1 (3) |
C9—C10—C11—C12 | 0.1 (5) | C14—C9—S1—O2 | 178.5 (2) |
C10—C11—C12—C13 | −1.5 (5) | C10—C9—S1—N1 | 109.2 (2) |
C11—C12—C13—C14 | 1.4 (5) | C14—C9—S1—N1 | −68.2 (2) |
C12—C13—C14—C9 | 0.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2 | 0.93 | 2.49 | 3.057 (4) | 120 |
C2—H2···O1i | 0.93 | 2.71 | 3.503 (4) | 144 |
C10—H10···O1i | 0.93 | 2.53 | 3.306 (4) | 141 |
C12—H12···O2ii | 0.93 | 2.77 | 3.302 (5) | 118 |
C13—H13···O2ii | 0.93 | 2.92 | 3.376 (4) | 112 |
C16—H16C···O2iii | 0.96 | 2.76 | 3.702 (4) | 168 |
C4—H4···Br1iv | 0.93 | 3.16 | 3.905 (4) | 138 |
C12—H12···Br1v | 0.93 | 3.16 | 3.922 (4) | 141 |
C14—H14···Br1 | 0.93 | 2.99 | 3.894 (4) | 165 |
C16—H16A···Cg(C9–C14)vi | 0.96 | 2.97 | 3.765 (4) | 142 |
C16—H16B···Cg(C1–C6)vii | 0.96 | 2.97 | 3.823 (5) | 149 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, y−1/2, −z+3/2; (vi) x, −y+3/2, z−1/2; (vii) −x, −y+1, −z+1. |
C24H20BrNO3S | F(000) = 984 |
Mr = 482.38 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4252 (9) Å | Cell parameters from 52480 reflections |
b = 28.669 (3) Å | θ = 1.4–25.0° |
c = 8.9462 (11) Å | µ = 2.03 mm−1 |
β = 95.445 (4)° | T = 298 K |
V = 2151.1 (4) Å3 | Solid, yellow |
Z = 4 | 0.25 × 0.20 × 0.13 mm |
Bruker D8 Venture Diffractometer | 3905 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.077 |
ω and φ scans | θmax = 28.3°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.555, Tmax = 0.745 | k = −38→38 |
52479 measured reflections | l = −11→11 |
5296 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0367P)2 + 1.0393P] where P = (Fo2 + 2Fc2)/3 |
5296 reflections | (Δ/σ)max = 0.001 |
272 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6561 (3) | 0.48550 (8) | 0.3470 (2) | 0.0469 (5) | |
C2 | 0.6281 (3) | 0.50829 (10) | 0.2093 (3) | 0.0614 (6) | |
H2 | 0.568729 | 0.494387 | 0.128332 | 0.074* | |
C3 | 0.6923 (4) | 0.55236 (11) | 0.1981 (3) | 0.0717 (8) | |
H3 | 0.676266 | 0.568262 | 0.107279 | 0.086* | |
C4 | 0.7791 (4) | 0.57337 (10) | 0.3175 (4) | 0.0742 (8) | |
H4 | 0.820363 | 0.603085 | 0.305664 | 0.089* | |
C5 | 0.8062 (3) | 0.55132 (9) | 0.4542 (3) | 0.0643 (7) | |
H5 | 0.863821 | 0.565906 | 0.534811 | 0.077* | |
C6 | 0.7446 (3) | 0.50632 (8) | 0.4686 (2) | 0.0473 (5) | |
C7 | 0.7513 (3) | 0.47458 (8) | 0.5935 (2) | 0.0461 (5) | |
C8 | 0.6716 (2) | 0.43516 (7) | 0.5475 (2) | 0.0421 (4) | |
C9 | 0.7837 (3) | 0.38292 (8) | 0.2424 (3) | 0.0489 (5) | |
C10 | 0.8684 (3) | 0.35109 (10) | 0.3337 (3) | 0.0673 (7) | |
H10 | 0.820424 | 0.335580 | 0.408902 | 0.081* | |
C11 | 1.0261 (4) | 0.34260 (13) | 0.3116 (4) | 0.0860 (10) | |
H11 | 1.084868 | 0.321232 | 0.372357 | 0.103* | |
C12 | 1.0964 (4) | 0.36561 (13) | 0.2001 (5) | 0.0861 (10) | |
H12 | 1.202336 | 0.359691 | 0.185423 | 0.103* | |
C13 | 1.0103 (4) | 0.39724 (12) | 0.1108 (4) | 0.0805 (9) | |
H13 | 1.058787 | 0.412993 | 0.036429 | 0.097* | |
C14 | 0.8539 (4) | 0.40589 (10) | 0.1299 (3) | 0.0643 (7) | |
H14 | 0.795426 | 0.426986 | 0.067855 | 0.077* | |
C15 | 0.6383 (3) | 0.39387 (8) | 0.6346 (2) | 0.0444 (5) | |
H15 | 0.536056 | 0.381323 | 0.623013 | 0.053* | |
C16 | 0.7478 (3) | 0.37332 (7) | 0.7300 (2) | 0.0438 (5) | |
H16 | 0.851979 | 0.384173 | 0.732095 | 0.053* | |
C17 | 0.7170 (2) | 0.33490 (7) | 0.8319 (2) | 0.0400 (4) | |
C18 | 0.5683 (3) | 0.32918 (7) | 0.8844 (2) | 0.0438 (5) | |
H18 | 0.486448 | 0.349562 | 0.851587 | 0.053* | |
C19 | 0.5381 (3) | 0.29388 (8) | 0.9845 (3) | 0.0490 (5) | |
C20 | 0.6587 (3) | 0.26380 (9) | 1.0366 (3) | 0.0599 (6) | |
H20 | 0.639903 | 0.240384 | 1.104648 | 0.072* | |
C21 | 0.8074 (3) | 0.26891 (8) | 0.9866 (3) | 0.0580 (6) | |
H21 | 0.889518 | 0.248965 | 1.022176 | 0.070* | |
C22 | 0.8361 (3) | 0.30307 (7) | 0.8848 (3) | 0.0455 (5) | |
C23 | 0.8223 (4) | 0.48672 (10) | 0.7485 (3) | 0.0681 (7) | |
H23A | 0.791508 | 0.463736 | 0.818252 | 0.102* | |
H23B | 0.784469 | 0.516817 | 0.776049 | 0.102* | |
H23C | 0.936409 | 0.487396 | 0.750554 | 0.102* | |
C24 | 0.3489 (4) | 0.25800 (13) | 1.1295 (4) | 0.0971 (12) | |
H24A | 0.238662 | 0.260695 | 1.147390 | 0.146* | |
H24B | 0.368142 | 0.227541 | 1.090527 | 0.146* | |
H24C | 0.414581 | 0.262561 | 1.222022 | 0.146* | |
N1 | 0.6044 (2) | 0.44108 (6) | 0.39484 (19) | 0.0449 (4) | |
O1 | 0.5205 (2) | 0.35818 (6) | 0.3525 (2) | 0.0635 (5) | |
O2 | 0.5020 (2) | 0.41358 (7) | 0.1409 (2) | 0.0722 (5) | |
O3 | 0.3861 (2) | 0.29237 (7) | 1.0239 (2) | 0.0704 (5) | |
S1 | 0.58589 (7) | 0.39595 (2) | 0.27518 (6) | 0.05060 (15) | |
Br1 | 1.04254 (3) | 0.30608 (2) | 0.81730 (3) | 0.06603 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0452 (11) | 0.0509 (12) | 0.0454 (12) | 0.0121 (9) | 0.0092 (9) | 0.0073 (10) |
C2 | 0.0653 (16) | 0.0700 (16) | 0.0493 (13) | 0.0168 (13) | 0.0076 (11) | 0.0139 (12) |
C3 | 0.0784 (19) | 0.0731 (18) | 0.0660 (17) | 0.0233 (15) | 0.0194 (15) | 0.0311 (15) |
C4 | 0.0778 (19) | 0.0526 (15) | 0.096 (2) | 0.0088 (14) | 0.0262 (17) | 0.0275 (15) |
C5 | 0.0702 (17) | 0.0495 (14) | 0.0740 (17) | −0.0018 (12) | 0.0115 (14) | 0.0052 (13) |
C6 | 0.0507 (12) | 0.0435 (11) | 0.0487 (12) | 0.0066 (9) | 0.0099 (10) | 0.0047 (10) |
C7 | 0.0494 (12) | 0.0470 (12) | 0.0419 (11) | 0.0026 (9) | 0.0044 (9) | 0.0013 (9) |
C8 | 0.0423 (11) | 0.0477 (11) | 0.0367 (10) | 0.0055 (9) | 0.0060 (8) | 0.0032 (9) |
C9 | 0.0481 (12) | 0.0526 (13) | 0.0459 (12) | −0.0051 (10) | 0.0036 (10) | −0.0127 (10) |
C10 | 0.0614 (16) | 0.0698 (17) | 0.0714 (17) | 0.0112 (13) | 0.0100 (13) | −0.0006 (14) |
C11 | 0.0666 (19) | 0.090 (2) | 0.100 (2) | 0.0239 (17) | 0.0004 (18) | −0.0126 (19) |
C12 | 0.0518 (16) | 0.096 (2) | 0.112 (3) | −0.0075 (16) | 0.0195 (18) | −0.048 (2) |
C13 | 0.082 (2) | 0.080 (2) | 0.086 (2) | −0.0191 (17) | 0.0400 (18) | −0.0266 (18) |
C14 | 0.0738 (17) | 0.0673 (16) | 0.0539 (14) | −0.0036 (13) | 0.0167 (13) | −0.0091 (12) |
C15 | 0.0440 (11) | 0.0474 (12) | 0.0425 (11) | −0.0010 (9) | 0.0072 (9) | 0.0013 (9) |
C16 | 0.0408 (11) | 0.0435 (11) | 0.0477 (12) | 0.0008 (9) | 0.0069 (9) | −0.0008 (9) |
C17 | 0.0424 (10) | 0.0366 (10) | 0.0399 (10) | 0.0003 (8) | −0.0020 (8) | −0.0027 (8) |
C18 | 0.0431 (11) | 0.0431 (11) | 0.0441 (11) | 0.0017 (9) | −0.0021 (9) | 0.0038 (9) |
C19 | 0.0469 (12) | 0.0514 (12) | 0.0471 (12) | −0.0059 (10) | −0.0028 (10) | 0.0076 (10) |
C20 | 0.0614 (15) | 0.0531 (14) | 0.0631 (15) | −0.0030 (11) | −0.0060 (12) | 0.0201 (12) |
C21 | 0.0559 (14) | 0.0472 (13) | 0.0683 (16) | 0.0097 (11) | −0.0081 (12) | 0.0115 (12) |
C22 | 0.0422 (11) | 0.0425 (11) | 0.0505 (12) | 0.0036 (9) | −0.0022 (9) | −0.0057 (9) |
C23 | 0.093 (2) | 0.0577 (15) | 0.0510 (14) | −0.0049 (14) | −0.0060 (14) | −0.0038 (12) |
C24 | 0.079 (2) | 0.110 (3) | 0.106 (3) | −0.0124 (19) | 0.0235 (19) | 0.053 (2) |
N1 | 0.0454 (9) | 0.0490 (10) | 0.0399 (9) | 0.0047 (8) | 0.0018 (7) | 0.0024 (8) |
O1 | 0.0581 (10) | 0.0660 (11) | 0.0666 (11) | −0.0193 (8) | 0.0066 (8) | −0.0049 (9) |
O2 | 0.0665 (11) | 0.0939 (14) | 0.0512 (10) | 0.0062 (10) | −0.0195 (8) | −0.0042 (9) |
O3 | 0.0510 (10) | 0.0845 (13) | 0.0760 (12) | −0.0058 (9) | 0.0077 (9) | 0.0337 (10) |
S1 | 0.0441 (3) | 0.0620 (4) | 0.0443 (3) | −0.0022 (3) | −0.0033 (2) | −0.0053 (3) |
Br1 | 0.04735 (15) | 0.06198 (17) | 0.0897 (2) | 0.01104 (11) | 0.01150 (13) | −0.00450 (14) |
C1—C6 | 1.393 (3) | C14—H14 | 0.9300 |
C1—C2 | 1.395 (3) | C15—C16 | 1.333 (3) |
C1—N1 | 1.425 (3) | C15—H15 | 0.9300 |
C2—C3 | 1.382 (4) | C16—C17 | 1.469 (3) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.375 (4) | C17—C18 | 1.389 (3) |
C3—H3 | 0.9300 | C17—C22 | 1.405 (3) |
C4—C5 | 1.376 (4) | C18—C19 | 1.391 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.401 (3) | C19—O3 | 1.360 (3) |
C5—H5 | 0.9300 | C19—C20 | 1.380 (3) |
C6—C7 | 1.438 (3) | C20—C21 | 1.377 (4) |
C7—C8 | 1.358 (3) | C20—H20 | 0.9300 |
C7—C23 | 1.498 (3) | C21—C22 | 1.374 (3) |
C8—N1 | 1.438 (3) | C21—H21 | 0.9300 |
C8—C15 | 1.459 (3) | C22—Br1 | 1.896 (2) |
C9—C10 | 1.378 (4) | C23—H23A | 0.9600 |
C9—C14 | 1.382 (3) | C23—H23B | 0.9600 |
C9—S1 | 1.759 (2) | C23—H23C | 0.9600 |
C10—C11 | 1.383 (4) | C24—O3 | 1.421 (3) |
C10—H10 | 0.9300 | C24—H24A | 0.9600 |
C11—C12 | 1.376 (5) | C24—H24B | 0.9600 |
C11—H11 | 0.9300 | C24—H24C | 0.9600 |
C12—C13 | 1.370 (5) | N1—S1 | 1.6770 (19) |
C12—H12 | 0.9300 | O1—S1 | 1.4237 (19) |
C13—C14 | 1.368 (4) | O2—S1 | 1.4269 (18) |
C13—H13 | 0.9300 | ||
C6—C1—C2 | 121.5 (2) | C8—C15—H15 | 118.5 |
C6—C1—N1 | 107.75 (18) | C15—C16—C17 | 125.2 (2) |
C2—C1—N1 | 130.7 (2) | C15—C16—H16 | 117.4 |
C3—C2—C1 | 117.2 (3) | C17—C16—H16 | 117.4 |
C3—C2—H2 | 121.4 | C18—C17—C22 | 116.61 (19) |
C1—C2—H2 | 121.4 | C18—C17—C16 | 121.10 (18) |
C4—C3—C2 | 121.8 (2) | C22—C17—C16 | 122.26 (19) |
C4—C3—H3 | 119.1 | C17—C18—C19 | 122.0 (2) |
C2—C3—H3 | 119.1 | C17—C18—H18 | 119.0 |
C3—C4—C5 | 121.4 (3) | C19—C18—H18 | 119.0 |
C3—C4—H4 | 119.3 | O3—C19—C20 | 125.0 (2) |
C5—C4—H4 | 119.3 | O3—C19—C18 | 115.1 (2) |
C4—C5—C6 | 118.3 (3) | C20—C19—C18 | 119.9 (2) |
C4—C5—H5 | 120.9 | C21—C20—C19 | 119.2 (2) |
C6—C5—H5 | 120.9 | C21—C20—H20 | 120.4 |
C1—C6—C5 | 119.8 (2) | C19—C20—H20 | 120.4 |
C1—C6—C7 | 108.3 (2) | C22—C21—C20 | 120.9 (2) |
C5—C6—C7 | 131.8 (2) | C22—C21—H21 | 119.5 |
C8—C7—C6 | 108.00 (19) | C20—C21—H21 | 119.5 |
C8—C7—C23 | 128.0 (2) | C21—C22—C17 | 121.4 (2) |
C6—C7—C23 | 123.7 (2) | C21—C22—Br1 | 117.89 (17) |
C7—C8—N1 | 109.18 (18) | C17—C22—Br1 | 120.70 (17) |
C7—C8—C15 | 128.9 (2) | C7—C23—H23A | 109.5 |
N1—C8—C15 | 121.62 (19) | C7—C23—H23B | 109.5 |
C10—C9—C14 | 120.9 (2) | H23A—C23—H23B | 109.5 |
C10—C9—S1 | 119.18 (19) | C7—C23—H23C | 109.5 |
C14—C9—S1 | 119.9 (2) | H23A—C23—H23C | 109.5 |
C9—C10—C11 | 118.8 (3) | H23B—C23—H23C | 109.5 |
C9—C10—H10 | 120.6 | O3—C24—H24A | 109.5 |
C11—C10—H10 | 120.6 | O3—C24—H24B | 109.5 |
C12—C11—C10 | 120.3 (3) | H24A—C24—H24B | 109.5 |
C12—C11—H11 | 119.8 | O3—C24—H24C | 109.5 |
C10—C11—H11 | 119.8 | H24A—C24—H24C | 109.5 |
C13—C12—C11 | 120.0 (3) | H24B—C24—H24C | 109.5 |
C13—C12—H12 | 120.0 | C1—N1—C8 | 106.63 (17) |
C11—C12—H12 | 120.0 | C1—N1—S1 | 120.69 (15) |
C14—C13—C12 | 120.7 (3) | C8—N1—S1 | 121.31 (15) |
C14—C13—H13 | 119.7 | C19—O3—C24 | 117.8 (2) |
C12—C13—H13 | 119.7 | O1—S1—O2 | 119.67 (12) |
C13—C14—C9 | 119.3 (3) | O1—S1—N1 | 107.06 (10) |
C13—C14—H14 | 120.4 | O2—S1—N1 | 105.82 (11) |
C9—C14—H14 | 120.4 | O1—S1—C9 | 109.61 (12) |
C16—C15—C8 | 122.9 (2) | O2—S1—C9 | 109.65 (12) |
C16—C15—H15 | 118.5 | N1—S1—C9 | 103.78 (10) |
C6—C1—C2—C3 | 0.2 (4) | C17—C18—C19—O3 | −179.1 (2) |
N1—C1—C2—C3 | 178.4 (2) | C17—C18—C19—C20 | 1.2 (4) |
C1—C2—C3—C4 | −0.6 (4) | O3—C19—C20—C21 | 179.4 (2) |
C2—C3—C4—C5 | 0.0 (4) | C18—C19—C20—C21 | −0.9 (4) |
C3—C4—C5—C6 | 0.8 (4) | C19—C20—C21—C22 | −0.7 (4) |
C2—C1—C6—C5 | 0.6 (3) | C20—C21—C22—C17 | 2.1 (4) |
N1—C1—C6—C5 | −177.9 (2) | C20—C21—C22—Br1 | −177.9 (2) |
C2—C1—C6—C7 | 179.6 (2) | C18—C17—C22—C21 | −1.8 (3) |
N1—C1—C6—C7 | 1.0 (2) | C16—C17—C22—C21 | 176.4 (2) |
C4—C5—C6—C1 | −1.1 (4) | C18—C17—C22—Br1 | 178.23 (15) |
C4—C5—C6—C7 | −179.8 (2) | C16—C17—C22—Br1 | −3.6 (3) |
C1—C6—C7—C8 | 1.2 (3) | C6—C1—N1—C8 | −2.7 (2) |
C5—C6—C7—C8 | 180.0 (3) | C2—C1—N1—C8 | 178.9 (2) |
C1—C6—C7—C23 | −173.6 (2) | C6—C1—N1—S1 | −146.59 (16) |
C5—C6—C7—C23 | 5.2 (4) | C2—C1—N1—S1 | 35.0 (3) |
C6—C7—C8—N1 | −2.9 (2) | C7—C8—N1—C1 | 3.5 (2) |
C23—C7—C8—N1 | 171.6 (2) | C15—C8—N1—C1 | 177.77 (19) |
C6—C7—C8—C15 | −176.6 (2) | C7—C8—N1—S1 | 147.12 (16) |
C23—C7—C8—C15 | −2.1 (4) | C15—C8—N1—S1 | −38.6 (3) |
C14—C9—C10—C11 | 0.4 (4) | C20—C19—O3—C24 | 1.6 (4) |
S1—C9—C10—C11 | −177.1 (2) | C18—C19—O3—C24 | −178.1 (3) |
C9—C10—C11—C12 | −0.1 (5) | C1—N1—S1—O1 | −175.43 (16) |
C10—C11—C12—C13 | 0.3 (5) | C8—N1—S1—O1 | 45.94 (19) |
C11—C12—C13—C14 | −0.8 (5) | C1—N1—S1—O2 | −46.74 (19) |
C12—C13—C14—C9 | 1.1 (4) | C8—N1—S1—O2 | 174.62 (17) |
C10—C9—C14—C13 | −0.9 (4) | C1—N1—S1—C9 | 68.69 (18) |
S1—C9—C14—C13 | 176.6 (2) | C8—N1—S1—C9 | −69.95 (18) |
C7—C8—C15—C16 | −45.2 (3) | C10—C9—S1—O1 | −23.7 (2) |
N1—C8—C15—C16 | 141.7 (2) | C14—C9—S1—O1 | 158.74 (19) |
C8—C15—C16—C17 | 173.14 (19) | C10—C9—S1—O2 | −157.0 (2) |
C15—C16—C17—C18 | −27.4 (3) | C14—C9—S1—O2 | 25.5 (2) |
C15—C16—C17—C22 | 154.5 (2) | C10—C9—S1—N1 | 90.3 (2) |
C22—C17—C18—C19 | 0.2 (3) | C14—C9—S1—N1 | −87.2 (2) |
C16—C17—C18—C19 | −178.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2 | 0.93 | 2.39 | 2.958 (4) | 119 |
C3—H3···O2i | 0.93 | 2.61 | 3.448 (3) | 150 |
C24—H24A···Br1ii | 0.96 | 3.03 | 3.699 (3) | 128 |
C5—H5···Cg(C9–C14)iii | 0.93 | 3.12 | 4.047 (3) | 173 |
C20—H20···Cg(C17–C22)iv | 0.93 | 3.15 | 3.978 (2) | 149 |
C23—H23C···Cg(C1–C6)iii | 0.96 | 3.11 | 4.036 (4) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, −y+1/2, z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+1/2, z+1/2. |
C23H18BrNO2S | F(000) = 920 |
Mr = 452.35 | Dx = 1.516 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5530 (8) Å | Cell parameters from 50531 reflections |
b = 8.3533 (5) Å | θ = 1.4–25.0° |
c = 19.7698 (11) Å | µ = 2.20 mm−1 |
β = 107.078 (2)° | T = 298 K |
V = 1981.6 (2) Å3 | Prism, yellow |
Z = 4 | 0.36 × 0.31 × 0.24 mm |
Bruker D8 Venture Diffractometer | 3516 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.058 |
ω and φ scans | θmax = 27.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.514, Tmax = 0.745 | k = −10→10 |
50531 measured reflections | l = −25→25 |
4293 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0262P)2 + 1.371P] where P = (Fo2 + 2Fc2)/3 |
4293 reflections | (Δ/σ)max < 0.001 |
254 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3845 (2) | 0.7169 (3) | 0.40613 (15) | 0.0514 (6) | |
C2 | 0.2805 (2) | 0.6430 (4) | 0.3796 (2) | 0.0725 (9) | |
H2 | 0.242636 | 0.642367 | 0.331512 | 0.087* | |
C3 | 0.2367 (3) | 0.5708 (4) | 0.4288 (3) | 0.0861 (12) | |
H3 | 0.168029 | 0.519654 | 0.413097 | 0.103* | |
C4 | 0.2916 (3) | 0.5724 (4) | 0.5001 (3) | 0.0847 (11) | |
H4 | 0.258724 | 0.524019 | 0.531342 | 0.102* | |
C5 | 0.3941 (3) | 0.6443 (4) | 0.52611 (19) | 0.0691 (9) | |
H5 | 0.430809 | 0.644742 | 0.574390 | 0.083* | |
C6 | 0.4420 (2) | 0.7169 (3) | 0.47795 (15) | 0.0510 (6) | |
C7 | 0.5465 (2) | 0.7977 (3) | 0.48800 (13) | 0.0461 (6) | |
C8 | 0.55284 (19) | 0.8444 (3) | 0.42348 (13) | 0.0430 (5) | |
C9 | 0.5022 (2) | 0.5840 (3) | 0.28233 (12) | 0.0434 (5) | |
C10 | 0.6151 (2) | 0.5774 (3) | 0.28776 (13) | 0.0516 (6) | |
H10 | 0.658022 | 0.670085 | 0.295131 | 0.062* | |
C11 | 0.6624 (3) | 0.4304 (4) | 0.28198 (15) | 0.0618 (7) | |
H11 | 0.737661 | 0.423945 | 0.285032 | 0.074* | |
C12 | 0.5984 (3) | 0.2933 (3) | 0.27172 (14) | 0.0627 (8) | |
H12 | 0.630690 | 0.194953 | 0.267756 | 0.075* | |
C13 | 0.4875 (3) | 0.3010 (3) | 0.26731 (15) | 0.0609 (7) | |
H13 | 0.445370 | 0.207621 | 0.260770 | 0.073* | |
C14 | 0.4379 (2) | 0.4461 (3) | 0.27251 (13) | 0.0532 (6) | |
H14 | 0.362668 | 0.451289 | 0.269471 | 0.064* | |
C15 | 0.6425 (2) | 0.9296 (3) | 0.40580 (12) | 0.0443 (5) | |
H15 | 0.625141 | 1.018220 | 0.376123 | 0.053* | |
C16 | 0.7487 (2) | 0.8842 (3) | 0.43088 (12) | 0.0425 (5) | |
H16 | 0.763379 | 0.793865 | 0.459639 | 0.051* | |
C17 | 0.84434 (19) | 0.9639 (3) | 0.41719 (11) | 0.0393 (5) | |
C18 | 0.8460 (2) | 1.1291 (3) | 0.40596 (13) | 0.0495 (6) | |
H18 | 0.784735 | 1.190395 | 0.407169 | 0.059* | |
C19 | 0.9364 (3) | 1.2033 (3) | 0.39313 (14) | 0.0572 (7) | |
H19 | 0.934596 | 1.312866 | 0.384518 | 0.069* | |
C20 | 1.0296 (2) | 1.1155 (3) | 0.39303 (13) | 0.0542 (7) | |
H20 | 1.091088 | 1.166316 | 0.385527 | 0.065* | |
C21 | 1.0315 (2) | 0.9525 (3) | 0.40404 (13) | 0.0481 (6) | |
H21 | 1.093843 | 0.892468 | 0.403982 | 0.058* | |
C22 | 0.93913 (19) | 0.8795 (3) | 0.41520 (12) | 0.0402 (5) | |
C23 | 0.6286 (3) | 0.8304 (4) | 0.55857 (14) | 0.0608 (7) | |
H23A | 0.670017 | 0.734729 | 0.575877 | 0.091* | |
H23B | 0.589586 | 0.863969 | 0.591254 | 0.091* | |
H23C | 0.678808 | 0.913412 | 0.553866 | 0.091* | |
N1 | 0.45078 (16) | 0.8027 (2) | 0.37072 (11) | 0.0471 (5) | |
O1 | 0.50537 (19) | 0.8925 (2) | 0.26566 (10) | 0.0640 (5) | |
O2 | 0.32416 (17) | 0.7603 (3) | 0.24957 (11) | 0.0761 (6) | |
S1 | 0.44041 (6) | 0.77168 (8) | 0.28558 (3) | 0.05103 (17) | |
Br1 | 0.94200 (2) | 0.65291 (3) | 0.42493 (2) | 0.06143 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0422 (13) | 0.0425 (13) | 0.0753 (18) | 0.0112 (11) | 0.0262 (13) | −0.0021 (12) |
C2 | 0.0454 (15) | 0.0663 (19) | 0.107 (3) | 0.0057 (14) | 0.0239 (16) | −0.0137 (18) |
C3 | 0.0554 (19) | 0.062 (2) | 0.160 (4) | −0.0014 (16) | 0.061 (2) | −0.016 (2) |
C4 | 0.089 (3) | 0.058 (2) | 0.138 (3) | 0.0023 (18) | 0.081 (3) | −0.005 (2) |
C5 | 0.083 (2) | 0.0539 (17) | 0.091 (2) | 0.0117 (16) | 0.0584 (19) | 0.0018 (15) |
C6 | 0.0539 (15) | 0.0407 (13) | 0.0676 (17) | 0.0137 (11) | 0.0325 (13) | −0.0012 (12) |
C7 | 0.0487 (14) | 0.0398 (12) | 0.0535 (14) | 0.0145 (10) | 0.0210 (11) | −0.0012 (11) |
C8 | 0.0400 (12) | 0.0379 (12) | 0.0511 (13) | 0.0111 (10) | 0.0132 (10) | −0.0019 (10) |
C9 | 0.0505 (14) | 0.0375 (12) | 0.0391 (12) | 0.0021 (10) | 0.0084 (10) | 0.0030 (10) |
C10 | 0.0521 (15) | 0.0474 (14) | 0.0529 (14) | −0.0001 (12) | 0.0119 (12) | −0.0011 (12) |
C11 | 0.0604 (17) | 0.0616 (18) | 0.0611 (17) | 0.0177 (14) | 0.0144 (13) | 0.0008 (14) |
C12 | 0.089 (2) | 0.0433 (14) | 0.0501 (15) | 0.0187 (15) | 0.0120 (15) | 0.0001 (12) |
C13 | 0.082 (2) | 0.0415 (14) | 0.0544 (16) | −0.0062 (14) | 0.0129 (14) | −0.0009 (12) |
C14 | 0.0561 (15) | 0.0474 (15) | 0.0535 (15) | −0.0034 (12) | 0.0121 (12) | 0.0005 (12) |
C15 | 0.0483 (13) | 0.0368 (12) | 0.0478 (13) | 0.0047 (10) | 0.0145 (11) | 0.0008 (10) |
C16 | 0.0476 (13) | 0.0362 (12) | 0.0466 (13) | 0.0064 (10) | 0.0184 (11) | 0.0002 (10) |
C17 | 0.0448 (12) | 0.0352 (11) | 0.0375 (11) | 0.0030 (9) | 0.0117 (10) | −0.0026 (9) |
C18 | 0.0584 (15) | 0.0349 (12) | 0.0540 (14) | 0.0069 (11) | 0.0148 (12) | −0.0014 (10) |
C19 | 0.0750 (19) | 0.0367 (13) | 0.0567 (16) | −0.0078 (13) | 0.0143 (14) | 0.0024 (12) |
C20 | 0.0537 (15) | 0.0590 (17) | 0.0484 (14) | −0.0158 (13) | 0.0125 (12) | 0.0007 (12) |
C21 | 0.0423 (13) | 0.0546 (15) | 0.0479 (13) | 0.0003 (11) | 0.0139 (11) | −0.0029 (11) |
C22 | 0.0458 (12) | 0.0322 (11) | 0.0419 (12) | 0.0032 (9) | 0.0115 (10) | −0.0017 (9) |
C23 | 0.0679 (18) | 0.0654 (18) | 0.0511 (15) | 0.0178 (14) | 0.0204 (13) | −0.0022 (13) |
N1 | 0.0404 (11) | 0.0441 (11) | 0.0564 (12) | 0.0075 (9) | 0.0134 (9) | −0.0016 (9) |
O1 | 0.0944 (15) | 0.0394 (10) | 0.0564 (11) | 0.0035 (10) | 0.0194 (10) | 0.0085 (8) |
O2 | 0.0572 (12) | 0.0791 (15) | 0.0734 (13) | 0.0209 (11) | −0.0100 (10) | −0.0017 (11) |
S1 | 0.0548 (4) | 0.0413 (3) | 0.0503 (3) | 0.0116 (3) | 0.0049 (3) | 0.0037 (3) |
Br1 | 0.05484 (17) | 0.03621 (14) | 0.0976 (2) | 0.00739 (11) | 0.02920 (15) | −0.00128 (13) |
C1—C6 | 1.391 (4) | C13—C14 | 1.380 (4) |
C1—C2 | 1.399 (4) | C13—H13 | 0.9300 |
C1—N1 | 1.428 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.388 (5) | C15—C16 | 1.333 (3) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.374 (5) | C16—C17 | 1.466 (3) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.376 (5) | C17—C22 | 1.394 (3) |
C4—H4 | 0.9300 | C17—C18 | 1.399 (3) |
C5—C6 | 1.404 (4) | C18—C19 | 1.381 (4) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.437 (4) | C19—C20 | 1.381 (4) |
C7—C8 | 1.358 (3) | C19—H19 | 0.9300 |
C7—C23 | 1.496 (4) | C20—C21 | 1.378 (4) |
C8—N1 | 1.437 (3) | C20—H20 | 0.9300 |
C8—C15 | 1.458 (3) | C21—C22 | 1.383 (3) |
C9—C14 | 1.387 (4) | C21—H21 | 0.9300 |
C9—C10 | 1.390 (4) | C22—Br1 | 1.902 (2) |
C9—S1 | 1.759 (2) | C23—H23A | 0.9600 |
C10—C11 | 1.383 (4) | C23—H23B | 0.9600 |
C10—H10 | 0.9300 | C23—H23C | 0.9600 |
C11—C12 | 1.379 (4) | N1—S1 | 1.670 (2) |
C11—H11 | 0.9300 | O1—S1 | 1.424 (2) |
C12—C13 | 1.370 (4) | O2—S1 | 1.427 (2) |
C12—H12 | 0.9300 | ||
C6—C1—C2 | 122.0 (3) | C9—C14—H14 | 120.6 |
C6—C1—N1 | 107.3 (2) | C16—C15—C8 | 122.0 (2) |
C2—C1—N1 | 130.7 (3) | C16—C15—H15 | 119.0 |
C3—C2—C1 | 116.5 (3) | C8—C15—H15 | 119.0 |
C3—C2—H2 | 121.7 | C15—C16—C17 | 125.8 (2) |
C1—C2—H2 | 121.7 | C15—C16—H16 | 117.1 |
C4—C3—C2 | 122.1 (3) | C17—C16—H16 | 117.1 |
C4—C3—H3 | 118.9 | C22—C17—C18 | 116.2 (2) |
C2—C3—H3 | 118.9 | C22—C17—C16 | 121.9 (2) |
C3—C4—C5 | 121.3 (3) | C18—C17—C16 | 121.9 (2) |
C3—C4—H4 | 119.3 | C19—C18—C17 | 121.6 (2) |
C5—C4—H4 | 119.3 | C19—C18—H18 | 119.2 |
C4—C5—C6 | 118.3 (3) | C17—C18—H18 | 119.2 |
C4—C5—H5 | 120.8 | C18—C19—C20 | 120.3 (2) |
C6—C5—H5 | 120.8 | C18—C19—H19 | 119.9 |
C1—C6—C5 | 119.6 (3) | C20—C19—H19 | 119.9 |
C1—C6—C7 | 108.7 (2) | C21—C20—C19 | 120.0 (3) |
C5—C6—C7 | 131.7 (3) | C21—C20—H20 | 120.0 |
C8—C7—C6 | 107.9 (2) | C19—C20—H20 | 120.0 |
C8—C7—C23 | 127.5 (3) | C20—C21—C22 | 119.0 (2) |
C6—C7—C23 | 124.4 (2) | C20—C21—H21 | 120.5 |
C7—C8—N1 | 109.1 (2) | C22—C21—H21 | 120.5 |
C7—C8—C15 | 128.9 (2) | C21—C22—C17 | 123.0 (2) |
N1—C8—C15 | 122.0 (2) | C21—C22—Br1 | 117.57 (18) |
C14—C9—C10 | 121.0 (2) | C17—C22—Br1 | 119.44 (17) |
C14—C9—S1 | 120.0 (2) | C7—C23—H23A | 109.5 |
C10—C9—S1 | 118.91 (19) | C7—C23—H23B | 109.5 |
C11—C10—C9 | 118.8 (3) | H23A—C23—H23B | 109.5 |
C11—C10—H10 | 120.6 | C7—C23—H23C | 109.5 |
C9—C10—H10 | 120.6 | H23A—C23—H23C | 109.5 |
C12—C11—C10 | 120.2 (3) | H23B—C23—H23C | 109.5 |
C12—C11—H11 | 119.9 | C1—N1—C8 | 106.8 (2) |
C10—C11—H11 | 119.9 | C1—N1—S1 | 122.15 (18) |
C13—C12—C11 | 120.5 (3) | C8—N1—S1 | 123.93 (17) |
C13—C12—H12 | 119.7 | O1—S1—O2 | 119.60 (13) |
C11—C12—H12 | 119.7 | O1—S1—N1 | 106.70 (11) |
C12—C13—C14 | 120.5 (3) | O2—S1—N1 | 106.19 (12) |
C12—C13—H13 | 119.7 | O1—S1—C9 | 109.10 (12) |
C14—C13—H13 | 119.7 | O2—S1—C9 | 108.67 (13) |
C13—C14—C9 | 118.9 (3) | N1—S1—C9 | 105.70 (10) |
C13—C14—H14 | 120.6 | ||
C6—C1—C2—C3 | 0.6 (4) | C22—C17—C18—C19 | 0.5 (4) |
N1—C1—C2—C3 | −178.8 (3) | C16—C17—C18—C19 | 180.0 (2) |
C1—C2—C3—C4 | 0.6 (5) | C17—C18—C19—C20 | −1.8 (4) |
C2—C3—C4—C5 | −1.0 (5) | C18—C19—C20—C21 | 1.6 (4) |
C3—C4—C5—C6 | 0.1 (5) | C19—C20—C21—C22 | −0.1 (4) |
C2—C1—C6—C5 | −1.5 (4) | C20—C21—C22—C17 | −1.3 (4) |
N1—C1—C6—C5 | 178.1 (2) | C20—C21—C22—Br1 | 176.59 (19) |
C2—C1—C6—C7 | 178.4 (2) | C18—C17—C22—C21 | 1.1 (3) |
N1—C1—C6—C7 | −2.0 (3) | C16—C17—C22—C21 | −178.4 (2) |
C4—C5—C6—C1 | 1.1 (4) | C18—C17—C22—Br1 | −176.75 (17) |
C4—C5—C6—C7 | −178.8 (3) | C16—C17—C22—Br1 | 3.7 (3) |
C1—C6—C7—C8 | −0.6 (3) | C6—C1—N1—C8 | 3.7 (2) |
C5—C6—C7—C8 | 179.3 (3) | C2—C1—N1—C8 | −176.8 (3) |
C1—C6—C7—C23 | 176.2 (2) | C6—C1—N1—S1 | 155.22 (17) |
C5—C6—C7—C23 | −3.8 (4) | C2—C1—N1—S1 | −25.3 (4) |
C6—C7—C8—N1 | 3.0 (3) | C7—C8—N1—C1 | −4.2 (2) |
C23—C7—C8—N1 | −173.7 (2) | C15—C8—N1—C1 | 178.2 (2) |
C6—C7—C8—C15 | −179.6 (2) | C7—C8—N1—S1 | −155.05 (17) |
C23—C7—C8—C15 | 3.7 (4) | C15—C8—N1—S1 | 27.3 (3) |
C14—C9—C10—C11 | 1.1 (4) | C1—N1—S1—O1 | 171.57 (19) |
S1—C9—C10—C11 | −177.1 (2) | C8—N1—S1—O1 | −41.8 (2) |
C9—C10—C11—C12 | −0.6 (4) | C1—N1—S1—O2 | 42.9 (2) |
C10—C11—C12—C13 | −0.2 (4) | C8—N1—S1—O2 | −170.45 (19) |
C11—C12—C13—C14 | 0.5 (4) | C1—N1—S1—C9 | −72.4 (2) |
C12—C13—C14—C9 | −0.1 (4) | C8—N1—S1—C9 | 74.2 (2) |
C10—C9—C14—C13 | −0.7 (4) | C14—C9—S1—O1 | −155.3 (2) |
S1—C9—C14—C13 | 177.4 (2) | C10—C9—S1—O1 | 22.9 (2) |
C7—C8—C15—C16 | 48.7 (4) | C14—C9—S1—O2 | −23.3 (2) |
N1—C8—C15—C16 | −134.1 (2) | C10—C9—S1—O2 | 154.9 (2) |
C8—C15—C16—C17 | −178.7 (2) | C14—C9—S1—N1 | 90.3 (2) |
C15—C16—C17—C22 | −149.4 (2) | C10—C9—S1—N1 | −91.5 (2) |
C15—C16—C17—C18 | 31.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2 | 0.93 | 2.37 | 2.949 (5) | 120 |
C13—H13···O1i | 0.93 | 2.73 | 3.420 (3) | 132 |
C14—H14···O2ii | 0.93 | 2.77 | 3.547 (4) | 142 |
C19—H19···Br1iii | 0.93 | 2.94 | 3.805 (3) | 155 |
C5—H5···Cg(C9–C14)iv | 0.93 | 2.96 | 3.806 (4) | 153 |
C23—H23A···Cg(C1–C6)iv | 0.96 | 3.21 | 3.999 (3) | 110 |
C23—H23B···Cg(N1/C1/C6–C8)v | 0.96 | 3.12 | 3.561 (3) | 149 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1. |
Cg is a group centroid; Plane···CgB is the distance between the mean plane of Group A and the centroid of the interacting Group B; ipa is the interplanar angle; sa is the slippage angle, which is the angle of the CgA···CgB axis to the Group A mean plane normal. |
Compound | Group A | Group B | Shortest contacts | CgA···CgB | Plane···CgB | ipa | sa |
I | (N1/C1–C8) | (N1/C1–C8)iii | 3.573 (4) | 3.628 (2) | 3.551 (2) | 0 | 11.8 (2) |
(N1/C1–C8) | (C1–C6)iii | 3.573 (4) | 3.831 (2) | 3.552 (2) | 0.16 (14) | 22.0 (2) | |
II | (N1/C1–C8) | (N1/C1–C8)v | 3.618 (3) | 3.692 (2) | 3.633 (2) | 0 | 10.3 (2) |
(N1/C1–C8) | (C1–C6)v | 3.618 (3) | 3.975 (2) | 3.635 (2) | 0.62 (13) | 23.9 (2) | |
(C17–C22) | (C19–C14)vii | 3.463 (3) | 3.836 (3) | 3.646 (3) | 9.56 (16) | 18.1 (2) | |
III | (C17–C22) | (C9–C14)vi | 3.381 (3) | 3.742 (2) | 3.379 (2) | 10.34 (7) | 24.5 (2) |
(C17–C22) | (C17–C22)vii | 3.489 (3) | 3.691 (2) | 3.488 (2) | 0 | 19.1 (2) |
Symmetry codes for I: (iii) -x + 1, -y + 1, -z + 1; for II: (v) -x + 1, -y + 1, -z + 1; (vii) x, y, z - 1; for III: (vi) -x + 3/2, y + 1/2, -z + 1/2; (vii) -x + 2, -y + 2, -z + 1. |
Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. The scale factors used to determine Etot were: kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017). For details of the interaction modes, see Figs. 8–10; R is the distance in Å between the centroids of interacting molecules. |
Type | Symmetry code | Interaction | R | Eele | Epol | Edis | Erep | Etot |
Compound I | ||||||||
A | -x + 1, -y + 1, -z + 1 | π–π, CH···O | 6.45 | -20.2 | -4.5 | -71.5 | 42.4 | -60.8 |
B | -x, -y + 1, -z + 1 | CH–π | 6.35 | -10.5 | -2.0 | -59.9 | 32.8 | -44.4 |
C | -x + 1, y - 1/2, -z + 3/2 | CH···O | 7.79 | -7.9 | -3.6 | -22.8 | 14.0 | -22.2 |
D | x - 1, y, z | CH···O | 7.98 | -5.7 | -2.0 | -10.6 | 6.0 | -13.1 |
E | x, -y + 3/2, z - 1/2 | CH···Br, CH···π | 9.09 | -5.0 | -0.9 | -18.6 | 10.4 | -15.7 |
F | -x, y - 1/2, -z + 3/2 | CH···Br | 9.03 | -2.3 | -1.0 | -17.8 | 8.5 | -13.4 |
Compound II | ||||||||
A | -x + 1, -y + 1, -z + 1 | π–π | 8.08 | -8.9 | -2.9 | -67.3 | 29.0 | -52.3 |
B | -x + 2, -y + 1, -z + 1 | CH—π | 8.10 | -15.7 | -1.7 | -67.9 | 44.6 | -49.4 |
C | -x+1, -y+1, -z | CH···O | 12.70 | -12.6 | -2.9 | -15.4 | 0.0 | -28.9 |
D | x + 1, y, z | CH···O | 8.43 | -7.1 | -2.2 | -18.7 | 13.6 | -17.1 |
E | x, y, z - 1 | π–π | 8.95 | -4.2 | -2.6 | -47.8 | 22.8 | -33.9 |
F | x, -y + 1/2, z - 1/2 | CH···Br, CH···π | 8.77 | -6.2 | -2.2 | -38.6 | 20.2 | -29.3 |
Compound III | ||||||||
A | -x + 1, -y + 1, -z + 1 | CH···π, dispersion | 7.64 | -11.5 | -1.9 | -78.4 | 43.3 | -55.1 |
B | -x + 1, -y + 2, -z + 1 | CH···π | 7.91 | -9.3 | -2.0 | -57.5 | 29.5 | -43.1 |
C | -x + 3/2, y + 1/2, -z + 1/2 | π–π | 7.85 | -7.1 | -1.7 | -40.7 | 21.3 | -31.0 |
D | -x + 2, -y + 2, -z + 1 | π–π | 9.91 | -5.2 | -1.1 | -50.4 | 34.5 | -28.9 |
E | x, y - 1, z | CH···O, CH···Br | 8.35 | -10.5 | -2.7 | -28.3 | 21.7 | -24.3 |
F | -x + 1/2, y - 1/2, -z + 1/2 | CH···O | 10.52 | -3.6 | -2.7 | -15.6 | 6.0 | -15.7 |
Acknowledgements
The authors thanks to the SAIF, IIT, Madras, India, for the data collection.
References
Allen, F. H. (1981). Acta Cryst. B37, 900–906. CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons. Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bouthenet, E., Oh, K. B., Park, S., Nagi, N. K., Lee, H. S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142–7145. CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gentry, C. L., Egleton, R. D., Gillespie, T., Abbruscato, T. J., Bechowski, H. B., Hruby, V. J. & Davis, T. P. (1999). Peptides, 20, 1229–1238. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601–19611. Web of Science CrossRef CAS Google Scholar
Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2009). J. Chem. Crystallogr. 40, 40–47. Web of Science CSD CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327. Web of Science CrossRef Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525. CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746. CrossRef IUCr Journals Google Scholar
Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652. Web of Science CrossRef CAS Google Scholar
Piscopo, E., Diurno, M. V., Mazzoni, O. & Ciaccio, A. M. (1990). Boll. Soc. Ital. Biol. Sper. 66, 1181–1186. CAS PubMed Google Scholar
Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Semenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., et al. (1993). J. Med. Chem. 36, 1291–1294. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.