research communications
and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thiophen-2-yl)cyclohex-3-ene-1,3-dicarboxylate
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C19H17NO5S, the cyclohexene ring adopts nearly an In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect the molecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) interactions are the most significant contributors to the crystal packing.
Keywords: crystal structure; thiophene ring; pyridine ring; cyclohexene ring; Hirshfeld surface analysis.
CCDC reference: 2356669
1. Chemical context
The class of molecules known as carbo- and heterocycles, arguably the most important, has a significant impact on the synthesis of various functionalized systems that have found diverse research and commercial applications (Huseynov et al., 2023; Akkurt et al., 2023). Bioactive natural and synthetic compounds frequently incorporate carbocycles and heterocycles as fundamental structural components. Moreover, these compounds may play an important role in organic synthesis as starting materials (Maharramov et al., 2022; Khalilov et al., 2023a,b). These derivatives have found broad applications in coordination chemistry (Gurbanov et al., 2021; Mahmoudi et al., 2021), medicinal chemistry (Askerova, 2022) and materials chemistry (Velásquez et al., 2019; Afkhami et al., 2019). These ring systems are utilized in various applications, spanning pharmaceuticals, ligands, catalysts, materials and beyond (Maharramov et al., 2021, Sobhi & Faisal, 2023). Functionalized systems incorporating cyclohexanone, pyridine and thiophene motifs have demonstrated diverse biological activities, including molluscicidal, anticancer, antioxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, antibacterial, and more (Erenler et al., 2022; Atalay et al., 2022; Donmez & Turkyılmaz, 2022). The broad application of these systems has garnered significant attention toward the efficient and regioselective development of such compounds. In summary, the synthesized compound offers a unique combination of structural features, including heteroatom diversity, conjugation, strategic placement, and potential biological relevance. Analysis of its structure and properties can provide valuable contributions to the broader field of carbo- and heterocyclic chemistry and may have implications for various applications, including materials science and medicinal chemistry. Hence, within the context of structural studies (Abdinov et al., 2004, 2012, 2014; Naghiyev et al., 2020, 2021a, 2022), we present the and Hirshfeld surface analysis of the title compound, dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thiophen-2-yl)cyclohex-3-ene-1,3-dicarboxylate.
2. Structural commentary
In the title compound (Fig. 1), the cyclohexene ring (C1–C6) adopts nearly an [puckering parameters (Cremer & Pople, 1975) are QT = 0.526 (2) Å, θ = 53.9 (2)° and φ = 117.3 (3)°]. The cyclohexene ring (r.m.s deviation = 0.002 Å) makes dihedral angles of 84.46 (11) and 29.49 (10)° with the thiophene (S1/C9–C12) and pyridine (N1/C13–C17) rings, respectively. The angle between the thiophene and pyridine rings is 77.04 (11)°. The C8—O3—C7—C2, O2—C7—C2—C3, C19—O5—C18—C6 and O4—C18—C6—C5 torsion angles are −169.87 (18), −70.3 (2), 174.97 (15) and 107.7 (2)°, respectively. The geometric properties of the title compound are normal and consistent with those of the related compounds described in the Database survey (Section 4).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 2 and 3). In addition, C—H⋯π interactions connect the molecules, forming layers parallel to the (010) plane, represented by the distances between the same Cg1 and the same Cg2 centroids (Table 1; Figs. 4 and 5). The lengths of the C—H⋯π interactions are similar to the proper hydrogen bonds in the crystal structures. This is reasonable for carbo- and heterocycles (Nishio, 2011).
Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to quantify the intermolecular interactions in the crystal. The Hirshfeld surfaces were mapped over dnorm in the range −0.2536 (red) to +1.2159 (blue) a.u. (Fig. 6). The most important interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (36.9%, Fig. 7b). Other major contributors are O⋯H/H⋯O (31.0%, Fig. 7c), C⋯H/H⋯C (18.9%, Fig. 7d) and S⋯H/H⋯S (7.9%, Fig. 7e) interactions. Other, smaller contributions are made by N⋯H/H⋯N (2.6%), O⋯O (1.1%), O⋯C/C⋯O (0.9%), N⋯C/C⋯N (0.4%) and C⋯C (0.2%) interactions. This distribution is typical for such cyclohexene compounds (Naghiyev et al., 2024).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for a central cyclohexene or -hexane ring yielded nine compounds related to the title compound, viz. CSD refcodes WOMWUU [(I); Naghiyev et al., 2024], UPOMOE [(II); Naghiyev et al., 2021b], ZOMDUD [(III); Gein et al., 2019], PEWJUZ [(IV); Fatahpour et al., 2018], OZUKAX [(V); Tkachenko et al., 2014], IFUDOD ((VI); Gein et al., 2007], IWEVOV [(VII); Mohan et al., 2003], IWEVUB [(VIII); Mohan et al., 2003] and HALROB [(IX); Ravikumar & Mehdi, 1993].
Comparing the title compound and previously published structures, the published structures (Fig. 8) appear to have much higher symmetry space groups. While the title compound crystallizes in the triclinic P1 with Z = 1, (I), (II) and (III) crystallize in the monoclinic P21/c, with Z = 4, (IV) in I2/c with Z = 4, (VI), (VIII) and (IX) in P21/n with Z = 4, and (V) and (VII) in the orthorhombic Pbca with Z = 8.
5. Synthesis and crystallization
For a novel synthesis of the title compound, a solution of 1-(pyridin-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one (7 mmol) and dimethyl-1,3-acetonedicarboxylate (5.2 mmol) in methanol (30 mL) was stirred for 10 min. Then N-methylpiperazine (3 drops) was added to the reaction mixture, which was stirred for 48 h at room temperature. Then 20 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. = 480 K, yield 69%).
1H NMR (300 MHz, DMSO-d6, ppm.): 3.30 (dd, 2H, CH2, 2JH–H = 16.3 and 3JH–H = 8.3); 3.65 (s, 6H, 2OCH3); 4.02 (dd, 1H, CH, 3JH–H = 8.3, 3JH–H = 13.3); 4.20 (d, 1H, CH, 3JH–H = 13.3); 7.00 (t, 1H, CHthien., 3JH–H = 5.1); 7.09 (d, 1H, CHthien., 3JH–H = 3.5); 7.41 (d, 1H, CHthien., 3JH–H = 5.1); 7.46 (t, 1H, CHpyrid., 3JH–H = 7.4); 7.76 (d, 1H, CHpyrid., 3JH–H = 7.4); 7.91 (t, 1H, CHpyrid., 3JH–H = 5.7); 8.63 (d, 1H, CHpyrid., 3JH–H = 5.7). 13C NMR (75 MHz, DMSO-d6, ppm.): 35.47 (CH2), 38.23 (CH), 52.24 (OCH3), 52.43 (OCH3), 60.45 (CH), 123.58 (CHpyrid.), 125.20 (CHpyrid.), 125.61 (CHpyrid.), 125.77 (CHpyrid.), 127.47 (CHthien.), 131.43 (Cquat.), 137.93 (CHthien.), 144.28 (Cthien.), 149.49 (CHthien.), 153.21 (Cquat.), 155.14 (Cquat.), 166.83 (CO), 169.52 (CO), 191.68 (C=O).
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in calculated positions (C—H = 0.95 −1.00 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2356669
https://doi.org/10.1107/S2056989024004687/oi2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004687/oi2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004687/oi2007Isup3.cml
C19H17NO5S | Z = 1 |
Mr = 371.39 | F(000) = 194 |
Triclinic, P1 | Dx = 1.425 Mg m−3 |
a = 5.5260 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.5012 (1) Å | Cell parameters from 16321 reflections |
c = 10.1076 (2) Å | θ = 4.8–77.4° |
α = 110.910 (2)° | µ = 1.94 mm−1 |
β = 98.128 (1)° | T = 100 K |
γ = 96.006 (1)° | Prism, colourless |
V = 432.88 (1) Å3 | 0.25 × 0.23 × 0.09 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3524 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.023 |
φ and ω scans | θmax = 77.8°, θmin = 4.8° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −6→6 |
Tmin = 0.647, Tmax = 0.840 | k = −10→10 |
18199 measured reflections | l = −12→12 |
3530 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0337P)2 + 0.097P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max < 0.001 |
wR(F2) = 0.059 | Δρmax = 0.22 e Å−3 |
S = 1.06 | Δρmin = −0.17 e Å−3 |
3530 reflections | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
238 parameters | Extinction coefficient: 0.0131 (14) |
3 restraints | Absolute structure: Flack x determined using 1675 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.003 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6259 (4) | 0.3716 (2) | 0.6011 (2) | 0.0132 (4) | |
C2 | 0.7320 (4) | 0.3495 (2) | 0.46536 (19) | 0.0127 (4) | |
H2 | 0.898999 | 0.422837 | 0.493270 | 0.015* | |
C3 | 0.5592 (4) | 0.4059 (2) | 0.36259 (19) | 0.0136 (4) | |
H3 | 0.390686 | 0.337398 | 0.343691 | 0.016* | |
C4 | 0.5382 (4) | 0.5930 (2) | 0.4416 (2) | 0.0146 (4) | |
H4A | 0.703452 | 0.664844 | 0.465810 | 0.017* | |
H4B | 0.425908 | 0.630379 | 0.377470 | 0.017* | |
C5 | 0.4396 (3) | 0.6170 (2) | 0.5780 (2) | 0.0134 (4) | |
C6 | 0.4809 (4) | 0.5121 (2) | 0.64983 (19) | 0.0129 (4) | |
C7 | 0.7580 (4) | 0.1653 (2) | 0.3869 (2) | 0.0142 (4) | |
C8 | 1.0028 (4) | −0.0161 (3) | 0.2524 (3) | 0.0281 (5) | |
H8A | 0.894696 | −0.044480 | 0.158603 | 0.042* | |
H8B | 0.954145 | −0.100288 | 0.293541 | 0.042* | |
H8C | 1.175204 | −0.017674 | 0.239795 | 0.042* | |
C9 | 0.6332 (4) | 0.3713 (2) | 0.2190 (2) | 0.0144 (4) | |
C10 | 0.5052 (4) | 0.2567 (3) | 0.0887 (2) | 0.0188 (4) | |
H10 | 0.352786 | 0.185818 | 0.077251 | 0.023* | |
C11 | 0.6230 (4) | 0.2541 (3) | −0.0286 (2) | 0.0211 (4) | |
H11 | 0.557058 | 0.181613 | −0.126180 | 0.025* | |
C12 | 0.8386 (4) | 0.3654 (3) | 0.0135 (2) | 0.0198 (4) | |
H12 | 0.941797 | 0.380424 | −0.050162 | 0.024* | |
C13 | 0.2915 (4) | 0.7557 (2) | 0.6266 (2) | 0.0138 (4) | |
C14 | 0.3097 (4) | 0.8926 (2) | 0.5803 (2) | 0.0170 (4) | |
H14 | 0.419867 | 0.900060 | 0.517866 | 0.020* | |
C15 | 0.1640 (4) | 1.0168 (2) | 0.6273 (2) | 0.0193 (4) | |
H15 | 0.173481 | 1.111309 | 0.597847 | 0.023* | |
C16 | 0.0042 (4) | 1.0017 (3) | 0.7177 (2) | 0.0192 (4) | |
H16 | −0.098664 | 1.084695 | 0.750789 | 0.023* | |
C17 | −0.0018 (4) | 0.8619 (3) | 0.7589 (2) | 0.0182 (4) | |
H17 | −0.109760 | 0.852595 | 0.822018 | 0.022* | |
C18 | 0.3784 (4) | 0.5217 (2) | 0.7826 (2) | 0.0132 (4) | |
C19 | 0.3964 (4) | 0.6765 (3) | 1.0269 (2) | 0.0222 (4) | |
H19A | 0.220812 | 0.685154 | 1.005687 | 0.033* | |
H19B | 0.484406 | 0.781046 | 1.106272 | 0.033* | |
H19C | 0.411825 | 0.578189 | 1.054703 | 0.033* | |
N1 | 0.1361 (3) | 0.7402 (2) | 0.71452 (18) | 0.0161 (3) | |
O1 | 0.6615 (3) | 0.27874 (17) | 0.66693 (15) | 0.0178 (3) | |
O2 | 0.5944 (3) | 0.04488 (18) | 0.35502 (15) | 0.0196 (3) | |
O3 | 0.9794 (3) | 0.15282 (18) | 0.34916 (15) | 0.0188 (3) | |
O4 | 0.2142 (3) | 0.41766 (17) | 0.78248 (15) | 0.0175 (3) | |
O5 | 0.5031 (3) | 0.65445 (18) | 0.89989 (14) | 0.0168 (3) | |
S1 | 0.90193 (7) | 0.47674 (5) | 0.19781 (5) | 0.01854 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0118 (9) | 0.0139 (8) | 0.0134 (8) | 0.0017 (7) | 0.0025 (7) | 0.0047 (7) |
C2 | 0.0131 (9) | 0.0131 (8) | 0.0128 (8) | 0.0041 (7) | 0.0039 (7) | 0.0049 (7) |
C3 | 0.0140 (9) | 0.0149 (9) | 0.0123 (8) | 0.0022 (7) | 0.0033 (7) | 0.0056 (7) |
C4 | 0.0166 (10) | 0.0143 (8) | 0.0152 (9) | 0.0053 (7) | 0.0044 (7) | 0.0072 (7) |
C5 | 0.0122 (9) | 0.0125 (8) | 0.0144 (8) | 0.0016 (7) | 0.0026 (7) | 0.0039 (7) |
C6 | 0.0133 (9) | 0.0129 (8) | 0.0125 (9) | 0.0028 (7) | 0.0048 (7) | 0.0039 (7) |
C7 | 0.0157 (10) | 0.0173 (9) | 0.0114 (8) | 0.0058 (7) | 0.0039 (7) | 0.0065 (7) |
C8 | 0.0193 (11) | 0.0212 (11) | 0.0342 (12) | 0.0067 (8) | 0.0092 (9) | −0.0032 (9) |
C9 | 0.0153 (10) | 0.0160 (8) | 0.0149 (9) | 0.0054 (7) | 0.0059 (7) | 0.0075 (7) |
C10 | 0.0185 (10) | 0.0228 (10) | 0.0153 (9) | 0.0030 (8) | 0.0048 (8) | 0.0071 (8) |
C11 | 0.0245 (11) | 0.0256 (10) | 0.0137 (9) | 0.0051 (9) | 0.0059 (8) | 0.0071 (8) |
C12 | 0.0226 (11) | 0.0253 (10) | 0.0147 (9) | 0.0066 (8) | 0.0083 (8) | 0.0088 (8) |
C13 | 0.0136 (10) | 0.0125 (8) | 0.0137 (8) | 0.0024 (7) | 0.0019 (7) | 0.0033 (7) |
C14 | 0.0189 (11) | 0.0157 (9) | 0.0179 (9) | 0.0036 (8) | 0.0040 (8) | 0.0078 (8) |
C15 | 0.0211 (11) | 0.0135 (9) | 0.0223 (10) | 0.0032 (8) | 0.0002 (8) | 0.0067 (8) |
C16 | 0.0182 (10) | 0.0152 (9) | 0.0204 (9) | 0.0068 (7) | 0.0016 (8) | 0.0019 (7) |
C17 | 0.0167 (10) | 0.0201 (9) | 0.0173 (9) | 0.0064 (8) | 0.0054 (7) | 0.0046 (8) |
C18 | 0.0166 (10) | 0.0119 (8) | 0.0129 (8) | 0.0061 (7) | 0.0048 (7) | 0.0049 (7) |
C19 | 0.0245 (11) | 0.0264 (10) | 0.0127 (9) | 0.0052 (9) | 0.0070 (8) | 0.0023 (8) |
N1 | 0.0166 (9) | 0.0159 (8) | 0.0165 (8) | 0.0055 (6) | 0.0050 (6) | 0.0057 (6) |
O1 | 0.0222 (8) | 0.0200 (7) | 0.0170 (6) | 0.0095 (6) | 0.0071 (6) | 0.0107 (5) |
O2 | 0.0192 (8) | 0.0158 (7) | 0.0218 (7) | 0.0010 (6) | 0.0061 (6) | 0.0045 (5) |
O3 | 0.0150 (7) | 0.0166 (7) | 0.0222 (7) | 0.0055 (5) | 0.0065 (6) | 0.0023 (6) |
O4 | 0.0219 (8) | 0.0150 (6) | 0.0170 (6) | 0.0035 (6) | 0.0083 (6) | 0.0059 (5) |
O5 | 0.0183 (7) | 0.0181 (7) | 0.0128 (6) | 0.0020 (5) | 0.0049 (5) | 0.0039 (5) |
S1 | 0.0179 (2) | 0.0223 (2) | 0.0148 (2) | −0.00028 (18) | 0.00576 (16) | 0.00623 (17) |
C1—O1 | 1.215 (2) | C10—C11 | 1.426 (3) |
C1—C6 | 1.484 (3) | C10—H10 | 0.9500 |
C1—C2 | 1.526 (2) | C11—C12 | 1.353 (3) |
C2—C7 | 1.515 (3) | C11—H11 | 0.9500 |
C2—C3 | 1.546 (3) | C12—S1 | 1.725 (2) |
C2—H2 | 1.0000 | C12—H12 | 0.9500 |
C3—C9 | 1.499 (2) | C13—N1 | 1.349 (2) |
C3—C4 | 1.529 (2) | C13—C14 | 1.400 (3) |
C3—H3 | 1.0000 | C14—C15 | 1.384 (3) |
C4—C5 | 1.509 (3) | C14—H14 | 0.9500 |
C4—H4A | 0.9900 | C15—C16 | 1.386 (3) |
C4—H4B | 0.9900 | C15—H15 | 0.9500 |
C5—C6 | 1.353 (3) | C16—C17 | 1.391 (3) |
C5—C13 | 1.485 (3) | C16—H16 | 0.9500 |
C6—C18 | 1.508 (2) | C17—N1 | 1.335 (3) |
C7—O2 | 1.207 (2) | C17—H17 | 0.9500 |
C7—O3 | 1.335 (2) | C18—O4 | 1.199 (2) |
C8—O3 | 1.452 (2) | C18—O5 | 1.344 (2) |
C8—H8A | 0.9800 | C19—O5 | 1.448 (2) |
C8—H8B | 0.9800 | C19—H19A | 0.9800 |
C8—H8C | 0.9800 | C19—H19B | 0.9800 |
C9—C10 | 1.364 (3) | C19—H19C | 0.9800 |
C9—S1 | 1.733 (2) | ||
O1—C1—C6 | 121.66 (16) | C3—C9—S1 | 123.13 (14) |
O1—C1—C2 | 121.05 (17) | C9—C10—C11 | 113.26 (19) |
C6—C1—C2 | 117.28 (15) | C9—C10—H10 | 123.4 |
C7—C2—C1 | 111.28 (15) | C11—C10—H10 | 123.4 |
C7—C2—C3 | 108.90 (15) | C12—C11—C10 | 112.96 (18) |
C1—C2—C3 | 109.64 (15) | C12—C11—H11 | 123.5 |
C7—C2—H2 | 109.0 | C10—C11—H11 | 123.5 |
C1—C2—H2 | 109.0 | C11—C12—S1 | 111.23 (15) |
C3—C2—H2 | 109.0 | C11—C12—H12 | 124.4 |
C9—C3—C4 | 113.33 (15) | S1—C12—H12 | 124.4 |
C9—C3—C2 | 113.64 (16) | N1—C13—C14 | 122.33 (18) |
C4—C3—C2 | 108.56 (15) | N1—C13—C5 | 116.34 (17) |
C9—C3—H3 | 107.0 | C14—C13—C5 | 121.32 (17) |
C4—C3—H3 | 107.0 | C15—C14—C13 | 118.75 (18) |
C2—C3—H3 | 107.0 | C15—C14—H14 | 120.6 |
C5—C4—C3 | 110.93 (15) | C13—C14—H14 | 120.6 |
C5—C4—H4A | 109.5 | C14—C15—C16 | 119.19 (19) |
C3—C4—H4A | 109.5 | C14—C15—H15 | 120.4 |
C5—C4—H4B | 109.5 | C16—C15—H15 | 120.4 |
C3—C4—H4B | 109.5 | C15—C16—C17 | 118.38 (19) |
H4A—C4—H4B | 108.0 | C15—C16—H16 | 120.8 |
C6—C5—C13 | 122.14 (17) | C17—C16—H16 | 120.8 |
C6—C5—C4 | 120.52 (17) | N1—C17—C16 | 123.48 (19) |
C13—C5—C4 | 117.32 (16) | N1—C17—H17 | 118.3 |
C5—C6—C1 | 122.52 (16) | C16—C17—H17 | 118.3 |
C5—C6—C18 | 123.87 (17) | O4—C18—O5 | 125.11 (17) |
C1—C6—C18 | 113.58 (15) | O4—C18—C6 | 123.28 (18) |
O2—C7—O3 | 123.86 (18) | O5—C18—C6 | 111.52 (16) |
O2—C7—C2 | 124.32 (18) | O5—C19—H19A | 109.5 |
O3—C7—C2 | 111.70 (16) | O5—C19—H19B | 109.5 |
O3—C8—H8A | 109.5 | H19A—C19—H19B | 109.5 |
O3—C8—H8B | 109.5 | O5—C19—H19C | 109.5 |
H8A—C8—H8B | 109.5 | H19A—C19—H19C | 109.5 |
O3—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | C17—N1—C13 | 117.88 (17) |
H8B—C8—H8C | 109.5 | C7—O3—C8 | 114.76 (16) |
C10—C9—C3 | 126.53 (18) | C18—O5—C19 | 113.04 (15) |
C10—C9—S1 | 110.34 (15) | C12—S1—C9 | 92.21 (10) |
O1—C1—C2—C7 | 29.2 (3) | C3—C9—C10—C11 | 179.62 (19) |
C6—C1—C2—C7 | −151.60 (17) | S1—C9—C10—C11 | −0.2 (2) |
O1—C1—C2—C3 | 149.70 (18) | C9—C10—C11—C12 | 0.2 (3) |
C6—C1—C2—C3 | −31.1 (2) | C10—C11—C12—S1 | −0.2 (2) |
C7—C2—C3—C9 | −51.8 (2) | C6—C5—C13—N1 | −20.6 (3) |
C1—C2—C3—C9 | −173.75 (15) | C4—C5—C13—N1 | 157.70 (17) |
C7—C2—C3—C4 | −178.86 (15) | C6—C5—C13—C14 | 160.74 (19) |
C1—C2—C3—C4 | 59.17 (19) | C4—C5—C13—C14 | −20.9 (3) |
C9—C3—C4—C5 | 174.49 (16) | N1—C13—C14—C15 | 0.4 (3) |
C2—C3—C4—C5 | −58.3 (2) | C5—C13—C14—C15 | 178.96 (17) |
C3—C4—C5—C6 | 28.6 (3) | C13—C14—C15—C16 | −0.3 (3) |
C3—C4—C5—C13 | −149.71 (17) | C14—C15—C16—C17 | 0.5 (3) |
C13—C5—C6—C1 | 179.18 (17) | C15—C16—C17—N1 | −0.9 (3) |
C4—C5—C6—C1 | 0.9 (3) | C5—C6—C18—O4 | 107.7 (2) |
C13—C5—C6—C18 | 1.4 (3) | C1—C6—C18—O4 | −70.2 (2) |
C4—C5—C6—C18 | −176.85 (18) | C5—C6—C18—O5 | −75.7 (2) |
O1—C1—C6—C5 | 179.91 (19) | C1—C6—C18—O5 | 106.35 (19) |
C2—C1—C6—C5 | 0.7 (3) | C16—C17—N1—C13 | 0.9 (3) |
O1—C1—C6—C18 | −2.1 (3) | C14—C13—N1—C17 | −0.7 (3) |
C2—C1—C6—C18 | 178.65 (16) | C5—C13—N1—C17 | −179.31 (17) |
C1—C2—C7—O2 | 50.6 (3) | O2—C7—O3—C8 | 6.2 (3) |
C3—C2—C7—O2 | −70.3 (2) | C2—C7—O3—C8 | −169.87 (18) |
C1—C2—C7—O3 | −133.27 (17) | O4—C18—O5—C19 | −8.5 (3) |
C3—C2—C7—O3 | 105.76 (18) | C6—C18—O5—C19 | 174.97 (15) |
C4—C3—C9—C10 | −122.9 (2) | C11—C12—S1—C9 | 0.08 (18) |
C2—C3—C9—C10 | 112.5 (2) | C10—C9—S1—C12 | 0.06 (16) |
C4—C3—C9—S1 | 56.8 (2) | C3—C9—S1—C12 | −179.74 (17) |
C2—C3—C9—S1 | −67.7 (2) |
Cg1 and Cg2 are the centroids of the S1/C9–C12 thiophene and N1/C13–C17 pyridine rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3i | 1.00 | 2.64 | 3.625 (2) | 168 |
C8—H8C···O2ii | 0.98 | 2.35 | 3.215 (3) | 146 |
C11—H11···O1iii | 0.95 | 2.62 | 3.193 (2) | 119 |
C12—H12···O4iv | 0.95 | 2.50 | 3.446 (2) | 180 |
C14—H14···O2v | 0.95 | 2.61 | 3.468 (2) | 151 |
C16—H16···O1vi | 0.95 | 2.52 | 3.305 (3) | 140 |
C19—H19B···O2vii | 0.98 | 2.64 | 3.584 (3) | 161 |
C4—H4A···Cg2ii | 0.99 | 2.94 | 3.841 (2) | 152 |
C19—H19C···Cg1viii | 0.98 | 2.78 | 3.659 (3) | 149 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y, z−1; (iv) x+1, y, z−1; (v) x, y+1, z; (vi) x−1, y+1, z; (vii) x, y+1, z+1; (viii) x, y, z+1. |
Acknowledgements
Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, EZH and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Abdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781–785. Web of Science CrossRef CAS Google Scholar
Abdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567–569. Web of Science CrossRef CAS Google Scholar
Abdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981–985. Web of Science CrossRef CAS Google Scholar
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270. Web of Science CSD CrossRef Google Scholar
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39. CrossRef Google Scholar
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58-64. Google Scholar
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43-48. Google Scholar
Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122. Web of Science CSD CrossRef CAS Google Scholar
Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102. Google Scholar
Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Huseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890–894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436–440. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736–740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73. Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446–451. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 366–371. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176. Web of Science CSD CrossRef CAS Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025 Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.