research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl 2-oxo-4-(pyridin-2-yl)-6-(thio­phen-2-yl)cyclo­hex-3-ene-1,3-di­carboxyl­ate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by S.-L. Zheng, Harvard University, USA (Received 24 April 2024; accepted 20 May 2024; online 24 May 2024)

In the title compound, C19H17NO5S, the cyclo­hexene ring adopts nearly an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect the mol­ecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

The class of mol­ecules known as carbo- and heterocycles, arguably the most important, has a significant impact on the synthesis of various functionalized systems that have found diverse research and commercial applications (Huseynov et al., 2023[Huseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890-894.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). Bioactive natural and synthetic compounds frequently incorporate carbocycles and heterocycles as fundamental structural components. Moreover, these compounds may play an important role in organic synthesis as starting materials (Maharramov et al., 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Khalilov et al., 2023a[Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436-440.],b[Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736-740.]). These derivatives have found broad applications in coordination chemistry (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), medicinal chemistry (Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58-64.]) and materials chemistry (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.]). These ring systems are utilized in various applications, spanning pharmaceuticals, ligands, catalysts, materials and beyond (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Functionalized systems incorporating cyclo­hexa­none, pyridine and thio­phene motifs have demonstrated diverse biological activities, including molluscicidal, anti­cancer, anti­oxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, anti­bacterial, and more (Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.]; Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43-48.]). The broad application of these systems has garnered significant attention toward the efficient and regioselective development of such compounds. In summary, the synthesized compound offers a unique combination of structural features, including heteroatom diversity, conjugation, strategic functional group placement, and potential biological relevance. Analysis of its structure and properties can provide valuable contributions to the broader field of carbo- and heterocyclic chemistry and may have implications for various applications, including materials science and medicinal chemistry. Hence, within the context of structural studies (Abdinov et al., 2004[Abdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567-569.], 2012[Abdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781-785.], 2014[Abdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981-985.]; Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021a[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we present the crystal structure and Hirshfeld surface analysis of the title compound, dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thio­phen-2-yl)cyclo­hex-3-ene-1,3-di­carboxyl­ate.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the cyclo­hexene ring (C1–C6) adopts nearly an envelope conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.526 (2) Å, θ = 53.9 (2)° and φ = 117.3 (3)°]. The cyclo­hexene ring (r.m.s deviation = 0.002 Å) makes dihedral angles of 84.46 (11) and 29.49 (10)° with the thio­phene (S1/C9–C12) and pyridine (N1/C13–C17) rings, respectively. The angle between the thio­phene and pyridine rings is 77.04 (11)°. The C8—O3—C7—C2, O2—C7—C2—C3, C19—O5—C18—C6 and O4—C18—C6—C5 torsion angles are −169.87 (18), −70.3 (2), 174.97 (15) and 107.7 (2)°, respectively. The geometric properties of the title compound are normal and consistent with those of the related compounds described in the Database survey (Section 4).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 2[link] and 3[link]). In addition, C—H⋯π inter­actions connect the mol­ecules, forming layers parallel to the (010) plane, represented by the distances between the same Cg1 and the same Cg2 centroids (Table 1[link]; Figs. 4[link] and 5[link]). The lengths of the C—H⋯π inter­actions are similar to the proper hydrogen bonds in the crystal structures. This is reasonable for carbo- and heterocycles (Nishio, 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/C9–C12 thio­phene and N1/C13–C17 pyridine rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 1.00 2.64 3.625 (2) 168
C8—H8C⋯O2ii 0.98 2.35 3.215 (3) 146
C11—H11⋯O1iii 0.95 2.62 3.193 (2) 119
C12—H12⋯O4iv 0.95 2.50 3.446 (2) 180
C14—H14⋯O2v 0.95 2.61 3.468 (2) 151
C16—H16⋯O1vi 0.95 2.52 3.305 (3) 140
C19—H19B⋯O2vii 0.98 2.64 3.584 (3) 161
C4—H4ACg2ii 0.99 2.94 3.841 (2) 152
C19—H19CCg1viii 0.98 2.78 3.659 (3) 149
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y, z]; (iii) [x, y, z-1]; (iv) [x+1, y, z-1]; (v) [x, y+1, z]; (vi) [x-1, y+1, z]; (vii) [x, y+1, z+1]; (viii) [x, y, z+1].
[Figure 2]
Figure 2
View of partial packing along the b axis of the title compound with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
View of partial packing along the a axis of the title compound with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 4]
Figure 4
A view of the packing along the a axis of the title compound with C—H⋯π inter­actions shown as dashed lines.
[Figure 5]
Figure 5
A view of the packing along the b axis of the title compound with C—H⋯π inter­actions shown as dashed lines.

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The Hirshfeld surfaces were mapped over dnorm in the range −0.2536 (red) to +1.2159 (blue) a.u. (Fig. 6[link]). The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (36.9%, Fig. 7[link]b). Other major contributors are O⋯H/H⋯O (31.0%, Fig. 7[link]c), C⋯H/H⋯C (18.9%, Fig. 7[link]d) and S⋯H/H⋯S (7.9%, Fig. 7[link]e) inter­actions. Other, smaller contributions are made by N⋯H/H⋯N (2.6%), O⋯O (1.1%), O⋯C/C⋯O (0.9%), N⋯C/C⋯N (0.4%) and C⋯C (0.2%) inter­actions. This distribution is typical for such cyclo­hexene compounds (Naghiyev et al., 2024[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446-451.]).

[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a central cyclo­hexene or -hexane ring yielded nine compounds related to the title compound, viz. CSD refcodes WOMWUU [(I); Naghiyev et al., 2024[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446-451.]], UPOMOE [(II); Naghiyev et al., 2021b[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 366-371.]], ZOMDUD [(III); Gein et al., 2019[Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592-1596.]], PEWJUZ [(IV); Fatahpour et al., 2018[Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111-2122.]], OZUKAX [(V); Tkachenko et al., 2014[Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166-1176.]], IFUDOD ((VI); Gein et al., 2007[Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101-1102.]], IWEVOV [(VII); Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]], IWEVUB [(VIII); Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]] and HALROB [(IX); Ravikumar & Mehdi, 1993[Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.]].

Comparing the title compound and previously published structures, the published structures (Fig. 8[link]) appear to have much higher symmetry space groups. While the title compound crystallizes in the triclinic space group P1 with Z = 1, (I), (II) and (III) crystallize in the monoclinic space group P21/c, with Z = 4, (IV) in I2/c with Z = 4, (VI), (VIII) and (IX) in P21/n with Z = 4, and (V) and (VII) in the ortho­rhom­bic space group Pbca with Z = 8.

[Figure 8]
Figure 8
The nine other published cyclo­hexene/hexane-based structures.

5. Synthesis and crystallization

For a novel synthesis of the title compound, a solution of 1-(pyridin-2-yl)-3-(thio­phen-2-yl)prop-2-en-1-one (7 mmol) and dimethyl-1,3-acetonedi­carboxyl­ate (5.2 mmol) in methanol (30 mL) was stirred for 10 min. Then N-methyl­piperazine (3 drops) was added to the reaction mixture, which was stirred for 48 h at room temperature. Then 20 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. = 480 K, yield 69%).

1H NMR (300 MHz, DMSO-d6, ppm.): 3.30 (dd, 2H, CH2, 2JH–H = 16.3 and 3JH–H = 8.3); 3.65 (s, 6H, 2OCH3); 4.02 (dd, 1H, CH, 3JH–H = 8.3, 3JH–H = 13.3); 4.20 (d, 1H, CH, 3JH–H = 13.3); 7.00 (t, 1H, CHthien., 3JH–H = 5.1); 7.09 (d, 1H, CHthien., 3JH–H = 3.5); 7.41 (d, 1H, CHthien., 3JH–H = 5.1); 7.46 (t, 1H, CHpyrid., 3JH–H = 7.4); 7.76 (d, 1H, CHpyrid., 3JH–H = 7.4); 7.91 (t, 1H, CHpyrid., 3JH–H = 5.7); 8.63 (d, 1H, CHpyrid., 3JH–H = 5.7). 13C NMR (75 MHz, DMSO-d6, ppm.): 35.47 (CH2), 38.23 (CH), 52.24 (OCH3), 52.43 (OCH3), 60.45 (CH), 123.58 (CHpyrid.), 125.20 (CHpyrid.), 125.61 (CHpyrid.), 125.77 (CHpyrid.), 127.47 (CHthien.), 131.43 (Cquat.), 137.93 (CHthien.), 144.28 (Cthien.), 149.49 (CHthien.), 153.21 (Cquat.), 155.14 (Cquat.), 166.83 (CO), 169.52 (CO), 191.68 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in calculated positions (C—H = 0.95 −1.00 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C19H17NO5S
Mr 371.39
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 5.5260 (1), 8.5012 (1), 10.1076 (2)
α, β, γ (°) 110.910 (2), 98.128 (1), 96.006 (1)
V3) 432.88 (1)
Z 1
Radiation type Cu Kα
μ (mm−1) 1.94
Crystal size (mm) 0.25 × 0.23 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.647, 0.840
No. of measured, independent and observed [I > 2σ(I)] reflections 18199, 3530, 3524
Rint 0.023
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.06
No. of reflections 3530
No. of parameters 238
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Absolute structure Flack x determined using 1675 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.003 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thiophen-2-yl)cyclohex-3-ene-1,3-dicarboxylate top
Crystal data top
C19H17NO5SZ = 1
Mr = 371.39F(000) = 194
Triclinic, P1Dx = 1.425 Mg m3
a = 5.5260 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.5012 (1) ÅCell parameters from 16321 reflections
c = 10.1076 (2) Åθ = 4.8–77.4°
α = 110.910 (2)°µ = 1.94 mm1
β = 98.128 (1)°T = 100 K
γ = 96.006 (1)°Prism, colourless
V = 432.88 (1) Å30.25 × 0.23 × 0.09 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3524 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.023
φ and ω scansθmax = 77.8°, θmin = 4.8°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 66
Tmin = 0.647, Tmax = 0.840k = 1010
18199 measured reflectionsl = 1212
3530 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0337P)2 + 0.097P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.17 e Å3
3530 reflectionsExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
238 parametersExtinction coefficient: 0.0131 (14)
3 restraintsAbsolute structure: Flack x determined using 1675 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.003 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6259 (4)0.3716 (2)0.6011 (2)0.0132 (4)
C20.7320 (4)0.3495 (2)0.46536 (19)0.0127 (4)
H20.8989990.4228370.4932700.015*
C30.5592 (4)0.4059 (2)0.36259 (19)0.0136 (4)
H30.3906860.3373980.3436910.016*
C40.5382 (4)0.5930 (2)0.4416 (2)0.0146 (4)
H4A0.7034520.6648440.4658100.017*
H4B0.4259080.6303790.3774700.017*
C50.4396 (3)0.6170 (2)0.5780 (2)0.0134 (4)
C60.4809 (4)0.5121 (2)0.64983 (19)0.0129 (4)
C70.7580 (4)0.1653 (2)0.3869 (2)0.0142 (4)
C81.0028 (4)0.0161 (3)0.2524 (3)0.0281 (5)
H8A0.8946960.0444800.1586030.042*
H8B0.9541450.1002880.2935410.042*
H8C1.1752040.0176740.2397950.042*
C90.6332 (4)0.3713 (2)0.2190 (2)0.0144 (4)
C100.5052 (4)0.2567 (3)0.0887 (2)0.0188 (4)
H100.3527860.1858180.0772510.023*
C110.6230 (4)0.2541 (3)0.0286 (2)0.0211 (4)
H110.5570580.1816130.1261800.025*
C120.8386 (4)0.3654 (3)0.0135 (2)0.0198 (4)
H120.9417970.3804240.0501620.024*
C130.2915 (4)0.7557 (2)0.6266 (2)0.0138 (4)
C140.3097 (4)0.8926 (2)0.5803 (2)0.0170 (4)
H140.4198670.9000600.5178660.020*
C150.1640 (4)1.0168 (2)0.6273 (2)0.0193 (4)
H150.1734811.1113090.5978470.023*
C160.0042 (4)1.0017 (3)0.7177 (2)0.0192 (4)
H160.0986641.0846950.7507890.023*
C170.0018 (4)0.8619 (3)0.7589 (2)0.0182 (4)
H170.1097600.8525950.8220180.022*
C180.3784 (4)0.5217 (2)0.7826 (2)0.0132 (4)
C190.3964 (4)0.6765 (3)1.0269 (2)0.0222 (4)
H19A0.2208120.6851541.0056870.033*
H19B0.4844060.7810461.1062720.033*
H19C0.4118250.5781891.0547030.033*
N10.1361 (3)0.7402 (2)0.71452 (18)0.0161 (3)
O10.6615 (3)0.27874 (17)0.66693 (15)0.0178 (3)
O20.5944 (3)0.04488 (18)0.35502 (15)0.0196 (3)
O30.9794 (3)0.15282 (18)0.34916 (15)0.0188 (3)
O40.2142 (3)0.41766 (17)0.78248 (15)0.0175 (3)
O50.5031 (3)0.65445 (18)0.89989 (14)0.0168 (3)
S10.90193 (7)0.47674 (5)0.19781 (5)0.01854 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (9)0.0139 (8)0.0134 (8)0.0017 (7)0.0025 (7)0.0047 (7)
C20.0131 (9)0.0131 (8)0.0128 (8)0.0041 (7)0.0039 (7)0.0049 (7)
C30.0140 (9)0.0149 (9)0.0123 (8)0.0022 (7)0.0033 (7)0.0056 (7)
C40.0166 (10)0.0143 (8)0.0152 (9)0.0053 (7)0.0044 (7)0.0072 (7)
C50.0122 (9)0.0125 (8)0.0144 (8)0.0016 (7)0.0026 (7)0.0039 (7)
C60.0133 (9)0.0129 (8)0.0125 (9)0.0028 (7)0.0048 (7)0.0039 (7)
C70.0157 (10)0.0173 (9)0.0114 (8)0.0058 (7)0.0039 (7)0.0065 (7)
C80.0193 (11)0.0212 (11)0.0342 (12)0.0067 (8)0.0092 (9)0.0032 (9)
C90.0153 (10)0.0160 (8)0.0149 (9)0.0054 (7)0.0059 (7)0.0075 (7)
C100.0185 (10)0.0228 (10)0.0153 (9)0.0030 (8)0.0048 (8)0.0071 (8)
C110.0245 (11)0.0256 (10)0.0137 (9)0.0051 (9)0.0059 (8)0.0071 (8)
C120.0226 (11)0.0253 (10)0.0147 (9)0.0066 (8)0.0083 (8)0.0088 (8)
C130.0136 (10)0.0125 (8)0.0137 (8)0.0024 (7)0.0019 (7)0.0033 (7)
C140.0189 (11)0.0157 (9)0.0179 (9)0.0036 (8)0.0040 (8)0.0078 (8)
C150.0211 (11)0.0135 (9)0.0223 (10)0.0032 (8)0.0002 (8)0.0067 (8)
C160.0182 (10)0.0152 (9)0.0204 (9)0.0068 (7)0.0016 (8)0.0019 (7)
C170.0167 (10)0.0201 (9)0.0173 (9)0.0064 (8)0.0054 (7)0.0046 (8)
C180.0166 (10)0.0119 (8)0.0129 (8)0.0061 (7)0.0048 (7)0.0049 (7)
C190.0245 (11)0.0264 (10)0.0127 (9)0.0052 (9)0.0070 (8)0.0023 (8)
N10.0166 (9)0.0159 (8)0.0165 (8)0.0055 (6)0.0050 (6)0.0057 (6)
O10.0222 (8)0.0200 (7)0.0170 (6)0.0095 (6)0.0071 (6)0.0107 (5)
O20.0192 (8)0.0158 (7)0.0218 (7)0.0010 (6)0.0061 (6)0.0045 (5)
O30.0150 (7)0.0166 (7)0.0222 (7)0.0055 (5)0.0065 (6)0.0023 (6)
O40.0219 (8)0.0150 (6)0.0170 (6)0.0035 (6)0.0083 (6)0.0059 (5)
O50.0183 (7)0.0181 (7)0.0128 (6)0.0020 (5)0.0049 (5)0.0039 (5)
S10.0179 (2)0.0223 (2)0.0148 (2)0.00028 (18)0.00576 (16)0.00623 (17)
Geometric parameters (Å, º) top
C1—O11.215 (2)C10—C111.426 (3)
C1—C61.484 (3)C10—H100.9500
C1—C21.526 (2)C11—C121.353 (3)
C2—C71.515 (3)C11—H110.9500
C2—C31.546 (3)C12—S11.725 (2)
C2—H21.0000C12—H120.9500
C3—C91.499 (2)C13—N11.349 (2)
C3—C41.529 (2)C13—C141.400 (3)
C3—H31.0000C14—C151.384 (3)
C4—C51.509 (3)C14—H140.9500
C4—H4A0.9900C15—C161.386 (3)
C4—H4B0.9900C15—H150.9500
C5—C61.353 (3)C16—C171.391 (3)
C5—C131.485 (3)C16—H160.9500
C6—C181.508 (2)C17—N11.335 (3)
C7—O21.207 (2)C17—H170.9500
C7—O31.335 (2)C18—O41.199 (2)
C8—O31.452 (2)C18—O51.344 (2)
C8—H8A0.9800C19—O51.448 (2)
C8—H8B0.9800C19—H19A0.9800
C8—H8C0.9800C19—H19B0.9800
C9—C101.364 (3)C19—H19C0.9800
C9—S11.733 (2)
O1—C1—C6121.66 (16)C3—C9—S1123.13 (14)
O1—C1—C2121.05 (17)C9—C10—C11113.26 (19)
C6—C1—C2117.28 (15)C9—C10—H10123.4
C7—C2—C1111.28 (15)C11—C10—H10123.4
C7—C2—C3108.90 (15)C12—C11—C10112.96 (18)
C1—C2—C3109.64 (15)C12—C11—H11123.5
C7—C2—H2109.0C10—C11—H11123.5
C1—C2—H2109.0C11—C12—S1111.23 (15)
C3—C2—H2109.0C11—C12—H12124.4
C9—C3—C4113.33 (15)S1—C12—H12124.4
C9—C3—C2113.64 (16)N1—C13—C14122.33 (18)
C4—C3—C2108.56 (15)N1—C13—C5116.34 (17)
C9—C3—H3107.0C14—C13—C5121.32 (17)
C4—C3—H3107.0C15—C14—C13118.75 (18)
C2—C3—H3107.0C15—C14—H14120.6
C5—C4—C3110.93 (15)C13—C14—H14120.6
C5—C4—H4A109.5C14—C15—C16119.19 (19)
C3—C4—H4A109.5C14—C15—H15120.4
C5—C4—H4B109.5C16—C15—H15120.4
C3—C4—H4B109.5C15—C16—C17118.38 (19)
H4A—C4—H4B108.0C15—C16—H16120.8
C6—C5—C13122.14 (17)C17—C16—H16120.8
C6—C5—C4120.52 (17)N1—C17—C16123.48 (19)
C13—C5—C4117.32 (16)N1—C17—H17118.3
C5—C6—C1122.52 (16)C16—C17—H17118.3
C5—C6—C18123.87 (17)O4—C18—O5125.11 (17)
C1—C6—C18113.58 (15)O4—C18—C6123.28 (18)
O2—C7—O3123.86 (18)O5—C18—C6111.52 (16)
O2—C7—C2124.32 (18)O5—C19—H19A109.5
O3—C7—C2111.70 (16)O5—C19—H19B109.5
O3—C8—H8A109.5H19A—C19—H19B109.5
O3—C8—H8B109.5O5—C19—H19C109.5
H8A—C8—H8B109.5H19A—C19—H19C109.5
O3—C8—H8C109.5H19B—C19—H19C109.5
H8A—C8—H8C109.5C17—N1—C13117.88 (17)
H8B—C8—H8C109.5C7—O3—C8114.76 (16)
C10—C9—C3126.53 (18)C18—O5—C19113.04 (15)
C10—C9—S1110.34 (15)C12—S1—C992.21 (10)
O1—C1—C2—C729.2 (3)C3—C9—C10—C11179.62 (19)
C6—C1—C2—C7151.60 (17)S1—C9—C10—C110.2 (2)
O1—C1—C2—C3149.70 (18)C9—C10—C11—C120.2 (3)
C6—C1—C2—C331.1 (2)C10—C11—C12—S10.2 (2)
C7—C2—C3—C951.8 (2)C6—C5—C13—N120.6 (3)
C1—C2—C3—C9173.75 (15)C4—C5—C13—N1157.70 (17)
C7—C2—C3—C4178.86 (15)C6—C5—C13—C14160.74 (19)
C1—C2—C3—C459.17 (19)C4—C5—C13—C1420.9 (3)
C9—C3—C4—C5174.49 (16)N1—C13—C14—C150.4 (3)
C2—C3—C4—C558.3 (2)C5—C13—C14—C15178.96 (17)
C3—C4—C5—C628.6 (3)C13—C14—C15—C160.3 (3)
C3—C4—C5—C13149.71 (17)C14—C15—C16—C170.5 (3)
C13—C5—C6—C1179.18 (17)C15—C16—C17—N10.9 (3)
C4—C5—C6—C10.9 (3)C5—C6—C18—O4107.7 (2)
C13—C5—C6—C181.4 (3)C1—C6—C18—O470.2 (2)
C4—C5—C6—C18176.85 (18)C5—C6—C18—O575.7 (2)
O1—C1—C6—C5179.91 (19)C1—C6—C18—O5106.35 (19)
C2—C1—C6—C50.7 (3)C16—C17—N1—C130.9 (3)
O1—C1—C6—C182.1 (3)C14—C13—N1—C170.7 (3)
C2—C1—C6—C18178.65 (16)C5—C13—N1—C17179.31 (17)
C1—C2—C7—O250.6 (3)O2—C7—O3—C86.2 (3)
C3—C2—C7—O270.3 (2)C2—C7—O3—C8169.87 (18)
C1—C2—C7—O3133.27 (17)O4—C18—O5—C198.5 (3)
C3—C2—C7—O3105.76 (18)C6—C18—O5—C19174.97 (15)
C4—C3—C9—C10122.9 (2)C11—C12—S1—C90.08 (18)
C2—C3—C9—C10112.5 (2)C10—C9—S1—C120.06 (16)
C4—C3—C9—S156.8 (2)C3—C9—S1—C12179.74 (17)
C2—C3—C9—S167.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C9–C12 thiophene and N1/C13–C17 pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i1.002.643.625 (2)168
C8—H8C···O2ii0.982.353.215 (3)146
C11—H11···O1iii0.952.623.193 (2)119
C12—H12···O4iv0.952.503.446 (2)180
C14—H14···O2v0.952.613.468 (2)151
C16—H16···O1vi0.952.523.305 (3)140
C19—H19B···O2vii0.982.643.584 (3)161
C4—H4A···Cg2ii0.992.943.841 (2)152
C19—H19C···Cg1viii0.982.783.659 (3)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y, z1; (v) x, y+1, z; (vi) x1, y+1, z; (vii) x, y+1, z+1; (viii) x, y, z+1.
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, EZH and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAbdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781–785.  Web of Science CrossRef CAS Google Scholar
First citationAbdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567–569.  Web of Science CrossRef CAS Google Scholar
First citationAbdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981–985.  Web of Science CrossRef CAS Google Scholar
First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58-64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43-48.  Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationGein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.  Google Scholar
First citationGein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationHuseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436–440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736–740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446–451.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 366–371.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds