research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by K. V. Domasevitch, National Taras Shevchenko University of Kyiv, Ukraine (Received 29 April 2024; accepted 27 May 2024; online 31 May 2024)

Three new 1H-indole derivatives, namely, 2-(bromo­meth­yl)-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-meth­oxy­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromo­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for inter­molecular bonding involving sets of slipped ππ inter­actions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supra­molecular columns with every pair of successive mol­ecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped ππ inter­actions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of inter­actions agree with the results of a Hirshfeld surface analysis and the calculated inter­action energies. In particular, the largest inter­action energies (up to −60.8 kJ mol−1) are associated with pairing of anti­parallel indole systems, while the energetics of weak hydrogen bonds and phenyl ππ inter­actions are comparable and account for 13–34 kJ mol−1.

1. Chemical context

Derivatives of indole exhibit anti­bacterial (Okabe & Adachi, 1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]) and anti­tumour (Schollmeyer et al., 1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]) activities. In particular, 1-(phenyl­sulfon­yl)indoles are applicable to the synthesis of biologically active alkaloids and their analogues, including pyridocarbazoles, such as the anti­cancer alkaloid ellipticine, carbazoles, furo­indoles, pyrrolo­indoles, indolocarbazoles and other species. Some of the phenyl­sulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., et al. (1993). J. Med. Chem. 36, 1291-1294.]). In such systems, the phenyl­sulfonyl moiety may act either as a protecting or an activating group (Jasinski et al., 2009[Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2009). J. Chem. Crystallogr. 40, 40-47.]). Since the related halogen-substituted indoles also demonstrate anti­bacterial and anti­fungal activity (Piscopo et al., 1990[Piscopo, E., Diurno, M. V., Mazzoni, O. & Ciaccio, A. M. (1990). Boll. Soc. Ital. Biol. Sper. 66, 1181-1186.]), one can anti­cipate a range of functional benefits from the halogen deriv­atization. Thus, substitution by bromine atoms may significantly enhance in vitro blood–brain barrier permeability, providing evidence for improved delivery to the central nervous system (Bouthenet et al., 2011[Bouthenet, E., Oh, K. B., Park, S., Nagi, N. K., Lee, H. S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142-7145.]). Bromination on the phenol ring is important for the anti­microbial activity (Gentry et al., 1999[Gentry, C. L., Egleton, R. D., Gillespie, T., Abbruscato, T. J., Bechowski, H. B., Hruby, V. J. & Davis, T. P. (1999). Peptides, 20, 1229-1238.]). The incorporation of heavy atoms, such as bromine, increases the generation of reactive species during photosensitization (Semenova et al., 2021[Semenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745.]). In particular, fluorescent Br-substituted dyes are utilized for photodynamic therapy applications (Liu et al., 2021[Liu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327.]). The fluorescent 4,6-di­bromo­indole­nine cyanine revealed excellent properties for optical tumour imaging (Guerrero et al., 2017[Guerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601-19611.]). Recognizing the importance of such compounds for biochemical applications and drug discovery and our ongoing research into the construction of indole derivatives have prompted us to investigate a series of Br-substituted species. We report herein the crystal structures determination and Hirshfeld surface analysis of three new indoles: 2-(bromo­meth­yl)-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-meth­oxy­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromo­phen­yl)ethen­yl]-3-methyl-1-(phenyl­sulfon­yl)-1H-indole (III).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, C16H14BrNO2S, (I), C24H20BrNO3S, (II) and C23H18BrNO2S, (III), are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. In all the cases, the indole ring systems (N1/C1–C8) are essentially planar, with a maximum deviation from the corresponding mean plane of 0.0393 (17) Å, observed for N1 atom in III. The sulfonyl-bound phenyl rings (C9–C14) are almost orthogonal to the carrier indole ring systems (N1/C1–C8), with respective inter­planar angles of 76.40 (9)° for I, 73.35 (7)° for II and 87.68 (8)° for III. The ethenyl-bound phenyl rings (C17–C22) in II and III are also actually orthogonal to the indole frameworks, subtending dihedral angles of 72.48 (7) and 79.50 (8)°, respectively. As a consequence, the planes of these outer phenyl rings (C9–C14 and C17–C22) are nearly parallel, subtending angles of 9.56 (16) in II and 18.45 (6)° in III.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intra­molecular hydrogen bond.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intra­molecular hydrogen bond.
[Figure 3]
Figure 3
The mol­ecular structure of compound III, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intra­molecular hydrogen bond.

The torsion angles O2—S1—N1—C1 and O1—S1—N1—C8 [55.3 (2) and −21.1 (2)°, respectively, for I, −46.74 (19) and 45.94 (19)° for II and 42.9 (2) and −41.8 (2)° for III] indicate the syn conformation of the sulfonyl moiety. In all three compounds, the tetra­hedral configuration around S1 atom is somewhat distorted. The increase in the O2—S1—O1 angles [120.11 (14)° for I, 119.67 (12)° for II and 119.60 (13)° for III], with a simultaneous decrease in the N1—S1—C9 angles [104.46 (12)° for I, 103.78 (10)° for II and 105.70 (10)° for III] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds.

In all three compounds, the sum of the bond angles around N1 [355.88 (11), 348.62 (17) and 352.89 (12)° for I, II and III, respectively] indicate sp2 hybridization (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). At the same time, as a result of the electron-withdrawing character of the phenyl­sulfonyl groups, the N1—Csp2 bonds are longer than the standard length value of 1.355 (14) Å [N1—C1 = 1.419 (3) for I, 1.425 (3) for II and 1.428 (3) Å for III and N1—C8 = 1.434 (3) for I, 1.438 (3) for II and 1.437 (3) Å for III] (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In all the compounds, the certain expansion of the ipso angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]). The geometric parameters of the present compounds agree well with those reported for related structures (Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.], 2023a[Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2023a). Acta Cryst. E79, 521-525.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741-746.]). In all three compounds, the mol­ecular conformations are stabilized by weak C2—H2⋯O2 intra­molecular inter­actions with C2⋯O2 = 2.950 (2)–3.057 (4) Å.

3. Supra­molecular features

With a lack of conventional hydrogen-bond donor functionality, the supra­molecular structures of all three compounds are dominated by weaker inter­actions, namely by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds (Tables 1[link]–3[link][link]) and slipped ππ stacking inter­actions (Table 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.49 3.057 (4) 120
C2—H2⋯O1i 0.93 2.71 3.503 (4) 144
C10—H10⋯O1i 0.93 2.53 3.306 (4) 141
C12—H12⋯O2ii 0.93 2.77 3.302 (5) 118
C13—H13⋯O2ii 0.93 2.92 3.376 (4) 112
C16—H16C⋯O2iii 0.96 2.76 3.702 (4) 168
C4—H4⋯Br1iv 0.93 3.16 3.905 (4) 138
C12—H12⋯Br1v 0.93 3.16 3.922 (4) 141
C14—H14⋯Br1 0.93 2.99 3.894 (4) 165
C16—H16ACg(C9–C14)vi 0.96 2.97 3.765 (4) 142
C16—H16BCg(C1–C6)vii 0.96 2.97 3.823 (5) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [-x, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.39 2.958 (4) 119
C3—H3⋯O2i 0.93 2.61 3.448 (3) 150
C24—H24A⋯Br1ii 0.96 3.03 3.699 (3) 128
C5—H5⋯Cg(C9–C14)iii 0.93 3.12 4.047 (3) 173
C20—H20⋯Cg(C17–C22)iv 0.93 3.15 3.978 (2) 149
C23—H23CCg(C1–C6)iii 0.96 3.11 4.036 (4) 162
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.37 2.949 (5) 120
C13—H13⋯O1i 0.93 2.73 3.420 (3) 132
C14—H14⋯O2ii 0.93 2.77 3.547 (4) 142
C19—H19⋯Br1iii 0.93 2.94 3.805 (3) 155
C5—H5⋯Cg(C9–C14)iv 0.93 2.96 3.806 (4) 153
C23—H23ACg(C1–C6)iv 0.96 3.21 3.999 (3) 110
C23—H23BCg(N1/C1/C6–C8)v 0.96 3.12 3.561 (3) 149
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y+1, z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y+2, -z+1].

Table 4
Geometry of stacking inter­actions (Å, °) for IIII

Cg is a group centroid; plane⋯CgB is the distance between the mean plane of Group A and the centroid of the inter­acting Group B; ipa is the inter­planar angle; sa is the slippage angle, which is the angle of the CgACgB axis to the Group A mean plane normal.

Compound Group A Group B Shortest contacts CgACgB Plane⋯CgB ipa sa
I (N1/C1–C8) (N1/C1–C8)iii 3.573 (4) 3.628 (2) 3.551 (2) 0 11.8 (2)
  (N1/C1–C8) (C1–C6)iii 3.573 (4) 3.831 (2) 3.552 (2) 0.16 (14) 22.0 (2)
II (N1/C1–C8) (N1/C1–C8)v 3.618 (3) 3.692 (2) 3.633 (2) 0 10.3 (2)
  (N1/C1–C8) (C1–C6)v 3.618 (3) 3.975 (2) 3.635 (2) 0.62 (13) 23.9 (2)
  (C17–C22) (C19–C14)vii 3.463 (3) 3.836 (3) 3.646 (3) 9.56 (16) 18.1 (2)
III (C17–C22) (C9–C14)vi 3.381 (3) 3.742 (2) 3.379 (2) 10.34 (7) 24.5 (2)
  (C17–C22) (C17–C22)vii 3.489 (3) 3.691 (2) 3.488 (2) 0 19.1 (2)
Symmetry codes for I: (iii) −x + 1, −y + 1, −z + 1; for II: (v) −x + 1, −y + 1, −z + 1; (vii) x, y, z − 1; for III: (vi) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) −x + 2, −y + 2, −z + 1.

In the structure of I, mol­ecules are linked via double bonds involving C2—H2 and C10—H10 donors and O1i acceptors [C⋯O = 3.306 (4) and 3.503 (4) Å; symmetry code: (i) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]] into the chains propagating along the b-axis direction in the crystal (Table 1[link]). The most salient feature of the array is infinite stacking of the indole moieties, which yields columns down the a-axis. Within these columns, pairs of adjacent mol­ecules are held together by ππ inter­actions or by double CH3π bonds, in alternate sequence (Fig. 4[link]). The counterparts of every such pairs are related by inversion [symmetry codes: (iii) −x + 1, −y + 1, −x + 1; (v) −x, −y + 1, −z + 1, respectively.] For the dimer of the first kind, the geometry parameters are consistent with weak slipped ππ inter­actions. The shortest inter­centroid distance is observed between the pyrrole rings (Table 4[link]). However, the centroid of the N1/C1–C8 group (Cg1) is situated almost above the midpoint of the C1 and C6 bridgehead atoms of the neighbouring mol­ecule and therefore both pyrrole–pyrrole [Cg1⋯Cg1iii = 3.628 (3) Å] and pyrrole–benzo [Cg1⋯Cg2iii = 3.831 (3) Å] inter­actions may be considered. The entire ππ and CH3π bonded stack is additionally stabilized by weak hydrogen bonding of the sulfonyl O atoms [C⋯O = 3.302 (5)–3.702 (4) Å]. One can note the functional importance of the methyl group, which is a donor of three highly directional inter­actions, viz. the C—H⋯O bond and two C—H⋯π bonds (Table 1[link]).

[Figure 4]
Figure 4
(a) Fragment of the structure of I showing a column of mol­ecules, down the a-axis in the crystal, sustained by ππ inter­actions and weak CH⋯π and CH⋯O bonds. (b) Projection of the structure nearly down the a-axis showing weak CH⋯O bonds between the columns (which are orthogonal to the drawing plane). Light-blue lines indicate the ππ inter­actions. [Symmetry codes: (i) x + 1, y − [{1\over 2}], −z + 1.5; (iii) x + 1, −y + 1, −z + 1; (vi) x, −y + 1.5, z − [{1\over 2}]; (vii) −x, −y + 1, −z + 1; (viii) x + 1, y, z.]

The structure of II inherits the above motif (Fig. 5[link]). In particular, a combination of ππ and CH3π inter­actions assembles the mol­ecules into columns propagating along the a-axis direction in the crystal, in exactly the same manner as observed for compound I. In this case, the inter­actions are slightly weaker and the corresponding inter­centroid distances [Cg1⋯Cg1v = 3.692 (3) Å; symmetry code: (v) −x + 1, −y + 1, −z + 1] are slightly larger compared with II (Table 4[link]). The outer 2-bromo-5-meth­oxy­phenyl rings also contribute to the packing pattern since they afford ππ inter­actions with the sulfonyl-bound C9–C14 rings, with typical inter­centroid separations of 3.836 (2) Å and a relatively small slippage angle of 18.1 (2)° (Table 4[link]). This stacking complements the weak C3—H3⋯O2i hydrogen bonds [C⋯O = 3.448 (3) Å; symmetry code: (i) −x + 1, −y + 1, −z], linking the columns of mol­ecules in the c-axis direction (Fig. 5[link]). There are no hydrogen-bonding inter­actions with the meth­oxy O3 atoms, which instead are involved in relatively short Br⋯O contacts of 3.3066 (19) Å. Very distal contacts of the type C24⋯Cg4ix [4.098 (3) Å; Cg4 is the ring C17–C22 centroid; symmetry code: (ix) x, −y + [{1\over 2}], z + [{1\over 2}]] possibly indicate weak C—H⋯π inter­actions.

[Figure 5]
Figure 5
(a) Fragment of the structure of II, with columns of the mol­ecules down the a-axis, held by ππ (represented by light blue lines) and CH⋯π bonds. Short Br1⋯O3vi contacts [3.3066 (19) Å] are also shown. (b) ππ and CH⋯O inter­actions between the columns. [Symmetry codes: (i) x + 1, −y + 1, −z; (iii) x + 2, −y + 1, −z + 1; (v) x + 1, −y + 1, −z + 1; (vi) x + 1, y, z; (vii) x, y, z − 1.]

In the structure of III, the ππ inter­actions of the indole ring systems are eliminated since the shortest inter­centroid distance exceeds 4.4 Å. However, the structure retains the double CH3π bonding between inversion-related mol­ecules with C23⋯Cg1v = 3.560 (3) Å [Cg1 is the centroid of the pyrrole ring N1/C1/C6–8; symmetry code: (v) −x + 1, −y + 2, −z + 1]. Moreover, these methyl groups also establish distal mutual contacts with the C1–C6 rings [C23⋯Cg2iv = 3.999 (3) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1], which likely represent very weak CH3π bonding. These inter­actions act in synergy with a set of weak C13—H13⋯O1i and C19—H19⋯Br1iii bonds (Table 3[link]) to link the mol­ecules into the columns down the b-axis direction (Fig. 6[link]). Therefore, the main features of the patterns seen for I and II are preserved for III with only minor variations. At the same time, beyond the supra­molecular columns, which are nearly intact for all three compounds, the bonding features for III are essentially different. Both kinds of the phenyl rings afford a set of ππ inter­actions with the generation of discrete tetra­mers (Fig. 6[link]), with the central duo representing a stack of two anti­parallel inversion-related bromo­phenyl groups [Cg4⋯Cg4vii = 3.691 (2) Å; symmetry code: (vii) −x + 2, −y + 2, −z + 1.] This central fragment is extended by incorporation of two outer sulfonyl-bound phenyl groups [Cg4⋯Cg3vi = 3.742 (2) Å; symmetry code: (vi) −x + [{3\over 2}], y + 0.5, −z + [{1\over 2}]].

[Figure 6]
Figure 6
(a) Fragment of the structure of III, showing mutual CH⋯π bonding of the inversion-related indole fragments and how CH⋯O and CH⋯Br bonds contribute to the stabilization of the supra­molecular column. (b) Projection of the structure on the ac-plane. Note the extensive ππ inter­actions of the phenyl rings yielding four-decker sandwiches. The indole columns are orthogonal to the drawing plane. [Symmetry codes: (i) x, y − 1, z; (v) x + 1, −y + 2, −z + 1; (vi) x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) x + 2, −y + 2, −z + 1.]

4. Hirshfeld surface analysis

The supra­molecular inter­actions in the title structure were further assessed by Hirshfeld surface analysis. The Hirshfeld surfaces and 2D fingerprint plots were generated using CrystalExplorer21 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The two-dimensional fingerprint plots (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]) detailing the various inter­actions for the mol­ecules are shown in Fig. 7[link]. For all three compounds, Hirshfeld surfaces suggest the dominance of contacts with the hydrogen atoms, accounting for over 90% of the contacts. Beyond the largest fractions of H⋯H contacts (38.7–44.7%), the principal contributors are C⋯H/H⋯C (20.4–25.7%), O⋯H/H⋯O (14.6–17.9%) and Br⋯H/H⋯Br (8.2–12.6%) contacts corresponding to the different kinds of C—H⋯π, C—H⋯O or C—H⋯Br bonds. Every type of such bonding is readily identified by the plots representing pairs of diffuse spikes pointing to the lower left. One can note a common trend for suppression of such hydrogen bonding in II and III. For example, the contribution of the O⋯H/H⋯O contacts for I (17.9%) is perceptibly larger than for II (14.6%), which incorporates an additional meth­oxy O atom. This effect may be attributed to the increasing significance of ππ inter­actions for the crystal packing in the case of II and III, in line with the increased number of aromatic groups. In addition, a slight reduction in the Br⋯H/H⋯Br contacts (12.6% for I versus 8.2% and 8.6% for II and III, respectively) may be reflective of a weaker acceptor ability of the phenyl-bound Br atoms with respect to the bromo­methyl moieties in I. An overlap between nearly parallel aromatic frames, due to the slipped ππ stacking, is clearly indicated by the C⋯C plots for all compounds, in the form of the blue–green area centred at ca de = di = 1.85 Å. The plots suggest a progressive growth of the significance of these inter­actions, when moving from I to II and III. In line with this, the contributions of the C⋯C contacts to the entire surfaces are 2.5%, 6.3% and 8.2%, respectively. In the case of II, the peculiar short Br⋯O contacts are also readily identified by the fingerprint plots and they contribute as much as 1.6% to the surface area (Fig. 7[link]).

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for IIII and delineated into the principal contributions of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br, C⋯C, N⋯C/C⋯N, Br⋯O/O⋯Br and N⋯H/H⋯N contacts. Other contributors account for less than 1.0% contacts to the surface areas.

The inter­action energy between the mol­ecules is expressed in terms of four components: electrostatic, polarization, dispersion and exchange repulsion. These energies were obtained using monomer wavefunctions calculated at the B3LYP/6-31G(d,p) level. The total inter­action energy, which is the sum of scaled components, was calculated for a 3.8 Å radius cluster of mol­ecules around the selected mol­ecule. The scale factors used in the CE-B3LYP bench research marked energy model (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) are given in Table 5[link]. The principal inter­action pathways for IIII are shown in Figs. 8[link]–10[link][link], respectively. The inter­action energies calculated by the energy model reveal that the inter­actions in the crystal have a significant contribution from dispersion components. It is worth noting that the primary forces for the crystal packing are associated with different stackings of the indole moieties. Either ππ or double CH⋯π inter­actions of the inversion-related mol­ecules are equally important and they are particularly prevalent in the case of I. Thus, the highest energy Etot = −60.8 kJ mol−1 corresponds to the pairing pattern of type A (Fig. 8[link]), with contributions from slipped ππ inter­actions and double C—H⋯O hydrogen bonding. In addition, short contacts of the methyl­ene groups C15 and C3—C4 bonds [C15⋯Cg(C3/C4)iii = 3.412 (2) Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1] possibly reflect a kind of weak tetrel C⋯π bonding. The energies of other types of indole/indole inter­actions for II and III are comparable [Etot = −43.1 to −55.1 kJ mol−1] and the primary contributor here is London dispersion [up to −78.4 kJ mol−1], in accordance with the very large inter­action areas. The energies of the slipped ππ inter­actions of the phenyl rings in II and III are very similar and they account for −28.9 to −33.9 kJ mol−1 (Table 4[link]). The significance of these inter­actions is comparable with weak C—H⋯O hydrogen bonds. The energies of the latter themselves are only medium, for example −13.1 kJ mol−1 (Type D) in I and −15.7 kJ mol−1 (Type F) in II. However, pairing of the mol­ecules via multiple hydrogen bonding increases the inter­action energies up to −28.9 kJ mol−1 (Type C in II, Fig. 9[link]). This rich landscape of bonding modes, with a specific hierarchy of inter­action energies, could be applicable as a model for supra­molecular inter­actions of phenyl­sulfonyl-substituted indoles and their targeting of biomedical substrates.

Table 5
Calculated inter­action energies (kJ mol−1) for IIII

Inter­action energies were calculated employing the CE-B3LYP/6–31G(d,p) functional/basis set combination. The scale factors used to determine Etot were: kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). For details of the inter­action modes, see Figs. 8[link]–10[link][link]; R is the distance in Å between the centroids of inter­acting mol­ecules.

Type Symmetry code Inter­action R Eele Epol Edis Erep Etot
Compound I                
A x + 1, −y + 1, −z + 1 ππ, CH⋯O 6.45 −20.2 −4.5 −71.5 42.4 −60.8
B x, −y + 1, −z + 1 CH–π 6.35 −10.5 −2.0 −59.9 32.8 −44.4
C x + 1, y − [{1\over 2}], −z + [{3\over 2}] CH⋯O 7.79 −7.9 −3.6 −22.8 14.0 −22.2
D x − 1, y, z CH⋯O 7.98 −5.7 −2.0 −10.6 6.0 −13.1
E x, −y + [{3\over 2}], z − [{1\over 2}] CH⋯Br, CH⋯π 9.09 −5.0 −0.9 −18.6 10.4 −15.7
F x, y − [{1\over 2}], −z + [{3\over 2}] CH⋯Br 9.03 −2.3 −1.0 −17.8 8.5 −13.4
Compound II                
A x + 1, −y + 1, −z + 1 ππ 8.08 −8.9 −2.9 −67.3 29.0 −52.3
B x + 2, −y + 1, −z + 1 CH—π 8.10 −15.7 −1.7 −67.9 44.6 −49.4
C x + 1, −y + 1, −z CH⋯O 12.70 −12.6 −2.9 −15.4 0.0 −28.9
D x + 1, y, z CH⋯O 8.43 −7.1 −2.2 −18.7 13.6 −17.1
E x, y, z − 1 ππ 8.95 −4.2 −2.6 −47.8 22.8 −33.9
F x, −y + [{1\over 2}], z − [{1\over 2}] CH⋯Br, CH⋯π 8.77 −6.2 −2.2 −38.6 20.2 −29.3
Compound III                
A x + 1, −y + 1, −z + 1 CH⋯π, dispersion 7.64 −11.5 −1.9 −78.4 43.3 −55.1
B x + 1, −y + 2, −z + 1 CH⋯π 7.91 −9.3 −2.0 −57.5 29.5 −43.1
C x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}] ππ 7.85 −7.1 −1.7 −40.7 21.3 −31.0
D x + 2, −y + 2, −z + 1 ππ 9.91 −5.2 −1.1 −50.4 34.5 −28.9
E x, y − 1, z CH⋯O, CH⋯Br 8.35 −10.5 −2.7 −28.3 21.7 −24.3
F x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}] CH⋯O 10.52 −3.6 −2.7 −15.6 6.0 −15.7
[Figure 8]
Figure 8
The principal pathways of the inter­molecular inter­actions for I representing ππ and weak hydrogen bonding, with a cut-off limit for calculated energies of 6.0 kJ mol−1. [Symmetry codes: (i) x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (ii) x − 1, −y + [{1\over 2}], z + [{1\over 2}]; (iii) x + 1, −y + 1, −z + 1; (v) x, y − [{1\over 2}], −z + [{3\over 2}]; (vi) x, −y + [{3\over 2}], z − [{1\over 2}].]
[Figure 9]
Figure 9
The principal pathways of the inter­molecular inter­actions for II representing ππ and weak hydrogen bonding, with a cut-off limit for calculated energies of 12.0 kJ mol−1. [Symmetry codes: (i) x + 1, −y + 1, −z; (iii) x + 2, −y + 1, −z + 1; (v) x + 1, −y + 1, −z + 1; (vi) x + 1, y, z; (vii) x, y, z − 1; (viii) x, −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 10]
Figure 10
The principal pathways of the inter­molecular inter­actions for II representing ππ and weak hydrogen bonding, with a cut-off limit for calculated energies of 6.0 kJ mol−1. [Symmetry codes: (i) x, y − 1, z; (ii) x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iv) x + 1, −y + 1, −z + 1; (v) x + 1, −y + 2, −z + 1; (vi) x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) x + 2, −y + 2, −z + 1.]

5. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). indicated 123 compounds incorporating a phenyl­sulfonyl-1H-indole moiety. Of these compounds, several similar structures have been reported earlier, i.e. ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (Gunasekaran et al., 2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.]), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (Ramathilagam et al., 2011[Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.]) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one (Umadevi et al., 2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802-o1803.]). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems, with corresponding dihedral angles of 83.35 (5), 82.84 (9) and 89.91 (11)°, respectively, being comparable with those in the present three compounds.

6. Synthesis and crystallization

Compound I: To a mixture of N-phenyl­sulfonyl-3-methyl­indole (6.00 g, 22.22 mmol) and paraformaldehyde (3.33 g, 111.1 mmol) in 50 ml of dry CCl4, a 33 wt % solution HBr in acetic acid (13.46 ml) was added rapidly. The mixture was kept at room temperature for 6 h. After completion of the reaction (monitored by TLC), the mixture was poured into 100 ml of ice–water and then extracted with CCl4 (2 × 20 ml). The extract was dried with Na2SO4. Removal of the solvent in vacuo followed by crystallization from methanol (4 ml) afforded compound I as a colourless solid (yield: 6.9 g, 86%).

Compound II: To a suspension of hexane (5 mL) washed NaH (0.43 g, 10.92 mmol) in dry THF (5 ml), a solution of diethyl {[3-methyl-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}phospho­nate (2.30 g, 5.46 mmol) in dry THF (10 ml) was slowly added via an addition funnel at 283 K under an N2 atmosphere and stirred for 15 min. Then a solution of 2-bromo-5-meth­oxy­benzaldehyde (1.39 g, 6.55 mmol) in dry THF (5 ml) was added and the mixture was allowed to stir for an additional 1 h. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g) containing concentrated HCl (1 ml). The solid formed was filtered and washed with methanol. Recrystallization from methanol (4 ml) afforded compound II as a bright-yellow solid (yield: 2.00 g, 76%). M.p. = 425–427 K.

Compound III: To a suspension of hexane (5 mL) washed NaH (0.38 g, 9.50 mmol) in dry THF (5 ml), a solution of diethyl {[3-methyl-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}phospho­nate (2.00 g, 4.75 mmol) in dry THF (10 ml) was slowly added via an addition funnel at 283 K under an N2 atmosphere and stirred for 15 min. Then a solution of 2-bromo­benzaldehyde (1.05 g, 5.70 mmol) in dry THF (5 ml) was added and the mixture was allowed to stir for an additional 1 h. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g) containing concentrated HCl (1 ml). The solid formed was filtered and washed with methanol to afford ethenyl­indole III as a bright-yellow solid (yield: 1.72 g, 71%). M.p. = 419-421 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 6
Experimental details

  I II III
Crystal data
Chemical formula C16H14BrNO2S C24H20BrNO3S C23H18BrNO2S
Mr 364.25 482.38 452.35
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 298 298 298
a, b, c (Å) 7.979 (6), 11.100 (8), 17.540 (14) 8.4252 (9), 28.669 (3), 8.9462 (11) 12.5530 (8), 8.3533 (5), 19.7698 (11)
β (°) 99.04 (3) 95.445 (4) 107.078 (2)
V3) 1534 (2) 2151.1 (4) 1981.6 (2)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.82 2.03 2.20
Crystal size (mm) 0.30 × 0.24 × 0.07 0.25 × 0.20 × 0.13 0.36 × 0.31 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.589, 0.753 0.555, 0.745 0.514, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 66991, 4464, 3158 52479, 5296, 3905 50531, 4293, 3516
Rint 0.049 0.077 0.058
(sin θ/λ)max−1) 0.704 0.666 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.10 0.039, 0.099, 1.03 0.036, 0.087, 1.10
No. of reflections 4464 5296 4293
No. of parameters 191 272 254
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.80 0.39, −0.68 0.37, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018/3 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

2-(Bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole (I) top
Crystal data top
C16H14BrNO2SF(000) = 736
Mr = 364.25Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.979 (6) ÅCell parameters from 66991 reflections
b = 11.100 (8) Åθ = 1.4–25.0°
c = 17.540 (14) ŵ = 2.82 mm1
β = 99.04 (3)°T = 298 K
V = 1534 (2) Å3Prism, colorless
Z = 40.30 × 0.24 × 0.07 mm
Data collection top
Bruker D8 Venture Diffractometer3158 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.049
ω and φ scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1110
Tmin = 0.589, Tmax = 0.753k = 1515
66991 measured reflectionsl = 2424
4464 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0434P)2 + 1.2291P]
where P = (Fo2 + 2Fc2)/3
4464 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3530 (3)0.4783 (2)0.58255 (14)0.0345 (5)
C20.3824 (3)0.3757 (2)0.62843 (16)0.0439 (6)
H20.4469320.3789320.6773770.053*
C30.3113 (4)0.2684 (2)0.59810 (18)0.0513 (7)
H30.3283600.1984130.6274060.062*
C40.2149 (4)0.2635 (3)0.5247 (2)0.0570 (7)
H40.1689020.1903930.5057840.068*
C50.1868 (4)0.3654 (3)0.47978 (18)0.0526 (7)
H50.1226600.3615490.4307610.063*
C60.2562 (3)0.4750 (2)0.50893 (14)0.0387 (5)
C70.2515 (3)0.5952 (2)0.47726 (15)0.0428 (6)
C80.3405 (3)0.6691 (2)0.53034 (14)0.0398 (5)
C90.2921 (3)0.6242 (2)0.73345 (14)0.0385 (5)
C100.2971 (4)0.5343 (3)0.78836 (17)0.0537 (7)
H100.3953870.4895610.8033090.064*
C110.1513 (5)0.5123 (3)0.8207 (2)0.0656 (9)
H110.1519770.4523090.8578110.079*
C120.0065 (4)0.5786 (3)0.7982 (2)0.0620 (8)
H120.0909840.5620260.8192600.074*
C130.0053 (4)0.6692 (3)0.74490 (18)0.0585 (8)
H130.0924890.7147230.7308380.070*
C140.1477 (3)0.6933 (3)0.71194 (15)0.0482 (6)
H140.1467650.7548100.6758990.058*
C150.3845 (4)0.7966 (2)0.51928 (19)0.0540 (7)
H15A0.3972730.8085990.4657160.065*
H15B0.4931500.8136590.5507100.065*
C160.1665 (5)0.6285 (3)0.39759 (17)0.0642 (9)
H16A0.1779410.7136090.3899590.096*
H16B0.0482750.6079240.3917530.096*
H16C0.2187510.5854440.3601030.096*
N10.4082 (3)0.59886 (17)0.59670 (12)0.0369 (4)
O10.5039 (3)0.77321 (19)0.68162 (13)0.0614 (6)
O20.6017 (2)0.5675 (2)0.72121 (13)0.0596 (6)
S10.47047 (8)0.64724 (6)0.68698 (4)0.04217 (16)
Br10.21361 (5)0.91337 (3)0.54636 (2)0.07195 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (11)0.0336 (11)0.0354 (12)0.0001 (9)0.0087 (9)0.0030 (9)
C20.0492 (14)0.0417 (13)0.0413 (13)0.0019 (11)0.0085 (11)0.0015 (11)
C30.0574 (17)0.0350 (13)0.0632 (18)0.0002 (12)0.0148 (14)0.0037 (12)
C40.0605 (18)0.0385 (14)0.071 (2)0.0082 (13)0.0083 (15)0.0132 (14)
C50.0523 (16)0.0507 (16)0.0517 (16)0.0003 (13)0.0014 (13)0.0157 (13)
C60.0379 (12)0.0400 (13)0.0385 (13)0.0043 (10)0.0069 (10)0.0064 (10)
C70.0480 (14)0.0442 (14)0.0369 (12)0.0126 (11)0.0086 (11)0.0006 (11)
C80.0486 (14)0.0343 (12)0.0395 (13)0.0082 (10)0.0162 (11)0.0029 (10)
C90.0442 (13)0.0389 (12)0.0319 (11)0.0030 (10)0.0042 (10)0.0091 (10)
C100.0686 (19)0.0485 (16)0.0460 (15)0.0103 (14)0.0153 (14)0.0029 (13)
C110.092 (3)0.0532 (18)0.0582 (19)0.0030 (17)0.0335 (18)0.0052 (15)
C120.0607 (19)0.074 (2)0.0563 (18)0.0052 (16)0.0254 (15)0.0081 (16)
C130.0460 (15)0.077 (2)0.0536 (17)0.0048 (15)0.0101 (13)0.0018 (16)
C140.0479 (14)0.0577 (17)0.0382 (13)0.0023 (13)0.0042 (11)0.0022 (12)
C150.0698 (19)0.0387 (14)0.0599 (18)0.0037 (13)0.0303 (15)0.0048 (12)
C160.079 (2)0.070 (2)0.0418 (15)0.0249 (18)0.0027 (14)0.0042 (15)
N10.0430 (11)0.0327 (10)0.0356 (10)0.0025 (8)0.0082 (8)0.0037 (8)
O10.0733 (14)0.0497 (12)0.0623 (13)0.0260 (11)0.0137 (11)0.0174 (10)
O20.0384 (10)0.0789 (15)0.0577 (12)0.0025 (10)0.0047 (9)0.0067 (11)
S10.0380 (3)0.0465 (4)0.0413 (3)0.0093 (3)0.0036 (2)0.0100 (3)
Br10.1035 (3)0.03893 (17)0.0794 (3)0.01814 (16)0.0331 (2)0.00174 (15)
Geometric parameters (Å, º) top
C1—C21.393 (4)C10—C111.394 (5)
C1—C61.397 (4)C10—H100.9300
C1—N11.419 (3)C11—C121.374 (5)
C2—C31.388 (4)C11—H110.9300
C2—H20.9300C12—C131.372 (5)
C3—C41.393 (5)C12—H120.9300
C3—H30.9300C13—C141.379 (4)
C4—C51.377 (5)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.399 (4)C15—Br11.992 (3)
C5—H50.9300C15—H15A0.9700
C6—C71.444 (4)C15—H15B0.9700
C7—C81.355 (4)C16—H16A0.9600
C7—C161.501 (4)C16—H16B0.9600
C8—N11.434 (3)C16—H16C0.9600
C8—C151.478 (4)N1—S11.672 (2)
C9—C101.384 (4)O1—S11.429 (2)
C9—C141.386 (4)O2—S11.430 (2)
C9—S11.766 (3)
C2—C1—C6122.0 (2)C10—C11—H11119.8
C2—C1—N1130.6 (2)C13—C12—C11120.2 (3)
C6—C1—N1107.3 (2)C13—C12—H12119.9
C3—C2—C1117.3 (3)C11—C12—H12119.9
C3—C2—H2121.4C12—C13—C14120.6 (3)
C1—C2—H2121.4C12—C13—H13119.7
C2—C3—C4121.4 (3)C14—C13—H13119.7
C2—C3—H3119.3C13—C14—C9118.9 (3)
C4—C3—H3119.3C13—C14—H14120.6
C5—C4—C3120.9 (3)C9—C14—H14120.6
C5—C4—H4119.6C8—C15—Br1113.97 (19)
C3—C4—H4119.6C8—C15—H15A108.8
C4—C5—C6119.1 (3)Br1—C15—H15A108.8
C4—C5—H5120.5C8—C15—H15B108.8
C6—C5—H5120.5Br1—C15—H15B108.8
C1—C6—C5119.4 (2)H15A—C15—H15B107.7
C1—C6—C7108.0 (2)C7—C16—H16A109.5
C5—C6—C7132.7 (2)C7—C16—H16B109.5
C8—C7—C6108.4 (2)H16A—C16—H16B109.5
C8—C7—C16127.0 (3)C7—C16—H16C109.5
C6—C7—C16124.5 (3)H16A—C16—H16C109.5
C7—C8—N1108.6 (2)H16B—C16—H16C109.5
C7—C8—C15126.8 (3)C1—N1—C8107.7 (2)
N1—C8—C15124.0 (3)C1—N1—S1120.44 (16)
C10—C9—C14121.4 (3)C8—N1—S1127.74 (17)
C10—C9—S1119.2 (2)O1—S1—O2120.11 (14)
C14—C9—S1119.4 (2)O1—S1—N1106.42 (12)
C9—C10—C11118.4 (3)O2—S1—N1106.72 (12)
C9—C10—H10120.8O1—S1—C9110.12 (13)
C11—C10—H10120.8O2—S1—C9107.87 (14)
C12—C11—C10120.5 (3)N1—S1—C9104.46 (12)
C12—C11—H11119.8
C6—C1—C2—C30.0 (4)C10—C9—C14—C131.6 (4)
N1—C1—C2—C3179.5 (2)S1—C9—C14—C13175.7 (2)
C1—C2—C3—C40.2 (4)C7—C8—C15—Br190.8 (3)
C2—C3—C4—C50.1 (5)N1—C8—C15—Br198.9 (3)
C3—C4—C5—C60.2 (5)C2—C1—N1—C8179.5 (2)
C2—C1—C6—C50.3 (4)C6—C1—N1—C80.8 (3)
N1—C1—C6—C5179.3 (2)C2—C1—N1—S120.7 (4)
C2—C1—C6—C7179.7 (2)C6—C1—N1—S1159.66 (17)
N1—C1—C6—C70.1 (3)C7—C8—N1—C11.3 (3)
C4—C5—C6—C10.4 (4)C15—C8—N1—C1173.2 (2)
C4—C5—C6—C7179.6 (3)C7—C8—N1—S1158.14 (19)
C1—C6—C7—C80.8 (3)C15—C8—N1—S130.0 (3)
C5—C6—C7—C8179.9 (3)C1—N1—S1—O1175.28 (19)
C1—C6—C7—C16177.2 (3)C8—N1—S1—O121.1 (2)
C5—C6—C7—C162.1 (5)C1—N1—S1—O255.3 (2)
C6—C7—C8—N11.3 (3)C8—N1—S1—O2150.5 (2)
C16—C7—C8—N1176.6 (3)C1—N1—S1—C958.8 (2)
C6—C7—C8—C15172.8 (2)C8—N1—S1—C995.4 (2)
C16—C7—C8—C155.0 (5)C10—C9—S1—O1136.9 (2)
C14—C9—C10—C111.5 (4)C14—C9—S1—O145.7 (2)
S1—C9—C10—C11175.9 (2)C10—C9—S1—O24.1 (3)
C9—C10—C11—C120.1 (5)C14—C9—S1—O2178.5 (2)
C10—C11—C12—C131.5 (5)C10—C9—S1—N1109.2 (2)
C11—C12—C13—C141.4 (5)C14—C9—S1—N168.2 (2)
C12—C13—C14—C90.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.493.057 (4)120
C2—H2···O1i0.932.713.503 (4)144
C10—H10···O1i0.932.533.306 (4)141
C12—H12···O2ii0.932.773.302 (5)118
C13—H13···O2ii0.932.923.376 (4)112
C16—H16C···O2iii0.962.763.702 (4)168
C4—H4···Br1iv0.933.163.905 (4)138
C12—H12···Br1v0.933.163.922 (4)141
C14—H14···Br10.932.993.894 (4)165
C16—H16A···Cg(C9–C14)vi0.962.973.765 (4)142
C16—H16B···Cg(C1–C6)vii0.962.973.823 (5)149
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y1/2, z+3/2; (vi) x, y+3/2, z1/2; (vii) x, y+1, z+1.
2-[(E)-2-(2-Bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole (II) top
Crystal data top
C24H20BrNO3SF(000) = 984
Mr = 482.38Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4252 (9) ÅCell parameters from 52480 reflections
b = 28.669 (3) Åθ = 1.4–25.0°
c = 8.9462 (11) ŵ = 2.03 mm1
β = 95.445 (4)°T = 298 K
V = 2151.1 (4) Å3Solid, yellow
Z = 40.25 × 0.20 × 0.13 mm
Data collection top
Bruker D8 Venture Diffractometer3905 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.077
ω and φ scansθmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.555, Tmax = 0.745k = 3838
52479 measured reflectionsl = 1111
5296 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.0393P]
where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6561 (3)0.48550 (8)0.3470 (2)0.0469 (5)
C20.6281 (3)0.50829 (10)0.2093 (3)0.0614 (6)
H20.5687290.4943870.1283320.074*
C30.6923 (4)0.55236 (11)0.1981 (3)0.0717 (8)
H30.6762660.5682620.1072790.086*
C40.7791 (4)0.57337 (10)0.3175 (4)0.0742 (8)
H40.8203630.6030850.3056640.089*
C50.8062 (3)0.55132 (9)0.4542 (3)0.0643 (7)
H50.8638210.5659060.5348110.077*
C60.7446 (3)0.50632 (8)0.4686 (2)0.0473 (5)
C70.7513 (3)0.47458 (8)0.5935 (2)0.0461 (5)
C80.6716 (2)0.43516 (7)0.5475 (2)0.0421 (4)
C90.7837 (3)0.38292 (8)0.2424 (3)0.0489 (5)
C100.8684 (3)0.35109 (10)0.3337 (3)0.0673 (7)
H100.8204240.3355800.4089020.081*
C111.0261 (4)0.34260 (13)0.3116 (4)0.0860 (10)
H111.0848680.3212320.3723570.103*
C121.0964 (4)0.36561 (13)0.2001 (5)0.0861 (10)
H121.2023360.3596910.1854230.103*
C131.0103 (4)0.39724 (12)0.1108 (4)0.0805 (9)
H131.0587870.4129930.0364290.097*
C140.8539 (4)0.40589 (10)0.1299 (3)0.0643 (7)
H140.7954260.4269860.0678550.077*
C150.6383 (3)0.39387 (8)0.6346 (2)0.0444 (5)
H150.5360560.3813230.6230130.053*
C160.7478 (3)0.37332 (7)0.7300 (2)0.0438 (5)
H160.8519790.3841730.7320950.053*
C170.7170 (2)0.33490 (7)0.8319 (2)0.0400 (4)
C180.5683 (3)0.32918 (7)0.8844 (2)0.0438 (5)
H180.4864480.3495620.8515870.053*
C190.5381 (3)0.29388 (8)0.9845 (3)0.0490 (5)
C200.6587 (3)0.26380 (9)1.0366 (3)0.0599 (6)
H200.6399030.2403841.1046480.072*
C210.8074 (3)0.26891 (8)0.9866 (3)0.0580 (6)
H210.8895180.2489651.0221760.070*
C220.8361 (3)0.30307 (7)0.8848 (3)0.0455 (5)
C230.8223 (4)0.48672 (10)0.7485 (3)0.0681 (7)
H23A0.7915080.4637360.8182520.102*
H23B0.7844690.5168170.7760490.102*
H23C0.9364090.4873960.7505540.102*
C240.3489 (4)0.25800 (13)1.1295 (4)0.0971 (12)
H24A0.2386620.2606951.1473900.146*
H24B0.3681420.2275411.0905270.146*
H24C0.4145810.2625611.2220220.146*
N10.6044 (2)0.44108 (6)0.39484 (19)0.0449 (4)
O10.5205 (2)0.35818 (6)0.3525 (2)0.0635 (5)
O20.5020 (2)0.41358 (7)0.1409 (2)0.0722 (5)
O30.3861 (2)0.29237 (7)1.0239 (2)0.0704 (5)
S10.58589 (7)0.39595 (2)0.27518 (6)0.05060 (15)
Br11.04254 (3)0.30608 (2)0.81730 (3)0.06603 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0452 (11)0.0509 (12)0.0454 (12)0.0121 (9)0.0092 (9)0.0073 (10)
C20.0653 (16)0.0700 (16)0.0493 (13)0.0168 (13)0.0076 (11)0.0139 (12)
C30.0784 (19)0.0731 (18)0.0660 (17)0.0233 (15)0.0194 (15)0.0311 (15)
C40.0778 (19)0.0526 (15)0.096 (2)0.0088 (14)0.0262 (17)0.0275 (15)
C50.0702 (17)0.0495 (14)0.0740 (17)0.0018 (12)0.0115 (14)0.0052 (13)
C60.0507 (12)0.0435 (11)0.0487 (12)0.0066 (9)0.0099 (10)0.0047 (10)
C70.0494 (12)0.0470 (12)0.0419 (11)0.0026 (9)0.0044 (9)0.0013 (9)
C80.0423 (11)0.0477 (11)0.0367 (10)0.0055 (9)0.0060 (8)0.0032 (9)
C90.0481 (12)0.0526 (13)0.0459 (12)0.0051 (10)0.0036 (10)0.0127 (10)
C100.0614 (16)0.0698 (17)0.0714 (17)0.0112 (13)0.0100 (13)0.0006 (14)
C110.0666 (19)0.090 (2)0.100 (2)0.0239 (17)0.0004 (18)0.0126 (19)
C120.0518 (16)0.096 (2)0.112 (3)0.0075 (16)0.0195 (18)0.048 (2)
C130.082 (2)0.080 (2)0.086 (2)0.0191 (17)0.0400 (18)0.0266 (18)
C140.0738 (17)0.0673 (16)0.0539 (14)0.0036 (13)0.0167 (13)0.0091 (12)
C150.0440 (11)0.0474 (12)0.0425 (11)0.0010 (9)0.0072 (9)0.0013 (9)
C160.0408 (11)0.0435 (11)0.0477 (12)0.0008 (9)0.0069 (9)0.0008 (9)
C170.0424 (10)0.0366 (10)0.0399 (10)0.0003 (8)0.0020 (8)0.0027 (8)
C180.0431 (11)0.0431 (11)0.0441 (11)0.0017 (9)0.0021 (9)0.0038 (9)
C190.0469 (12)0.0514 (12)0.0471 (12)0.0059 (10)0.0028 (10)0.0076 (10)
C200.0614 (15)0.0531 (14)0.0631 (15)0.0030 (11)0.0060 (12)0.0201 (12)
C210.0559 (14)0.0472 (13)0.0683 (16)0.0097 (11)0.0081 (12)0.0115 (12)
C220.0422 (11)0.0425 (11)0.0505 (12)0.0036 (9)0.0022 (9)0.0057 (9)
C230.093 (2)0.0577 (15)0.0510 (14)0.0049 (14)0.0060 (14)0.0038 (12)
C240.079 (2)0.110 (3)0.106 (3)0.0124 (19)0.0235 (19)0.053 (2)
N10.0454 (9)0.0490 (10)0.0399 (9)0.0047 (8)0.0018 (7)0.0024 (8)
O10.0581 (10)0.0660 (11)0.0666 (11)0.0193 (8)0.0066 (8)0.0049 (9)
O20.0665 (11)0.0939 (14)0.0512 (10)0.0062 (10)0.0195 (8)0.0042 (9)
O30.0510 (10)0.0845 (13)0.0760 (12)0.0058 (9)0.0077 (9)0.0337 (10)
S10.0441 (3)0.0620 (4)0.0443 (3)0.0022 (3)0.0033 (2)0.0053 (3)
Br10.04735 (15)0.06198 (17)0.0897 (2)0.01104 (11)0.01150 (13)0.00450 (14)
Geometric parameters (Å, º) top
C1—C61.393 (3)C14—H140.9300
C1—C21.395 (3)C15—C161.333 (3)
C1—N11.425 (3)C15—H150.9300
C2—C31.382 (4)C16—C171.469 (3)
C2—H20.9300C16—H160.9300
C3—C41.375 (4)C17—C181.389 (3)
C3—H30.9300C17—C221.405 (3)
C4—C51.376 (4)C18—C191.391 (3)
C4—H40.9300C18—H180.9300
C5—C61.401 (3)C19—O31.360 (3)
C5—H50.9300C19—C201.380 (3)
C6—C71.438 (3)C20—C211.377 (4)
C7—C81.358 (3)C20—H200.9300
C7—C231.498 (3)C21—C221.374 (3)
C8—N11.438 (3)C21—H210.9300
C8—C151.459 (3)C22—Br11.896 (2)
C9—C101.378 (4)C23—H23A0.9600
C9—C141.382 (3)C23—H23B0.9600
C9—S11.759 (2)C23—H23C0.9600
C10—C111.383 (4)C24—O31.421 (3)
C10—H100.9300C24—H24A0.9600
C11—C121.376 (5)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.370 (5)N1—S11.6770 (19)
C12—H120.9300O1—S11.4237 (19)
C13—C141.368 (4)O2—S11.4269 (18)
C13—H130.9300
C6—C1—C2121.5 (2)C8—C15—H15118.5
C6—C1—N1107.75 (18)C15—C16—C17125.2 (2)
C2—C1—N1130.7 (2)C15—C16—H16117.4
C3—C2—C1117.2 (3)C17—C16—H16117.4
C3—C2—H2121.4C18—C17—C22116.61 (19)
C1—C2—H2121.4C18—C17—C16121.10 (18)
C4—C3—C2121.8 (2)C22—C17—C16122.26 (19)
C4—C3—H3119.1C17—C18—C19122.0 (2)
C2—C3—H3119.1C17—C18—H18119.0
C3—C4—C5121.4 (3)C19—C18—H18119.0
C3—C4—H4119.3O3—C19—C20125.0 (2)
C5—C4—H4119.3O3—C19—C18115.1 (2)
C4—C5—C6118.3 (3)C20—C19—C18119.9 (2)
C4—C5—H5120.9C21—C20—C19119.2 (2)
C6—C5—H5120.9C21—C20—H20120.4
C1—C6—C5119.8 (2)C19—C20—H20120.4
C1—C6—C7108.3 (2)C22—C21—C20120.9 (2)
C5—C6—C7131.8 (2)C22—C21—H21119.5
C8—C7—C6108.00 (19)C20—C21—H21119.5
C8—C7—C23128.0 (2)C21—C22—C17121.4 (2)
C6—C7—C23123.7 (2)C21—C22—Br1117.89 (17)
C7—C8—N1109.18 (18)C17—C22—Br1120.70 (17)
C7—C8—C15128.9 (2)C7—C23—H23A109.5
N1—C8—C15121.62 (19)C7—C23—H23B109.5
C10—C9—C14120.9 (2)H23A—C23—H23B109.5
C10—C9—S1119.18 (19)C7—C23—H23C109.5
C14—C9—S1119.9 (2)H23A—C23—H23C109.5
C9—C10—C11118.8 (3)H23B—C23—H23C109.5
C9—C10—H10120.6O3—C24—H24A109.5
C11—C10—H10120.6O3—C24—H24B109.5
C12—C11—C10120.3 (3)H24A—C24—H24B109.5
C12—C11—H11119.8O3—C24—H24C109.5
C10—C11—H11119.8H24A—C24—H24C109.5
C13—C12—C11120.0 (3)H24B—C24—H24C109.5
C13—C12—H12120.0C1—N1—C8106.63 (17)
C11—C12—H12120.0C1—N1—S1120.69 (15)
C14—C13—C12120.7 (3)C8—N1—S1121.31 (15)
C14—C13—H13119.7C19—O3—C24117.8 (2)
C12—C13—H13119.7O1—S1—O2119.67 (12)
C13—C14—C9119.3 (3)O1—S1—N1107.06 (10)
C13—C14—H14120.4O2—S1—N1105.82 (11)
C9—C14—H14120.4O1—S1—C9109.61 (12)
C16—C15—C8122.9 (2)O2—S1—C9109.65 (12)
C16—C15—H15118.5N1—S1—C9103.78 (10)
C6—C1—C2—C30.2 (4)C17—C18—C19—O3179.1 (2)
N1—C1—C2—C3178.4 (2)C17—C18—C19—C201.2 (4)
C1—C2—C3—C40.6 (4)O3—C19—C20—C21179.4 (2)
C2—C3—C4—C50.0 (4)C18—C19—C20—C210.9 (4)
C3—C4—C5—C60.8 (4)C19—C20—C21—C220.7 (4)
C2—C1—C6—C50.6 (3)C20—C21—C22—C172.1 (4)
N1—C1—C6—C5177.9 (2)C20—C21—C22—Br1177.9 (2)
C2—C1—C6—C7179.6 (2)C18—C17—C22—C211.8 (3)
N1—C1—C6—C71.0 (2)C16—C17—C22—C21176.4 (2)
C4—C5—C6—C11.1 (4)C18—C17—C22—Br1178.23 (15)
C4—C5—C6—C7179.8 (2)C16—C17—C22—Br13.6 (3)
C1—C6—C7—C81.2 (3)C6—C1—N1—C82.7 (2)
C5—C6—C7—C8180.0 (3)C2—C1—N1—C8178.9 (2)
C1—C6—C7—C23173.6 (2)C6—C1—N1—S1146.59 (16)
C5—C6—C7—C235.2 (4)C2—C1—N1—S135.0 (3)
C6—C7—C8—N12.9 (2)C7—C8—N1—C13.5 (2)
C23—C7—C8—N1171.6 (2)C15—C8—N1—C1177.77 (19)
C6—C7—C8—C15176.6 (2)C7—C8—N1—S1147.12 (16)
C23—C7—C8—C152.1 (4)C15—C8—N1—S138.6 (3)
C14—C9—C10—C110.4 (4)C20—C19—O3—C241.6 (4)
S1—C9—C10—C11177.1 (2)C18—C19—O3—C24178.1 (3)
C9—C10—C11—C120.1 (5)C1—N1—S1—O1175.43 (16)
C10—C11—C12—C130.3 (5)C8—N1—S1—O145.94 (19)
C11—C12—C13—C140.8 (5)C1—N1—S1—O246.74 (19)
C12—C13—C14—C91.1 (4)C8—N1—S1—O2174.62 (17)
C10—C9—C14—C130.9 (4)C1—N1—S1—C968.69 (18)
S1—C9—C14—C13176.6 (2)C8—N1—S1—C969.95 (18)
C7—C8—C15—C1645.2 (3)C10—C9—S1—O123.7 (2)
N1—C8—C15—C16141.7 (2)C14—C9—S1—O1158.74 (19)
C8—C15—C16—C17173.14 (19)C10—C9—S1—O2157.0 (2)
C15—C16—C17—C1827.4 (3)C14—C9—S1—O225.5 (2)
C15—C16—C17—C22154.5 (2)C10—C9—S1—N190.3 (2)
C22—C17—C18—C190.2 (3)C14—C9—S1—N187.2 (2)
C16—C17—C18—C19178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.392.958 (4)119
C3—H3···O2i0.932.613.448 (3)150
C24—H24A···Br1ii0.963.033.699 (3)128
C5—H5···Cg(C9–C14)iii0.933.124.047 (3)173
C20—H20···Cg(C17–C22)iv0.933.153.978 (2)149
C23—H23C···Cg(C1–C6)iii0.963.114.036 (4)162
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2.
2-[(E)-2-(2-Bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole (III) top
Crystal data top
C23H18BrNO2SF(000) = 920
Mr = 452.35Dx = 1.516 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5530 (8) ÅCell parameters from 50531 reflections
b = 8.3533 (5) Åθ = 1.4–25.0°
c = 19.7698 (11) ŵ = 2.20 mm1
β = 107.078 (2)°T = 298 K
V = 1981.6 (2) Å3Prism, yellow
Z = 40.36 × 0.31 × 0.24 mm
Data collection top
Bruker D8 Venture Diffractometer3516 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.058
ω and φ scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.514, Tmax = 0.745k = 1010
50531 measured reflectionsl = 2525
4293 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0262P)2 + 1.371P]
where P = (Fo2 + 2Fc2)/3
4293 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3845 (2)0.7169 (3)0.40613 (15)0.0514 (6)
C20.2805 (2)0.6430 (4)0.3796 (2)0.0725 (9)
H20.2426360.6423670.3315120.087*
C30.2367 (3)0.5708 (4)0.4288 (3)0.0861 (12)
H30.1680290.5196540.4130970.103*
C40.2916 (3)0.5724 (4)0.5001 (3)0.0847 (11)
H40.2587240.5240190.5313420.102*
C50.3941 (3)0.6443 (4)0.52611 (19)0.0691 (9)
H50.4308090.6447420.5743900.083*
C60.4420 (2)0.7169 (3)0.47795 (15)0.0510 (6)
C70.5465 (2)0.7977 (3)0.48800 (13)0.0461 (6)
C80.55284 (19)0.8444 (3)0.42348 (13)0.0430 (5)
C90.5022 (2)0.5840 (3)0.28233 (12)0.0434 (5)
C100.6151 (2)0.5774 (3)0.28776 (13)0.0516 (6)
H100.6580220.6700850.2951310.062*
C110.6624 (3)0.4304 (4)0.28198 (15)0.0618 (7)
H110.7376610.4239450.2850320.074*
C120.5984 (3)0.2933 (3)0.27172 (14)0.0627 (8)
H120.6306900.1949530.2677560.075*
C130.4875 (3)0.3010 (3)0.26731 (15)0.0609 (7)
H130.4453700.2076210.2607700.073*
C140.4379 (2)0.4461 (3)0.27251 (13)0.0532 (6)
H140.3626680.4512890.2694710.064*
C150.6425 (2)0.9296 (3)0.40580 (12)0.0443 (5)
H150.6251411.0182200.3761230.053*
C160.7487 (2)0.8842 (3)0.43088 (12)0.0425 (5)
H160.7633790.7938650.4596390.051*
C170.84434 (19)0.9639 (3)0.41719 (11)0.0393 (5)
C180.8460 (2)1.1291 (3)0.40596 (13)0.0495 (6)
H180.7847351.1903950.4071690.059*
C190.9364 (3)1.2033 (3)0.39313 (14)0.0572 (7)
H190.9345961.3128660.3845180.069*
C201.0296 (2)1.1155 (3)0.39303 (13)0.0542 (7)
H201.0910881.1663160.3855270.065*
C211.0315 (2)0.9525 (3)0.40404 (13)0.0481 (6)
H211.0938430.8924680.4039820.058*
C220.93913 (19)0.8795 (3)0.41520 (12)0.0402 (5)
C230.6286 (3)0.8304 (4)0.55857 (14)0.0608 (7)
H23A0.6700170.7347290.5758770.091*
H23B0.5895860.8639690.5912540.091*
H23C0.6788080.9134120.5538660.091*
N10.45078 (16)0.8027 (2)0.37072 (11)0.0471 (5)
O10.50537 (19)0.8925 (2)0.26566 (10)0.0640 (5)
O20.32416 (17)0.7603 (3)0.24957 (11)0.0761 (6)
S10.44041 (6)0.77168 (8)0.28558 (3)0.05103 (17)
Br10.94200 (2)0.65291 (3)0.42493 (2)0.06143 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (13)0.0425 (13)0.0753 (18)0.0112 (11)0.0262 (13)0.0021 (12)
C20.0454 (15)0.0663 (19)0.107 (3)0.0057 (14)0.0239 (16)0.0137 (18)
C30.0554 (19)0.062 (2)0.160 (4)0.0014 (16)0.061 (2)0.016 (2)
C40.089 (3)0.058 (2)0.138 (3)0.0023 (18)0.081 (3)0.005 (2)
C50.083 (2)0.0539 (17)0.091 (2)0.0117 (16)0.0584 (19)0.0018 (15)
C60.0539 (15)0.0407 (13)0.0676 (17)0.0137 (11)0.0325 (13)0.0012 (12)
C70.0487 (14)0.0398 (12)0.0535 (14)0.0145 (10)0.0210 (11)0.0012 (11)
C80.0400 (12)0.0379 (12)0.0511 (13)0.0111 (10)0.0132 (10)0.0019 (10)
C90.0505 (14)0.0375 (12)0.0391 (12)0.0021 (10)0.0084 (10)0.0030 (10)
C100.0521 (15)0.0474 (14)0.0529 (14)0.0001 (12)0.0119 (12)0.0011 (12)
C110.0604 (17)0.0616 (18)0.0611 (17)0.0177 (14)0.0144 (13)0.0008 (14)
C120.089 (2)0.0433 (14)0.0501 (15)0.0187 (15)0.0120 (15)0.0001 (12)
C130.082 (2)0.0415 (14)0.0544 (16)0.0062 (14)0.0129 (14)0.0009 (12)
C140.0561 (15)0.0474 (15)0.0535 (15)0.0034 (12)0.0121 (12)0.0005 (12)
C150.0483 (13)0.0368 (12)0.0478 (13)0.0047 (10)0.0145 (11)0.0008 (10)
C160.0476 (13)0.0362 (12)0.0466 (13)0.0064 (10)0.0184 (11)0.0002 (10)
C170.0448 (12)0.0352 (11)0.0375 (11)0.0030 (9)0.0117 (10)0.0026 (9)
C180.0584 (15)0.0349 (12)0.0540 (14)0.0069 (11)0.0148 (12)0.0014 (10)
C190.0750 (19)0.0367 (13)0.0567 (16)0.0078 (13)0.0143 (14)0.0024 (12)
C200.0537 (15)0.0590 (17)0.0484 (14)0.0158 (13)0.0125 (12)0.0007 (12)
C210.0423 (13)0.0546 (15)0.0479 (13)0.0003 (11)0.0139 (11)0.0029 (11)
C220.0458 (12)0.0322 (11)0.0419 (12)0.0032 (9)0.0115 (10)0.0017 (9)
C230.0679 (18)0.0654 (18)0.0511 (15)0.0178 (14)0.0204 (13)0.0022 (13)
N10.0404 (11)0.0441 (11)0.0564 (12)0.0075 (9)0.0134 (9)0.0016 (9)
O10.0944 (15)0.0394 (10)0.0564 (11)0.0035 (10)0.0194 (10)0.0085 (8)
O20.0572 (12)0.0791 (15)0.0734 (13)0.0209 (11)0.0100 (10)0.0017 (11)
S10.0548 (4)0.0413 (3)0.0503 (3)0.0116 (3)0.0049 (3)0.0037 (3)
Br10.05484 (17)0.03621 (14)0.0976 (2)0.00739 (11)0.02920 (15)0.00128 (13)
Geometric parameters (Å, º) top
C1—C61.391 (4)C13—C141.380 (4)
C1—C21.399 (4)C13—H130.9300
C1—N11.428 (3)C14—H140.9300
C2—C31.388 (5)C15—C161.333 (3)
C2—H20.9300C15—H150.9300
C3—C41.374 (5)C16—C171.466 (3)
C3—H30.9300C16—H160.9300
C4—C51.376 (5)C17—C221.394 (3)
C4—H40.9300C17—C181.399 (3)
C5—C61.404 (4)C18—C191.381 (4)
C5—H50.9300C18—H180.9300
C6—C71.437 (4)C19—C201.381 (4)
C7—C81.358 (3)C19—H190.9300
C7—C231.496 (4)C20—C211.378 (4)
C8—N11.437 (3)C20—H200.9300
C8—C151.458 (3)C21—C221.383 (3)
C9—C141.387 (4)C21—H210.9300
C9—C101.390 (4)C22—Br11.902 (2)
C9—S11.759 (2)C23—H23A0.9600
C10—C111.383 (4)C23—H23B0.9600
C10—H100.9300C23—H23C0.9600
C11—C121.379 (4)N1—S11.670 (2)
C11—H110.9300O1—S11.424 (2)
C12—C131.370 (4)O2—S11.427 (2)
C12—H120.9300
C6—C1—C2122.0 (3)C9—C14—H14120.6
C6—C1—N1107.3 (2)C16—C15—C8122.0 (2)
C2—C1—N1130.7 (3)C16—C15—H15119.0
C3—C2—C1116.5 (3)C8—C15—H15119.0
C3—C2—H2121.7C15—C16—C17125.8 (2)
C1—C2—H2121.7C15—C16—H16117.1
C4—C3—C2122.1 (3)C17—C16—H16117.1
C4—C3—H3118.9C22—C17—C18116.2 (2)
C2—C3—H3118.9C22—C17—C16121.9 (2)
C3—C4—C5121.3 (3)C18—C17—C16121.9 (2)
C3—C4—H4119.3C19—C18—C17121.6 (2)
C5—C4—H4119.3C19—C18—H18119.2
C4—C5—C6118.3 (3)C17—C18—H18119.2
C4—C5—H5120.8C18—C19—C20120.3 (2)
C6—C5—H5120.8C18—C19—H19119.9
C1—C6—C5119.6 (3)C20—C19—H19119.9
C1—C6—C7108.7 (2)C21—C20—C19120.0 (3)
C5—C6—C7131.7 (3)C21—C20—H20120.0
C8—C7—C6107.9 (2)C19—C20—H20120.0
C8—C7—C23127.5 (3)C20—C21—C22119.0 (2)
C6—C7—C23124.4 (2)C20—C21—H21120.5
C7—C8—N1109.1 (2)C22—C21—H21120.5
C7—C8—C15128.9 (2)C21—C22—C17123.0 (2)
N1—C8—C15122.0 (2)C21—C22—Br1117.57 (18)
C14—C9—C10121.0 (2)C17—C22—Br1119.44 (17)
C14—C9—S1120.0 (2)C7—C23—H23A109.5
C10—C9—S1118.91 (19)C7—C23—H23B109.5
C11—C10—C9118.8 (3)H23A—C23—H23B109.5
C11—C10—H10120.6C7—C23—H23C109.5
C9—C10—H10120.6H23A—C23—H23C109.5
C12—C11—C10120.2 (3)H23B—C23—H23C109.5
C12—C11—H11119.9C1—N1—C8106.8 (2)
C10—C11—H11119.9C1—N1—S1122.15 (18)
C13—C12—C11120.5 (3)C8—N1—S1123.93 (17)
C13—C12—H12119.7O1—S1—O2119.60 (13)
C11—C12—H12119.7O1—S1—N1106.70 (11)
C12—C13—C14120.5 (3)O2—S1—N1106.19 (12)
C12—C13—H13119.7O1—S1—C9109.10 (12)
C14—C13—H13119.7O2—S1—C9108.67 (13)
C13—C14—C9118.9 (3)N1—S1—C9105.70 (10)
C13—C14—H14120.6
C6—C1—C2—C30.6 (4)C22—C17—C18—C190.5 (4)
N1—C1—C2—C3178.8 (3)C16—C17—C18—C19180.0 (2)
C1—C2—C3—C40.6 (5)C17—C18—C19—C201.8 (4)
C2—C3—C4—C51.0 (5)C18—C19—C20—C211.6 (4)
C3—C4—C5—C60.1 (5)C19—C20—C21—C220.1 (4)
C2—C1—C6—C51.5 (4)C20—C21—C22—C171.3 (4)
N1—C1—C6—C5178.1 (2)C20—C21—C22—Br1176.59 (19)
C2—C1—C6—C7178.4 (2)C18—C17—C22—C211.1 (3)
N1—C1—C6—C72.0 (3)C16—C17—C22—C21178.4 (2)
C4—C5—C6—C11.1 (4)C18—C17—C22—Br1176.75 (17)
C4—C5—C6—C7178.8 (3)C16—C17—C22—Br13.7 (3)
C1—C6—C7—C80.6 (3)C6—C1—N1—C83.7 (2)
C5—C6—C7—C8179.3 (3)C2—C1—N1—C8176.8 (3)
C1—C6—C7—C23176.2 (2)C6—C1—N1—S1155.22 (17)
C5—C6—C7—C233.8 (4)C2—C1—N1—S125.3 (4)
C6—C7—C8—N13.0 (3)C7—C8—N1—C14.2 (2)
C23—C7—C8—N1173.7 (2)C15—C8—N1—C1178.2 (2)
C6—C7—C8—C15179.6 (2)C7—C8—N1—S1155.05 (17)
C23—C7—C8—C153.7 (4)C15—C8—N1—S127.3 (3)
C14—C9—C10—C111.1 (4)C1—N1—S1—O1171.57 (19)
S1—C9—C10—C11177.1 (2)C8—N1—S1—O141.8 (2)
C9—C10—C11—C120.6 (4)C1—N1—S1—O242.9 (2)
C10—C11—C12—C130.2 (4)C8—N1—S1—O2170.45 (19)
C11—C12—C13—C140.5 (4)C1—N1—S1—C972.4 (2)
C12—C13—C14—C90.1 (4)C8—N1—S1—C974.2 (2)
C10—C9—C14—C130.7 (4)C14—C9—S1—O1155.3 (2)
S1—C9—C14—C13177.4 (2)C10—C9—S1—O122.9 (2)
C7—C8—C15—C1648.7 (4)C14—C9—S1—O223.3 (2)
N1—C8—C15—C16134.1 (2)C10—C9—S1—O2154.9 (2)
C8—C15—C16—C17178.7 (2)C14—C9—S1—N190.3 (2)
C15—C16—C17—C22149.4 (2)C10—C9—S1—N191.5 (2)
C15—C16—C17—C1831.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.372.949 (5)120
C13—H13···O1i0.932.733.420 (3)132
C14—H14···O2ii0.932.773.547 (4)142
C19—H19···Br1iii0.932.943.805 (3)155
C5—H5···Cg(C9–C14)iv0.932.963.806 (4)153
C23—H23A···Cg(C1–C6)iv0.963.213.999 (3)110
C23—H23B···Cg(N1/C1/C6–C8)v0.963.123.561 (3)149
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1.
Geometry of stacking interactions (Å, °) for IIII top
Cg is a group centroid; Plane···CgB is the distance between the mean plane of Group A and the centroid of the interacting Group B; ipa is the interplanar angle; sa is the slippage angle, which is the angle of the CgA···CgB axis to the Group A mean plane normal.
CompoundGroup AGroup BShortest contactsCgA···CgBPlane···CgBipasa
I(N1/C1–C8)(N1/C1–C8)iii3.573 (4)3.628 (2)3.551 (2)011.8 (2)
(N1/C1–C8)(C1–C6)iii3.573 (4)3.831 (2)3.552 (2)0.16 (14)22.0 (2)
II(N1/C1–C8)(N1/C1–C8)v3.618 (3)3.692 (2)3.633 (2)010.3 (2)
(N1/C1–C8)(C1–C6)v3.618 (3)3.975 (2)3.635 (2)0.62 (13)23.9 (2)
(C17–C22)(C19–C14)vii3.463 (3)3.836 (3)3.646 (3)9.56 (16)18.1 (2)
III(C17–C22)(C9–C14)vi3.381 (3)3.742 (2)3.379 (2)10.34 (7)24.5 (2)
(C17–C22)(C17–C22)vii3.489 (3)3.691 (2)3.488 (2)019.1 (2)
Symmetry codes for I: (iii) -x + 1, -y + 1, -z + 1; for II: (v) -x + 1, -y + 1, -z + 1; (vii) x, y, z - 1; for III: (vi) -x + 3/2, y + 1/2, -z + 1/2; (vii) -x + 2, -y + 2, -z + 1.
Calculated interaction energies (kJ mol-1) for IIII top
Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. The scale factors used to determine Etot were: kele = 1.057, kpol = 0.740, kdis = 0.871, and krep = 0.618 (Mackenzie et al., 2017). For details of the interaction modes, see Figs. 8–10; R is the distance in Å between the centroids of interacting molecules.
TypeSymmetry codeInteractionREeleEpolEdisErepEtot
Compound I
A-x + 1, -y + 1, -z + 1ππ, CH···O6.45-20.2-4.5-71.542.4-60.8
B-x, -y + 1, -z + 1CH–π6.35-10.5-2.0-59.932.8-44.4
C-x + 1, y - 1/2, -z + 3/2CH···O7.79-7.9-3.6-22.814.0-22.2
Dx - 1, y, zCH···O7.98-5.7-2.0-10.66.0-13.1
Ex, -y + 3/2, z - 1/2CH···Br, CH···π9.09-5.0-0.9-18.610.4-15.7
F-x, y - 1/2, -z + 3/2CH···Br9.03-2.3-1.0-17.88.5-13.4
Compound II
A-x + 1, -y + 1, -z + 1ππ8.08-8.9-2.9-67.329.0-52.3
B-x + 2, -y + 1, -z + 1CH—π8.10-15.7-1.7-67.944.6-49.4
C-x+1, -y+1, -zCH···O12.70-12.6-2.9-15.40.0-28.9
Dx + 1, y, zCH···O8.43-7.1-2.2-18.713.6-17.1
Ex, y, z - 1ππ8.95-4.2-2.6-47.822.8-33.9
Fx, -y + 1/2, z - 1/2CH···Br, CH···π8.77-6.2-2.2-38.620.2-29.3
Compound III
A-x + 1, -y + 1, -z + 1CH···π, dispersion7.64-11.5-1.9-78.443.3-55.1
B-x + 1, -y + 2, -z + 1CH···π7.91-9.3-2.0-57.529.5-43.1
C-x + 3/2, y + 1/2, -z + 1/2ππ7.85-7.1-1.7-40.721.3-31.0
D-x + 2, -y + 2, -z + 1ππ9.91-5.2-1.1-50.434.5-28.9
Ex, y - 1, zCH···O, CH···Br8.35-10.5-2.7-28.321.7-24.3
F-x + 1/2, y - 1/2, -z + 1/2CH···O10.52-3.6-2.7-15.66.0-15.7
 

Acknowledgements

The authors thanks to the SAIF, IIT, Madras, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBouthenet, E., Oh, K. B., Park, S., Nagi, N. K., Lee, H. S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142–7145.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGentry, C. L., Egleton, R. D., Gillespie, T., Abbruscato, T. J., Bechowski, H. B., Hruby, V. J. & Davis, T. P. (1999). Peptides, 20, 1229–1238.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601–19611.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2009). J. Chem. Crystallogr. 40, 40–47.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327.  Web of Science CrossRef Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2023a). Acta Cryst. E79, 521–525.  CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746.  CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationPiscopo, E., Diurno, M. V., Mazzoni, O. & Ciaccio, A. M. (1990). Boll. Soc. Ital. Biol. Sper. 66, 1181–1186.  CAS PubMed Google Scholar
First citationRamathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSemenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., et al. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds