research communications
and Hirshfeld surface analysis of 3,3′-[ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) including an unknown solvate
aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title molecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an In the crystal, the molecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) interactions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.
CCDC reference: 2354123
1. Chemical context
β-Diketones have been employed as versatile synthetic precursors for the synthesis of new functional materials, such as catalysts, ionophores, heterocycles, organic conductors as well as pharmaceuticals (Abdelhamid et al., 2011; Afkhami et al., 2017; Khalilov et al., 2021; Maharramov et al., 2010; Martins et al., 2017; Safavora et al., 2019). For example, arylhydrazones of β-diketones have been widely used in coordination chemistry for a long time and have recently been the object of increasing attention as constituents of polydentate ligands in metallo-supramolecular chemistry (Gurbanov et al., 2018, 2020; Kopylovich et al., 2012a,b; Mac Leod et al., 2012; Mahmoudi et al., 2017a,b, 2019). The reactivity of β-diketones as or can also be used as a synthetic strategy to access new organic materials (Yamabe et al., 2004). Moreover, bridging of two β-diketone moieties into one molecule can improve their properties as well as the number of coordination and non-covalent sites (Shixaliyev et al., 2019).
We have bridged two dimedone molecules into 3,3′-[ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) via reaction with dichloroethane, and undertaken a full characterization, including X-ray analysis.
2. Structural commentary
The title compound (Fig. 1) consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring (C2–C7) in the molecule adopts an [the puckering parameters (Cremer & Pople, 1975) are QT = 0.4488 (15) Å, θ = 127.49 (19)°, φ = 60.6 (2)°]. The geometric parameters of the title compound are normal and comparable to those of the related compound listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are connected into dimers by C—H⋯O hydrogen bonds with (8) ring motifs, forming zigzag ribbons along the b-axis direction (Bernstein et al., 1995; Table 1; Figs. 2, 3 and 4). These ribbons are connected via van der Waals interactions, ensuring crystal cohesion.
In order to visualize and quantify the intermolecular interactions, a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021), which was also used to generate the associated two-dimensional fingerprint plots. The Hirshfeld surfaces were mapped over dnorm in the range −0.2098 (red) to +1.6767 (blue) a.u. (Fig. 5). The most important interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (68.2%, Fig. 6b). The other major contributor is the O⋯H/H⋯O (25.9%, Fig. 6c) interaction. Other smaller contributions are made by C⋯H/H⋯C (5.5%) and O⋯O (0.4%) interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the six-membered cyclohexene ring yielded nine compounds related to the title compound, viz. CSD refcodes WOMWUU (Naghiyev et al., 2024), UPOMOE (Naghiyev et al., 2021), ZOMDUD (Gein et al., 2019), PEWJUZ (Fatahpour et al., 2018), OZUKAX (Tkachenko et al., 2014), IFUDOD (Gein et al., 2007), IWEVOV (Mohan et al., 2003), IWEVUB (Mohan et al., 2003) and HALROB (Ravikumar & Mehdi, 1993).
WOMWUU, UPOMOE and ZOMDUD crystallize in the monoclinic P21/c, with Z = 4, PEWJUZ in I2/c with Z = 4, IFUDOD, HALROB and IWEVUB in P21/n with Z = 4, and IWEVOV and OZUKAX in the orthorhombic Pbca with Z = 8. In WOMWUU, molecules are connected by intermolecular C—H⋯S hydrogen bonds with (10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π interactions consolidate the ribbon structure while between the ribbons ensure the cohesion of the In UPOMOE, the central cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming molecular layers parallel to the bc plane, which are connected by van der Waals interactions between them. In ZOMDUD, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π interactions are also observed. In PEWJUZ, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π interactions are also observed. In OZUKAX, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π interactions are also observed. Intermolecular O—H⋯O hydrogen bonds consolidate the There are no classical hydrogen bonds in the crystal of IFUDOD where intermolecular C—H⋯O contacts and weak C—H⋯π interactions lead to the formation of a three-dimensional network. In the crystal of IWEVOV, the molecules pack such that both carbonyl O atoms participate in hydrogen-bond formation with symmetry-related amide nitrogen atoms present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a `wire-mesh' type hydrogen-bond network. In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in intermolecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O interaction. In addition, one of the amide nitrogen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the molecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the molecules viewed normal to the ab plane resembles a `wire-mesh' arrangement of the molecules. In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. These orientations of the carboxamide groups facilitate the formation of an intramolecular O—H⋯O hydrogen bond. The molecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.
5. Synthesis and crystallization
0.12 mol of dichloroethane were added drop by drop to a mixture of 0.12 mol of dimedone and 0.25 mol of K2CO3 in 50 mL of DMSO. The reaction mixture was held for 12 h at 353 K then cooled to room temperature, water added and extracted with ethyl ether. The extract was dried with MgSO4, the solvent was distilled off, and the residue was distilled under vacuum. Crystals suitable for X-ray analysis were obtained by evaporation of a dimethylformamide solution. Colourless solid (65%); m.p. 416–418 K. Analysis calculated for C18H26O4 (M = 306.40): C 70.56, H 8.55; found: C 70.52, H 8.49%. 1H NMR (300 MHz, DMSO-d6) δ 0.99 (12H, 4CH3), 2.12 and 2.30 (8H, 4CH2), 4.16 (4H, 2CH2) and 5.36 (2H, 2CH). 13C NMR (75 MHz, DMSO-d6) δ 27.72 (4CH3), 32.12 (2Cipso), 41.78 (2CH2), 50.25 (2CH2), 66.37 (2CH2), 101.44 (2CH), 175.18 (2C—O) and 197.89 (2C=O).
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and allowed to ride on their carrier atoms, with Uiso= 1.2 or 1.5Ueq(C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final The solvent formula mass and unit-cell characteristics were not taken into account during The cavity of volume ca 77 Å3 (ca 4.4% of the unit-cell volume) contains approximately 11 electrons. A suitable solvent with this electron number may be about four dimethylformamide molecules per unit cell.
details are summarized in Table 2Supporting information
CCDC reference: 2354123
https://doi.org/10.1107/S2056989024004286/nx2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004286/nx2010Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004286/nx2010Isup3.cml
C18H26O4 | F(000) = 664 |
Mr = 306.39 | Dx = 1.151 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.9184 (13) Å | Cell parameters from 2235 reflections |
b = 6.5230 (5) Å | θ = 2.5–27.7° |
c = 17.2645 (11) Å | µ = 0.08 mm−1 |
β = 111.822 (4)° | T = 150 K |
V = 1768.8 (2) Å3 | Prism, colourless |
Z = 4 | 0.33 × 0.29 × 0.18 mm |
Bruker APEXII CCD diffractometer | 1559 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.9°, θmin = 2.5° |
Tmin = 0.966, Tmax = 0.980 | h = −22→22 |
10346 measured reflections | k = −8→8 |
2111 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0456P)2 + 1.1303P] where P = (Fo2 + 2Fc2)/3 |
2111 reflections | (Δ/σ)max < 0.001 |
102 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.44150 (6) | 0.32631 (17) | 0.28986 (6) | 0.0333 (3) | |
O2 | 0.42054 (9) | 0.1572 (2) | 0.54805 (7) | 0.0545 (4) | |
C6 | 0.30515 (9) | 0.5396 (2) | 0.39219 (8) | 0.0252 (3) | |
C2 | 0.41732 (8) | 0.3534 (2) | 0.35542 (8) | 0.0264 (3) | |
C3 | 0.43558 (8) | 0.2261 (2) | 0.42109 (8) | 0.0276 (3) | |
H3 | 0.468878 | 0.106836 | 0.424213 | 0.033* | |
C7 | 0.36773 (9) | 0.5477 (2) | 0.34683 (9) | 0.0311 (3) | |
H7A | 0.335662 | 0.575102 | 0.286885 | 0.037* | |
H7B | 0.407869 | 0.662711 | 0.369541 | 0.037* | |
C5 | 0.35360 (9) | 0.4640 (2) | 0.48148 (8) | 0.0296 (3) | |
H5A | 0.392750 | 0.573764 | 0.513085 | 0.036* | |
H5B | 0.312185 | 0.439501 | 0.508610 | 0.036* | |
C4 | 0.40447 (9) | 0.2706 (2) | 0.48729 (8) | 0.0299 (3) | |
C1 | 0.49293 (9) | 0.1495 (3) | 0.29054 (9) | 0.0316 (4) | |
H1A | 0.463346 | 0.022376 | 0.295832 | 0.038* | |
H1B | 0.548105 | 0.157036 | 0.338214 | 0.038* | |
C8 | 0.23173 (9) | 0.3930 (3) | 0.34703 (10) | 0.0350 (4) | |
H8A | 0.201336 | 0.441546 | 0.289903 | 0.052* | |
H8B | 0.192439 | 0.388104 | 0.376769 | 0.052* | |
H8C | 0.254452 | 0.255480 | 0.345518 | 0.052* | |
C9 | 0.26825 (12) | 0.7527 (3) | 0.39343 (10) | 0.0429 (4) | |
H9A | 0.314317 | 0.847356 | 0.423877 | 0.064* | |
H9B | 0.227197 | 0.745890 | 0.421145 | 0.064* | |
H9C | 0.239567 | 0.801562 | 0.336078 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0318 (5) | 0.0481 (7) | 0.0280 (5) | 0.0114 (5) | 0.0202 (4) | 0.0110 (5) |
O2 | 0.0716 (9) | 0.0690 (9) | 0.0366 (6) | 0.0442 (7) | 0.0362 (6) | 0.0280 (6) |
C6 | 0.0289 (7) | 0.0247 (7) | 0.0238 (7) | 0.0061 (6) | 0.0121 (6) | 0.0007 (5) |
C2 | 0.0206 (6) | 0.0374 (8) | 0.0251 (7) | 0.0023 (6) | 0.0130 (5) | 0.0031 (6) |
C3 | 0.0255 (7) | 0.0352 (8) | 0.0259 (7) | 0.0101 (6) | 0.0141 (6) | 0.0058 (6) |
C7 | 0.0341 (8) | 0.0309 (8) | 0.0319 (7) | 0.0035 (6) | 0.0163 (6) | 0.0082 (6) |
C5 | 0.0342 (8) | 0.0323 (8) | 0.0244 (7) | 0.0065 (6) | 0.0134 (6) | −0.0016 (6) |
C4 | 0.0291 (7) | 0.0393 (8) | 0.0237 (7) | 0.0107 (6) | 0.0124 (6) | 0.0056 (6) |
C1 | 0.0259 (7) | 0.0468 (9) | 0.0274 (7) | 0.0067 (6) | 0.0160 (6) | 0.0036 (6) |
C8 | 0.0247 (7) | 0.0441 (9) | 0.0355 (8) | 0.0049 (6) | 0.0106 (6) | −0.0037 (7) |
C9 | 0.0584 (11) | 0.0332 (9) | 0.0406 (9) | 0.0173 (8) | 0.0223 (8) | 0.0045 (7) |
O1—C2 | 1.3507 (16) | C5—C4 | 1.5096 (19) |
O1—C1 | 1.4423 (17) | C5—H5A | 0.9900 |
O2—C4 | 1.2284 (17) | C5—H5B | 0.9900 |
C6—C9 | 1.527 (2) | C1—C1i | 1.505 (3) |
C6—C8 | 1.532 (2) | C1—H1A | 0.9900 |
C6—C5 | 1.5336 (19) | C1—H1B | 0.9900 |
C6—C7 | 1.5340 (19) | C8—H8A | 0.9800 |
C2—C3 | 1.3454 (19) | C8—H8B | 0.9800 |
C2—C7 | 1.496 (2) | C8—H8C | 0.9800 |
C3—C4 | 1.4543 (18) | C9—H9A | 0.9800 |
C3—H3 | 0.9500 | C9—H9B | 0.9800 |
C7—H7A | 0.9900 | C9—H9C | 0.9800 |
C7—H7B | 0.9900 | ||
C2—O1—C1 | 117.88 (10) | C6—C5—H5B | 108.6 |
C9—C6—C8 | 108.50 (12) | H5A—C5—H5B | 107.6 |
C9—C6—C5 | 110.31 (11) | O2—C4—C3 | 121.41 (13) |
C8—C6—C5 | 109.89 (12) | O2—C4—C5 | 119.97 (12) |
C9—C6—C7 | 109.84 (12) | C3—C4—C5 | 118.59 (12) |
C8—C6—C7 | 110.15 (11) | O1—C1—C1i | 107.24 (10) |
C5—C6—C7 | 108.15 (11) | O1—C1—H1A | 110.3 |
C3—C2—O1 | 125.39 (13) | C1i—C1—H1A | 110.3 |
C3—C2—C7 | 123.44 (12) | O1—C1—H1B | 110.3 |
O1—C2—C7 | 111.17 (11) | C1i—C1—H1B | 110.3 |
C2—C3—C4 | 120.14 (13) | H1A—C1—H1B | 108.5 |
C2—C3—H3 | 119.9 | C6—C8—H8A | 109.5 |
C4—C3—H3 | 119.9 | C6—C8—H8B | 109.5 |
C2—C7—C6 | 112.86 (11) | H8A—C8—H8B | 109.5 |
C2—C7—H7A | 109.0 | C6—C8—H8C | 109.5 |
C6—C7—H7A | 109.0 | H8A—C8—H8C | 109.5 |
C2—C7—H7B | 109.0 | H8B—C8—H8C | 109.5 |
C6—C7—H7B | 109.0 | C6—C9—H9A | 109.5 |
H7A—C7—H7B | 107.8 | C6—C9—H9B | 109.5 |
C4—C5—C6 | 114.46 (11) | H9A—C9—H9B | 109.5 |
C4—C5—H5A | 108.6 | C6—C9—H9C | 109.5 |
C6—C5—H5A | 108.6 | H9A—C9—H9C | 109.5 |
C4—C5—H5B | 108.6 | H9B—C9—H9C | 109.5 |
C1—O1—C2—C3 | −1.6 (2) | C9—C6—C5—C4 | −170.57 (13) |
C1—O1—C2—C7 | 177.57 (12) | C8—C6—C5—C4 | 69.86 (16) |
O1—C2—C3—C4 | −178.91 (13) | C7—C6—C5—C4 | −50.42 (16) |
C7—C2—C3—C4 | 2.0 (2) | C2—C3—C4—O2 | −179.70 (15) |
C3—C2—C7—C6 | −28.0 (2) | C2—C3—C4—C5 | −1.5 (2) |
O1—C2—C7—C6 | 152.85 (12) | C6—C5—C4—O2 | −154.38 (15) |
C9—C6—C7—C2 | 170.39 (13) | C6—C5—C4—C3 | 27.4 (2) |
C8—C6—C7—C2 | −70.16 (15) | C2—O1—C1—C1i | 177.15 (12) |
C5—C6—C7—C2 | 49.95 (16) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2ii | 0.95 | 2.46 | 3.391 (2) | 168 |
Symmetry code: (ii) −x+1, −y, −z+1. |
Acknowledgements
This work was been supported by Baku State University (Azerbaijan), Western Caspian University (Azerbaijan) and Azerbaijan Medical University. The authors′ contributions are as follows. Conceptualization, MA and AB; synthesis, NDS, VMI and NNY; X-ray analysis, NDS and KIH; writing (review and editing of the manuscript) NDS and MA; funding acquisition, NDS, VMI, NNY and KIH; supervision, MA and AB.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122. Web of Science CSD CrossRef CAS Google Scholar
Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven'ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102. Google Scholar
Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772. Web of Science CSD CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Mohan, K. C. (2003). J. Chem. Crystallogr. 33, 97–103. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446–451. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176. Web of Science CSD CrossRef CAS Google Scholar
Yamabe, S., Tsuchida, N. & Miyajima, K. (2004). J. Phys. Chem. A, 108, 2750–2757. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.