research communications
Synthesis and 4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]
of the cluster (EtaNanjing Normal University, 1 Wenyuan Road, Qixia district, Nanjing, Jiangsu 210023, People's Republic of China, and bSchool of Science and Technology, Hong Kong Metropolitan University, Hong Kong
*Correspondence e-mail: xdchen@njnu.edu.cn
The title compound, tetraethylammonium triazidotri-μ3-sulfido-[μ3-(trimethylsilyl)azanediido][tris(3,5-dimethylpyrazol-1-yl)hydroborato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris(3,5-dimethylpyrazol-1-yl)hydroborate(1−)], crystallizes as needle-like black crystals in P. In this cluster, the Mo site is in a distorted octahedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetrahedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitrogenase FeMo cofactor. The residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported molecular weight and density.
Keywords: crystal structure; Mo–Fe–S cluster; FeMo cofactor; synthesis.
CCDC reference: 2353398
1. Chemical context
Nitrogen is abundant in the atmosphere in the form of dinitrogen gas, but this type of nitrogen cannot be metabolized by organisms directly (Jia & Quadrelli, 2014; MacKay & Fryzuk, 2004). It must be fixed by nitrogenase in some selected microorganisms (Dos Santos et al., 2012). Nitrogenase can transform N2 to NH3, and then the biochemical N cycle sets off (Cheng, 2008; Canfield et al., 2010). The exploration of synthetic structural analogs of nitrogenase is therefore a crucial area in modern science research.
The FeMo cofactor is believed to be one of the most important parts in nitrogenase responsible for nitrogen fixation. The FeMo cofactor contains a 2p atom in the center, which has been proven to be a carbide, resulting in the structure as [MoFe7S9C] (Spatzal et al., 2011; Lancaster et al., 2011). To mimic the structure of the FeMo cofactor, a large number of iron–sulfur clusters have been synthesized (Lee & Holm, 2004; Holm, 1977; Herskovitz et al., 1972; Liu et al., 1990; Nordlander et al., 1993). However, synthesizing heteroleptic analogs with a 2p atom in the core of the cluster is a tough challenge for researchers in this area (Sickerman et al., 2017). With the unremitting efforts of scientists, some synthetic homometallic or heterometallic iron–sulfur clusters with a 2p atom in the core have been synthesized. Lee's group have used the dinuclear precursors for the selective synthesis of the homometallic cubane clusters [Fe4(NtBu)n(S)4–nCl4]z with (n, z = 3, 1−, 2, 2− or 1, 2−; Chen et al., 2010). Our group have developed core ligand metathesis and core ligand redox metathesis strategies and successfully synthesized versatile heterometallic iron–sulfur clusters containing a core 2p atom, including the [MFe3S2(μ2-Q)]1+ and [MFe3S3(μ3-Q)]2+ (M = W and Mo, Q = NR, OR) cubane clusters (Xu et al., 2018; He et al., 2022), and the [(Tp*)2W2Fe6(μ4-N)2S6L4]2− [Tp* = tris(3,5-dimethylpyrazol-1-yl)-hydroborate(1−), L = Cl− or Br−] double cubane clusters (Xu et al., 2019). Previously in our laboratory, the molybdenum–iron–sulfur cluster [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3]−, which resembles one of the cubic subunits of the FeMo cofactor, was synthesized through a LEGO-like strategy. Based on this cluster, which has a μ3-bridging N atom in the core, we explored the effects of terminal ligands on the Fe sites of heterometallic heteroleptic iron–sulfur clusters. In this work, terminal ligand substitution using NaN3 was applied to produce the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]−. The synthesis and structural analysis of this compound may provide useful information for a better understanding of the structure and reactivity of the FeMo cofactor, as well as how the terminal ligand affects the physical property of the cluster (Xu et al., 2018; He et al., 2022).
2. Structural commentary
This title cluster crystallized as the Et4N+ salt in the triclinic P. The different metal atoms exhibit distinct coordination models in this cluster. The Mo site coordinates three N atoms of the Tp* ligand and three μ3-bridging S atoms in the core of the cluster, showing a distorted octahedral coordination sphere. Each Fe site coordinates two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and one N atom on the terminal ligand, resulting in a distorted tetrahedral geometry. The cluster exhibits quasi-threefold symmetry in its crystal form, as a result of the steric constraint generated by the crystal packing. In the core of the cluster, the Mo—S bond lengths range from 2.3638 (13) to 2.3758 (14) Å, with an average value of 2.369 (2) Å. The Mo⋯Fe distances are between 2.7743 (12) Å and 2.8012 (13) Å, averaging 2.789 (1) Å. The Fe⋯Fe distances fall in the range 2.6123 (12) Å and 2.6368 (11) Å, with a mean value of 2.626 (1) Å. The Fe—S bond lengths range from 2.2678 (14) to 2.2923 (13) Å, with an average value of 2.282 (1) Å. The Fe—N(imide) bond lengths are in the range of 1.917 (2) Å to 1.9386 (19) Å, with an average value of 1.931 (2) Å. The Fe—N(azide) bond lengths are between 1.922 (2) and 1.937 (2) Å, with an average value of 1.930 (2) Å. The N—Si bond length is 1.753 (2) Å. The Fe—N—Fe angles range from 84.78 (7) to 86.29 (7)° with an average of 85.7 (1) °. The structure of the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]− is shown in Fig. 1 and some selected geometric parameters are listed in Table 1.
|
3. Supramolecular features
In the crystal, there are two sets of cluster counter-ions in each 4N+ cations are arranged in alternating layers, where electrostatic interactions might be the dominant supramolecular interactions. No significant hydrogen-bonding or π–π stacking interactions were identified in the The packing of the title compound is shown in Fig. 2.
The anionic clusters and the Et4. Database survey
Heteroleptic cubane-type M–Fe–S–N clusters (M = Mo or W) are very rare. In the literature, there are currently only two types of M–Fe–S–N clusters (Xu et al., 2018; He et al., 2022; Zhang et al., 2023). Thus far, cubane-type Mo–Fe–S–N clusters with azide terminal ligands have not been synthesized successfully.
A search of the Cambridge Structural Database with WebCSD (updated to November 2023; Groom et al., 2016) revealed two types of heteroleptic cubane-type M–Fe–S–N clusters (M = Mo, W), viz. [(Tp*)WFe3S3(μ3-NSiMe3)L3]− [NIFBIQ (L= Cl−); Xu et al., 2018; XIGKEH, XIGKAD, XIGKOR, XIGKIL, XIGKUX (L = SMe−, SEt−, SPh−, SPhMe−, N3−); Zhang et al., 2023] and [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3]− (RAWLAG; He et al., 2022).
5. Synthesis and crystallization
All reactions and manipulations were performed in a glovebox under an atmosphere of dry N2. DMF was refluxed over CaH2 until dry and was distilled under an N2 atmosphere. Diethyl ether was refluxed over sodium metal and benzophenone until dry and was distilled under an N2 atmosphere. All solvents were stored in a glovebox over activated molecular sieves (3 Å). NaN3 was stored in a glovebox under an atmosphere of dry N2. As shown in Fig. 3, NaN3 (7.8 mg, 0.12 mmol) was added into a DMF solution (3.0 mL) of (Et4N)[(Tp*)MoFe3(μ3-S)3(μ3-NSiMe3)Cl3] (29.4 mg, 0.03 mmol). After overnight stirring, the color of the reaction mixture changed to brownish yellow. Filtration was done through celite and the filtrate was diffused by diethyl ether at room temperature to give needle-like black crystals (10.9 mg, yield: 36%). 1H NMR (DMSO-d6, 400 MHz, δ, ppm): 5.83 (s, 3H, CH), −0.01 (s, 9H, CH3), −8.15 (vbr, 9H, CH3). Other proton signals could not be located due to paramagnetic broadening. Elemental analysis: calculated for C26H51BFe3MoN17S3Si: C, 31.22; H, 5.14; N, 23.80. Found: C, 31.73; H, 5.35; N, 23.27. IR (cm−1): ν (N=N), 2059 (vs). UV (nm) λ: 245, 345, 555.
6. Refinement
Crystal data, data collection, and structure . Hydrogen atoms were added at idealized positions and refined using a riding model. The residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE (Spek, 2015) function was applied in PLATON (Spek, 2020). A total of 40 electrons in a volume of 146 Å3 were counted by SQUEEZE and removed per This accounts for about one solvent molecule (probably diethyl ether) per unit cell.
details are summarized in Table 2Supporting information
CCDC reference: 2353398
https://doi.org/10.1107/S2056989024004833/oi2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004833/oi2008Isup2.hkl
IR and UV data. DOI: https://doi.org/10.1107/S2056989024004833/oi2008sup3.docx
(C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] | Z = 2 |
Mr = 1000.40 | F(000) = 1026 |
Triclinic, P1 | Dx = 1.500 Mg m−3 |
a = 10.689 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.321 (6) Å | Cell parameters from 9959 reflections |
c = 19.030 (11) Å | θ = 2.3–27.5° |
α = 75.306 (7)° | µ = 1.45 mm−1 |
β = 84.362 (7)° | T = 296 K |
γ = 86.829 (7)° | Needle, dark black |
V = 2216 (2) Å3 | 0.02 × 0.01 × 0.01 mm |
Bruker APEXII CCD diffractometer | 10181 independent reflections |
Radiation source: sealed tube | 8508 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8 pixels mm-1 | θmax = 27.7°, θmin = 1.9° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.615, Tmax = 0.746 | l = −24→24 |
31083 measured reflections |
Refinement on F2 | 36 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.6048P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
10181 reflections | Δρmax = 0.34 e Å−3 |
482 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal X-ray diffraction data for the title compound was collected at 296 K on a Bruker APEX II CCD diffractometer operating at 50 kV and 30 mA using Mo-Kα radiation (λ = 0.71073 Å). Crystal was mounted on a loop using Parabar 10312 oil for data collection. Data was collected with a series of φ and/or ω scans. Data was integrated using SAINT and scaled with either a numerical or multiscan absorption correction using SADABS. Structure was solved using SHELXT and refined by full-matrix least-squares on F2 using the SHELXL and OLEX2 (Dolomanov et al., 2009) programs. All non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.37687 (2) | 0.19344 (2) | 0.70187 (2) | 0.02871 (5) | |
Fe1 | 0.35280 (3) | 0.34195 (3) | 0.79844 (2) | 0.03469 (7) | |
Fe2 | 0.51034 (3) | 0.15159 (3) | 0.82587 (2) | 0.03669 (8) | |
Fe3 | 0.56554 (3) | 0.34312 (3) | 0.71799 (2) | 0.03547 (8) | |
S1 | 0.37571 (5) | 0.40934 (5) | 0.67454 (3) | 0.03587 (11) | |
S2 | 0.29666 (5) | 0.14413 (5) | 0.82569 (3) | 0.03783 (12) | |
S3 | 0.59472 (5) | 0.14523 (5) | 0.71135 (3) | 0.03843 (12) | |
Si1 | 0.59645 (6) | 0.37702 (6) | 0.88600 (3) | 0.04076 (14) | |
N1 | 0.52635 (16) | 0.32102 (16) | 0.82195 (10) | 0.0364 (4) | |
N2 | 0.2542 (2) | 0.4505 (2) | 0.84783 (13) | 0.0617 (6) | |
N3 | 0.24283 (19) | 0.47829 (19) | 0.90328 (12) | 0.0523 (5) | |
N4 | 0.2266 (3) | 0.5107 (3) | 0.95606 (16) | 0.0911 (9) | |
N5 | 0.5950 (2) | 0.0405 (2) | 0.90254 (13) | 0.0628 (6) | |
N6 | 0.65128 (19) | 0.0383 (2) | 0.95230 (11) | 0.0530 (5) | |
N7 | 0.7116 (3) | 0.0328 (3) | 1.00051 (14) | 0.0868 (9) | |
N8 | 0.7028 (2) | 0.4497 (2) | 0.67838 (13) | 0.0599 (6) | |
N9 | 0.7403 (3) | 0.5394 (3) | 0.68504 (15) | 0.0784 (7) | |
N10 | 0.7844 (5) | 0.6258 (4) | 0.6907 (3) | 0.164 (2) | |
N11 | 0.17455 (15) | 0.21022 (16) | 0.67200 (9) | 0.0348 (4) | |
N12 | 0.14031 (15) | 0.14605 (16) | 0.62444 (9) | 0.0364 (4) | |
N13 | 0.34995 (16) | −0.00852 (16) | 0.70729 (10) | 0.0386 (4) | |
N14 | 0.28322 (16) | −0.03796 (16) | 0.65579 (10) | 0.0376 (4) | |
N15 | 0.41462 (16) | 0.20726 (16) | 0.58126 (9) | 0.0366 (4) | |
N16 | 0.34604 (16) | 0.13737 (17) | 0.54964 (9) | 0.0391 (4) | |
C1 | 0.5783 (3) | 0.5462 (2) | 0.86171 (17) | 0.0630 (7) | |
H1A | 0.611474 | 0.578126 | 0.812136 | 0.094* | |
H1B | 0.623358 | 0.578596 | 0.893520 | 0.094* | |
H1C | 0.490828 | 0.569406 | 0.866928 | 0.094* | |
C2 | 0.7669 (2) | 0.3327 (3) | 0.88212 (17) | 0.0609 (7) | |
H2A | 0.776677 | 0.245323 | 0.897247 | 0.091* | |
H2B | 0.807741 | 0.368582 | 0.914024 | 0.091* | |
H2C | 0.804121 | 0.361215 | 0.833093 | 0.091* | |
C3 | 0.5166 (3) | 0.3129 (3) | 0.97832 (14) | 0.0679 (8) | |
H3A | 0.431839 | 0.345395 | 0.980566 | 0.102* | |
H3B | 0.561231 | 0.334619 | 1.014358 | 0.102* | |
H3C | 0.515542 | 0.225503 | 0.987630 | 0.102* | |
C4 | 0.0628 (2) | 0.3588 (2) | 0.73746 (14) | 0.0502 (6) | |
H4A | −0.021138 | 0.392982 | 0.740781 | 0.075* | |
H4B | 0.120560 | 0.423202 | 0.717294 | 0.075* | |
H4C | 0.084442 | 0.315666 | 0.785218 | 0.075* | |
C5 | 0.06979 (19) | 0.2730 (2) | 0.68965 (12) | 0.0395 (5) | |
C6 | −0.0299 (2) | 0.2471 (2) | 0.65436 (13) | 0.0473 (6) | |
H6 | −0.112202 | 0.277794 | 0.657710 | 0.057* | |
C7 | 0.0164 (2) | 0.1681 (2) | 0.61406 (13) | 0.0444 (5) | |
C8 | −0.0496 (2) | 0.1139 (3) | 0.56439 (17) | 0.0670 (8) | |
H8A | −0.137189 | 0.137596 | 0.567114 | 0.100* | |
H8B | −0.040632 | 0.026449 | 0.578982 | 0.100* | |
H8C | −0.013188 | 0.142877 | 0.515209 | 0.100* | |
C9 | 0.4515 (3) | −0.1292 (2) | 0.81859 (16) | 0.0667 (8) | |
H9A | 0.529813 | −0.088597 | 0.803667 | 0.100* | |
H9B | 0.467871 | −0.214272 | 0.840157 | 0.100* | |
H9C | 0.403603 | −0.093153 | 0.853637 | 0.100* | |
C10 | 0.3789 (2) | −0.1161 (2) | 0.75371 (13) | 0.0441 (5) | |
C11 | 0.3304 (2) | −0.2115 (2) | 0.73203 (14) | 0.0494 (6) | |
H11 | 0.337355 | −0.294313 | 0.754884 | 0.059* | |
C12 | 0.2705 (2) | −0.1603 (2) | 0.67069 (13) | 0.0432 (5) | |
C13 | 0.2017 (3) | −0.2218 (2) | 0.62601 (17) | 0.0620 (7) | |
H13A | 0.208509 | −0.308701 | 0.644984 | 0.093* | |
H13B | 0.237628 | −0.200302 | 0.576362 | 0.093* | |
H13C | 0.114672 | −0.195770 | 0.627929 | 0.093* | |
C14 | 0.5931 (2) | 0.3525 (3) | 0.53659 (14) | 0.0548 (6) | |
H14A | 0.653782 | 0.306889 | 0.567743 | 0.082* | |
H14B | 0.553101 | 0.414548 | 0.558056 | 0.082* | |
H14C | 0.634626 | 0.390003 | 0.489801 | 0.082* | |
C15 | 0.4963 (2) | 0.2684 (2) | 0.52753 (12) | 0.0430 (5) | |
C16 | 0.4801 (2) | 0.2372 (3) | 0.46324 (13) | 0.0552 (6) | |
H16 | 0.524464 | 0.266948 | 0.418171 | 0.066* | |
C17 | 0.3864 (2) | 0.1541 (3) | 0.47857 (12) | 0.0502 (6) | |
C18 | 0.3358 (3) | 0.0878 (3) | 0.42916 (15) | 0.0789 (10) | |
H18A | 0.339169 | 0.001538 | 0.451014 | 0.118* | |
H18B | 0.385699 | 0.104993 | 0.383157 | 0.118* | |
H18C | 0.250263 | 0.114463 | 0.421627 | 0.118* | |
B1 | 0.2358 (2) | 0.0624 (2) | 0.59292 (13) | 0.0387 (5) | |
H1 | 0.194700 | 0.024994 | 0.560488 | 0.046* | |
N17 | −0.05817 (17) | 0.82275 (17) | 0.86189 (12) | 0.0459 (5) | |
C19 | 0.0230 (2) | 0.7189 (2) | 0.84364 (18) | 0.0634 (7) | |
H19A | 0.058171 | 0.745072 | 0.793400 | 0.076* | |
H19B | 0.092600 | 0.703033 | 0.874210 | 0.076* | |
C20 | −0.0436 (3) | 0.6007 (3) | 0.8532 (2) | 0.0762 (9) | |
H20A | −0.113210 | 0.615106 | 0.823468 | 0.114* | |
H20B | −0.073955 | 0.570685 | 0.903417 | 0.114* | |
H20C | 0.013988 | 0.541409 | 0.838652 | 0.114* | |
C21 | −0.1151 (3) | 0.7881 (3) | 0.94073 (15) | 0.0603 (7) | |
H21A | −0.166352 | 0.856816 | 0.950127 | 0.072* | |
H21B | −0.170281 | 0.720491 | 0.946621 | 0.072* | |
C22 | −0.0203 (4) | 0.7522 (4) | 0.9976 (2) | 0.1076 (13) | |
H22A | 0.042863 | 0.812729 | 0.987749 | 0.161* | |
H22B | 0.018634 | 0.674436 | 0.995761 | 0.161* | |
H22C | −0.062494 | 0.746732 | 1.045169 | 0.161* | |
C23 | 0.0264 (2) | 0.9312 (3) | 0.84888 (19) | 0.0695 (8) | |
H23A | 0.093986 | 0.908884 | 0.880721 | 0.083* | |
H23B | 0.064055 | 0.948195 | 0.799003 | 0.083* | |
C24 | −0.0391 (3) | 1.0463 (3) | 0.8616 (2) | 0.0892 (11) | |
H24A | −0.109205 | 1.066948 | 0.832393 | 0.134* | |
H24B | 0.018762 | 1.111840 | 0.848318 | 0.134* | |
H24C | −0.068571 | 1.033470 | 0.912190 | 0.134* | |
C25 | −0.1686 (2) | 0.8524 (3) | 0.81586 (16) | 0.0618 (7) | |
H25A | −0.219688 | 0.917170 | 0.830344 | 0.074* | |
H25B | −0.219841 | 0.780891 | 0.826174 | 0.074* | |
C26 | −0.1337 (4) | 0.8915 (3) | 0.73461 (19) | 0.1038 (13) | |
H26A | −0.208837 | 0.907254 | 0.709485 | 0.156* | |
H26B | −0.083986 | 0.827723 | 0.719386 | 0.156* | |
H26C | −0.086142 | 0.964464 | 0.723342 | 0.156* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02915 (9) | 0.03079 (9) | 0.02823 (9) | 0.00145 (6) | −0.00491 (6) | −0.01069 (7) |
Fe1 | 0.03339 (15) | 0.03888 (16) | 0.03479 (16) | 0.00628 (12) | −0.00428 (12) | −0.01577 (13) |
Fe2 | 0.03843 (16) | 0.03578 (16) | 0.03790 (17) | 0.00523 (12) | −0.01024 (13) | −0.01174 (13) |
Fe3 | 0.03283 (15) | 0.03801 (16) | 0.03821 (17) | −0.00029 (12) | −0.00218 (12) | −0.01491 (13) |
S1 | 0.0392 (3) | 0.0329 (3) | 0.0357 (3) | 0.0027 (2) | −0.0061 (2) | −0.0085 (2) |
S2 | 0.0382 (3) | 0.0434 (3) | 0.0311 (3) | −0.0030 (2) | −0.0026 (2) | −0.0077 (2) |
S3 | 0.0333 (3) | 0.0422 (3) | 0.0451 (3) | 0.0073 (2) | −0.0064 (2) | −0.0211 (2) |
Si1 | 0.0429 (3) | 0.0444 (3) | 0.0423 (3) | 0.0074 (3) | −0.0129 (3) | −0.0228 (3) |
N1 | 0.0354 (9) | 0.0407 (10) | 0.0389 (10) | 0.0042 (7) | −0.0080 (7) | −0.0199 (8) |
N2 | 0.0562 (12) | 0.0772 (15) | 0.0643 (14) | 0.0234 (11) | −0.0097 (11) | −0.0443 (13) |
N3 | 0.0475 (11) | 0.0576 (13) | 0.0591 (13) | 0.0150 (9) | −0.0091 (10) | −0.0297 (11) |
N4 | 0.096 (2) | 0.120 (2) | 0.0768 (18) | 0.0343 (18) | −0.0206 (15) | −0.0637 (18) |
N5 | 0.0733 (15) | 0.0528 (13) | 0.0634 (15) | 0.0100 (11) | −0.0338 (12) | −0.0089 (11) |
N6 | 0.0509 (12) | 0.0603 (13) | 0.0405 (11) | 0.0139 (10) | −0.0056 (9) | −0.0021 (10) |
N7 | 0.0888 (19) | 0.114 (2) | 0.0518 (15) | 0.0193 (17) | −0.0253 (14) | −0.0073 (15) |
N8 | 0.0541 (12) | 0.0585 (14) | 0.0704 (15) | −0.0208 (11) | 0.0061 (11) | −0.0223 (12) |
N9 | 0.098 (2) | 0.0624 (16) | 0.0773 (18) | −0.0253 (15) | −0.0151 (15) | −0.0145 (14) |
N10 | 0.239 (5) | 0.104 (3) | 0.165 (4) | −0.085 (3) | −0.032 (4) | −0.039 (3) |
N11 | 0.0312 (8) | 0.0413 (10) | 0.0346 (9) | 0.0004 (7) | −0.0053 (7) | −0.0139 (8) |
N12 | 0.0334 (9) | 0.0415 (10) | 0.0381 (10) | −0.0005 (7) | −0.0106 (7) | −0.0144 (8) |
N13 | 0.0447 (10) | 0.0340 (9) | 0.0401 (10) | 0.0009 (8) | −0.0124 (8) | −0.0118 (8) |
N14 | 0.0390 (9) | 0.0377 (10) | 0.0410 (10) | −0.0006 (7) | −0.0081 (8) | −0.0174 (8) |
N15 | 0.0383 (9) | 0.0442 (10) | 0.0300 (9) | −0.0022 (8) | −0.0035 (7) | −0.0138 (8) |
N16 | 0.0418 (10) | 0.0484 (11) | 0.0327 (9) | −0.0032 (8) | −0.0058 (7) | −0.0189 (8) |
C1 | 0.0721 (18) | 0.0512 (15) | 0.0770 (19) | 0.0073 (13) | −0.0146 (15) | −0.0358 (14) |
C2 | 0.0464 (14) | 0.0615 (17) | 0.080 (2) | 0.0057 (12) | −0.0200 (13) | −0.0239 (15) |
C3 | 0.0783 (19) | 0.086 (2) | 0.0428 (15) | 0.0183 (16) | −0.0071 (13) | −0.0261 (14) |
C4 | 0.0371 (12) | 0.0598 (15) | 0.0596 (15) | 0.0097 (11) | −0.0028 (11) | −0.0287 (13) |
C5 | 0.0325 (10) | 0.0442 (12) | 0.0419 (12) | 0.0022 (9) | −0.0034 (9) | −0.0117 (10) |
C6 | 0.0305 (11) | 0.0581 (15) | 0.0547 (14) | 0.0047 (10) | −0.0090 (10) | −0.0159 (12) |
C7 | 0.0356 (11) | 0.0502 (13) | 0.0494 (13) | −0.0029 (10) | −0.0129 (10) | −0.0121 (11) |
C8 | 0.0521 (15) | 0.081 (2) | 0.081 (2) | −0.0002 (14) | −0.0302 (14) | −0.0354 (17) |
C9 | 0.099 (2) | 0.0361 (13) | 0.0663 (18) | 0.0066 (13) | −0.0411 (16) | −0.0041 (12) |
C10 | 0.0522 (13) | 0.0347 (11) | 0.0473 (13) | 0.0011 (10) | −0.0111 (10) | −0.0114 (10) |
C11 | 0.0583 (14) | 0.0310 (11) | 0.0597 (15) | 0.0003 (10) | −0.0100 (12) | −0.0111 (11) |
C12 | 0.0421 (12) | 0.0377 (12) | 0.0549 (14) | −0.0028 (9) | −0.0024 (10) | −0.0216 (11) |
C13 | 0.0659 (17) | 0.0518 (15) | 0.081 (2) | −0.0043 (13) | −0.0172 (15) | −0.0343 (14) |
C14 | 0.0540 (14) | 0.0683 (17) | 0.0406 (13) | −0.0176 (13) | 0.0077 (11) | −0.0123 (12) |
C15 | 0.0405 (12) | 0.0547 (14) | 0.0344 (12) | −0.0026 (10) | −0.0004 (9) | −0.0133 (10) |
C16 | 0.0565 (15) | 0.0805 (19) | 0.0298 (12) | −0.0107 (13) | 0.0057 (10) | −0.0177 (12) |
C17 | 0.0519 (14) | 0.0704 (17) | 0.0334 (12) | −0.0046 (12) | −0.0034 (10) | −0.0220 (12) |
C18 | 0.094 (2) | 0.112 (3) | 0.0445 (16) | −0.026 (2) | −0.0062 (15) | −0.0395 (17) |
B1 | 0.0408 (13) | 0.0443 (14) | 0.0372 (13) | −0.0007 (10) | −0.0088 (10) | −0.0197 (11) |
N17 | 0.0336 (9) | 0.0420 (10) | 0.0625 (13) | 0.0003 (8) | −0.0035 (9) | −0.0145 (9) |
C19 | 0.0444 (14) | 0.0592 (17) | 0.092 (2) | 0.0125 (12) | −0.0051 (14) | −0.0315 (15) |
C20 | 0.0679 (18) | 0.0555 (17) | 0.117 (3) | 0.0133 (14) | −0.0203 (18) | −0.0416 (18) |
C21 | 0.0664 (17) | 0.0541 (16) | 0.0604 (17) | −0.0067 (13) | 0.0031 (13) | −0.0165 (13) |
C22 | 0.145 (4) | 0.109 (3) | 0.078 (2) | 0.006 (3) | −0.047 (2) | −0.028 (2) |
C23 | 0.0474 (15) | 0.0598 (17) | 0.104 (2) | −0.0187 (13) | 0.0132 (15) | −0.0286 (17) |
C24 | 0.077 (2) | 0.0534 (18) | 0.138 (3) | −0.0241 (16) | 0.021 (2) | −0.033 (2) |
C25 | 0.0562 (15) | 0.0550 (16) | 0.0770 (19) | 0.0117 (12) | −0.0220 (14) | −0.0183 (14) |
C26 | 0.155 (4) | 0.082 (3) | 0.074 (2) | 0.013 (2) | −0.034 (2) | −0.013 (2) |
Mo1—Fe1 | 2.7743 (12) | Fe1—N2 | 1.937 (2) |
Mo1—Fe2 | 2.8012 (13) | Fe2—Fe3 | 2.6286 (11) |
Mo1—Fe3 | 2.7920 (11) | Fe2—S2 | 2.2906 (14) |
Mo1—S1 | 2.3660 (15) | Fe2—S3 | 2.2923 (13) |
Mo1—S2 | 2.3638 (13) | Fe2—N1 | 1.917 (2) |
Mo1—S3 | 2.3758 (14) | Fe2—N5 | 1.932 (2) |
Fe1—Fe2 | 2.6368 (12) | Fe3—S1 | 2.2824 (12) |
Fe1—Fe3 | 2.6123 (12) | Fe3—S3 | 2.2784 (14) |
Fe1—S1 | 2.2794 (14) | Fe3—N1 | 1.936 (2) |
Fe1—S2 | 2.2678 (14) | Fe3—N8 | 1.922 (2) |
Fe1—N1 | 1.9386 (19) | Si1—N1 | 1.7530 (19) |
Fe1—Mo1—Fe2 | 56.45 (3) | C17—N16—B1 | 128.75 (18) |
Fe1—Mo1—Fe3 | 55.98 (2) | Si1—C1—H1A | 109.5 |
Fe3—Mo1—Fe2 | 56.06 (2) | Si1—C1—H1B | 109.5 |
S1—Mo1—Fe1 | 51.91 (3) | Si1—C1—H1C | 109.5 |
S1—Mo1—Fe2 | 96.584 (17) | H1A—C1—H1B | 109.5 |
S1—Mo1—Fe3 | 51.73 (3) | H1A—C1—H1C | 109.5 |
S1—Mo1—S3 | 101.05 (2) | H1B—C1—H1C | 109.5 |
S2—Mo1—Fe1 | 51.63 (3) | Si1—C2—H2A | 109.5 |
S2—Mo1—Fe2 | 51.81 (4) | Si1—C2—H2B | 109.5 |
S2—Mo1—Fe3 | 95.96 (3) | Si1—C2—H2C | 109.5 |
S2—Mo1—S1 | 101.54 (2) | H2A—C2—H2B | 109.5 |
S2—Mo1—S3 | 101.72 (3) | H2A—C2—H2C | 109.5 |
S3—Mo1—Fe1 | 96.298 (18) | H2B—C2—H2C | 109.5 |
S3—Mo1—Fe2 | 51.77 (2) | Si1—C3—H3A | 109.5 |
S3—Mo1—Fe3 | 51.56 (3) | Si1—C3—H3B | 109.5 |
N11—Mo1—Fe1 | 98.22 (4) | Si1—C3—H3C | 109.5 |
N11—Mo1—Fe2 | 139.46 (4) | H3A—C3—H3B | 109.5 |
N11—Mo1—Fe3 | 139.11 (5) | H3A—C3—H3C | 109.5 |
N11—Mo1—S1 | 87.57 (5) | H3B—C3—H3C | 109.5 |
N11—Mo1—S2 | 87.78 (5) | H4A—C4—H4B | 109.5 |
N11—Mo1—S3 | 165.47 (5) | H4A—C4—H4C | 109.5 |
N11—Mo1—N13 | 81.98 (6) | H4B—C4—H4C | 109.5 |
N13—Mo1—Fe1 | 136.92 (5) | C5—C4—H4A | 109.5 |
N13—Mo1—Fe2 | 96.16 (4) | C5—C4—H4B | 109.5 |
N13—Mo1—Fe3 | 138.87 (5) | C5—C4—H4C | 109.5 |
N13—Mo1—S1 | 167.20 (4) | N11—C5—C4 | 125.30 (19) |
N13—Mo1—S2 | 85.49 (5) | N11—C5—C6 | 109.4 (2) |
N13—Mo1—S3 | 87.79 (5) | C6—C5—C4 | 125.25 (19) |
N15—Mo1—Fe1 | 140.00 (5) | C5—C6—H6 | 126.6 |
N15—Mo1—Fe2 | 138.97 (5) | C7—C6—C5 | 106.85 (19) |
N15—Mo1—Fe3 | 99.00 (5) | C7—C6—H6 | 126.6 |
N15—Mo1—S1 | 88.24 (5) | N12—C7—C6 | 107.88 (19) |
N15—Mo1—S2 | 165.03 (5) | N12—C7—C8 | 123.1 (2) |
N15—Mo1—S3 | 87.27 (5) | C6—C7—C8 | 129.0 (2) |
N15—Mo1—N11 | 81.28 (6) | C7—C8—H8A | 109.5 |
N15—Mo1—N13 | 82.90 (6) | C7—C8—H8B | 109.5 |
Fe2—Fe1—Mo1 | 62.29 (3) | C7—C8—H8C | 109.5 |
Fe3—Fe1—Mo1 | 62.35 (2) | H8A—C8—H8B | 109.5 |
Fe3—Fe1—Fe2 | 60.10 (3) | H8A—C8—H8C | 109.5 |
S1—Fe1—Mo1 | 54.78 (4) | H8B—C8—H8C | 109.5 |
S1—Fe1—Fe2 | 103.55 (2) | H9A—C9—H9B | 109.5 |
S1—Fe1—Fe3 | 55.12 (2) | H9A—C9—H9C | 109.5 |
S2—Fe1—Mo1 | 54.81 (3) | H9B—C9—H9C | 109.5 |
S2—Fe1—Fe2 | 55.06 (4) | C10—C9—H9A | 109.5 |
S2—Fe1—Fe3 | 103.60 (2) | C10—C9—H9B | 109.5 |
S2—Fe1—S1 | 107.36 (2) | C10—C9—H9C | 109.5 |
N1—Fe1—Mo1 | 95.61 (5) | N13—C10—C9 | 124.7 (2) |
N1—Fe1—Fe2 | 46.51 (6) | N13—C10—C11 | 109.7 (2) |
N1—Fe1—Fe3 | 47.58 (6) | C11—C10—C9 | 125.6 (2) |
N1—Fe1—S1 | 101.71 (6) | C10—C11—H11 | 126.6 |
N1—Fe1—S2 | 100.35 (6) | C12—C11—C10 | 106.9 (2) |
N2—Fe1—Mo1 | 151.18 (7) | C12—C11—H11 | 126.6 |
N2—Fe1—Fe2 | 140.51 (8) | N14—C12—C11 | 107.39 (19) |
N2—Fe1—Fe3 | 138.19 (8) | N14—C12—C13 | 123.8 (2) |
N2—Fe1—S1 | 114.78 (8) | C11—C12—C13 | 128.8 (2) |
N2—Fe1—S2 | 117.42 (9) | C12—C13—H13A | 109.5 |
N2—Fe1—N1 | 113.18 (9) | C12—C13—H13B | 109.5 |
Fe1—Fe2—Mo1 | 61.262 (19) | C12—C13—H13C | 109.5 |
Fe3—Fe2—Mo1 | 61.79 (3) | H13A—C13—H13B | 109.5 |
Fe3—Fe2—Fe1 | 59.49 (3) | H13A—C13—H13C | 109.5 |
S2—Fe2—Mo1 | 54.20 (2) | H13B—C13—H13C | 109.5 |
S2—Fe2—Fe1 | 54.26 (3) | H14A—C14—H14B | 109.5 |
S2—Fe2—Fe3 | 102.45 (2) | H14A—C14—H14C | 109.5 |
S2—Fe2—S3 | 106.67 (3) | H14B—C14—H14C | 109.5 |
S3—Fe2—Mo1 | 54.50 (4) | C15—C14—H14A | 109.5 |
S3—Fe2—Fe1 | 102.32 (3) | C15—C14—H14B | 109.5 |
S3—Fe2—Fe3 | 54.65 (3) | C15—C14—H14C | 109.5 |
N1—Fe2—Mo1 | 95.26 (5) | N15—C15—C14 | 125.3 (2) |
N1—Fe2—Fe1 | 47.19 (6) | N15—C15—C16 | 109.4 (2) |
N1—Fe2—Fe3 | 47.30 (6) | C16—C15—C14 | 125.2 (2) |
N1—Fe2—S2 | 100.22 (5) | C15—C16—H16 | 126.5 |
N1—Fe2—S3 | 100.87 (6) | C17—C16—C15 | 107.1 (2) |
N1—Fe2—N5 | 114.41 (9) | C17—C16—H16 | 126.5 |
N5—Fe2—Mo1 | 150.13 (7) | N16—C17—C16 | 107.5 (2) |
N5—Fe2—Fe1 | 143.49 (8) | N16—C17—C18 | 123.6 (2) |
N5—Fe2—Fe3 | 137.79 (8) | C16—C17—C18 | 128.8 (2) |
N5—Fe2—S2 | 119.35 (8) | C17—C18—H18A | 109.5 |
N5—Fe2—S3 | 113.06 (8) | C17—C18—H18B | 109.5 |
Fe1—Fe3—Mo1 | 61.67 (3) | C17—C18—H18C | 109.5 |
Fe1—Fe3—Fe2 | 60.41 (2) | H18A—C18—H18B | 109.5 |
Fe2—Fe3—Mo1 | 62.14 (3) | H18A—C18—H18C | 109.5 |
S1—Fe3—Mo1 | 54.47 (4) | H18B—C18—H18C | 109.5 |
S1—Fe3—Fe1 | 55.01 (4) | N12—B1—H1 | 109.3 |
S1—Fe3—Fe2 | 103.72 (3) | N14—B1—N12 | 108.87 (18) |
S3—Fe3—Mo1 | 54.75 (3) | N14—B1—N16 | 110.20 (18) |
S3—Fe3—Fe1 | 103.47 (2) | N14—B1—H1 | 109.3 |
S3—Fe3—Fe2 | 55.14 (4) | N16—B1—N12 | 109.76 (18) |
S3—Fe3—S1 | 106.74 (2) | N16—B1—H1 | 109.3 |
N1—Fe3—Mo1 | 95.10 (6) | C19—N17—C21 | 111.1 (2) |
N1—Fe3—Fe1 | 47.65 (5) | C19—N17—C23 | 106.64 (19) |
N1—Fe3—Fe2 | 46.68 (6) | C23—N17—C21 | 110.8 (2) |
N1—Fe3—S1 | 101.67 (6) | C25—N17—C19 | 111.1 (2) |
N1—Fe3—S3 | 100.75 (6) | C25—N17—C21 | 105.62 (19) |
N8—Fe3—Mo1 | 151.35 (8) | C25—N17—C23 | 111.6 (2) |
N8—Fe3—Fe1 | 139.18 (7) | N17—C19—H19A | 108.5 |
N8—Fe3—Fe2 | 139.85 (8) | N17—C19—H19B | 108.5 |
N8—Fe3—S1 | 115.52 (8) | H19A—C19—H19B | 107.5 |
N8—Fe3—S3 | 116.62 (8) | C20—C19—N17 | 115.3 (2) |
N8—Fe3—N1 | 113.54 (9) | C20—C19—H19A | 108.5 |
Fe1—S1—Mo1 | 73.32 (2) | C20—C19—H19B | 108.5 |
Fe1—S1—Fe3 | 69.87 (3) | C19—C20—H20A | 109.5 |
Fe3—S1—Mo1 | 73.81 (2) | C19—C20—H20B | 109.5 |
Fe1—S2—Mo1 | 73.56 (2) | C19—C20—H20C | 109.5 |
Fe1—S2—Fe2 | 70.68 (2) | H20A—C20—H20B | 109.5 |
Fe2—S2—Mo1 | 73.98 (3) | H20A—C20—H20C | 109.5 |
Fe2—S3—Mo1 | 73.73 (3) | H20B—C20—H20C | 109.5 |
Fe3—S3—Mo1 | 73.690 (18) | N17—C21—H21A | 108.5 |
Fe3—S3—Fe2 | 70.21 (2) | N17—C21—H21B | 108.5 |
N1—Si1—C1 | 108.62 (11) | H21A—C21—H21B | 107.5 |
N1—Si1—C2 | 108.68 (11) | C22—C21—N17 | 115.0 (3) |
N1—Si1—C3 | 109.06 (13) | C22—C21—H21A | 108.5 |
C1—Si1—C2 | 109.26 (13) | C22—C21—H21B | 108.5 |
C1—Si1—C3 | 109.89 (14) | C21—C22—H22A | 109.5 |
C2—Si1—C3 | 111.28 (14) | C21—C22—H22B | 109.5 |
Fe1—N1—Fe2 | 86.29 (7) | C21—C22—H22C | 109.5 |
Fe1—N1—Fe3 | 84.78 (7) | H22A—C22—H22B | 109.5 |
Fe2—N1—Fe3 | 86.02 (7) | H22A—C22—H22C | 109.5 |
Si1—N1—Fe1 | 128.04 (9) | H22B—C22—H22C | 109.5 |
Si1—N1—Fe2 | 125.15 (10) | N17—C23—H23A | 108.6 |
Si1—N1—Fe3 | 131.52 (11) | N17—C23—H23B | 108.6 |
N3—N2—Fe1 | 141.17 (19) | H23A—C23—H23B | 107.6 |
N4—N3—N2 | 176.0 (3) | C24—C23—N17 | 114.7 (2) |
N6—N5—Fe2 | 142.0 (2) | C24—C23—H23A | 108.6 |
N7—N6—N5 | 176.8 (3) | C24—C23—H23B | 108.6 |
N9—N8—Fe3 | 138.5 (2) | C23—C24—H24A | 109.5 |
N10—N9—N8 | 175.9 (5) | C23—C24—H24B | 109.5 |
N12—N11—Mo1 | 119.02 (12) | C23—C24—H24C | 109.5 |
C5—N11—Mo1 | 134.92 (14) | H24A—C24—H24B | 109.5 |
C5—N11—N12 | 106.07 (16) | H24A—C24—H24C | 109.5 |
N11—N12—B1 | 121.02 (16) | H24B—C24—H24C | 109.5 |
C7—N12—N11 | 109.76 (17) | N17—C25—H25A | 108.6 |
C7—N12—B1 | 129.20 (18) | N17—C25—H25B | 108.6 |
N14—N13—Mo1 | 119.09 (12) | N17—C25—C26 | 114.8 (3) |
C10—N13—Mo1 | 135.19 (14) | H25A—C25—H25B | 107.5 |
C10—N13—N14 | 105.60 (17) | C26—C25—H25A | 108.6 |
N13—N14—B1 | 120.39 (17) | C26—C25—H25B | 108.6 |
C12—N14—N13 | 110.38 (17) | C25—C26—H26A | 109.5 |
C12—N14—B1 | 129.22 (18) | C25—C26—H26B | 109.5 |
N16—N15—Mo1 | 118.99 (13) | C25—C26—H26C | 109.5 |
C15—N15—Mo1 | 134.89 (14) | H26A—C26—H26B | 109.5 |
C15—N15—N16 | 106.07 (17) | H26A—C26—H26C | 109.5 |
N15—N16—B1 | 121.19 (17) | H26B—C26—H26C | 109.5 |
C17—N16—N15 | 109.92 (18) | ||
Mo1—N11—N12—C7 | 179.77 (14) | C3—Si1—N1—Fe3 | −176.87 (13) |
Mo1—N11—N12—B1 | 1.1 (2) | C4—C5—C6—C7 | 177.8 (2) |
Mo1—N11—C5—C4 | 1.8 (4) | C5—N11—N12—C7 | −0.8 (2) |
Mo1—N11—C5—C6 | −179.82 (16) | C5—N11—N12—B1 | −179.43 (19) |
Mo1—N13—N14—C12 | −176.06 (14) | C5—C6—C7—N12 | 0.1 (3) |
Mo1—N13—N14—B1 | 4.2 (2) | C5—C6—C7—C8 | −178.2 (3) |
Mo1—N13—C10—C9 | −4.3 (4) | C7—N12—B1—N14 | −117.7 (2) |
Mo1—N13—C10—C11 | 175.44 (16) | C7—N12—B1—N16 | 121.7 (2) |
Mo1—N15—N16—C17 | −177.10 (15) | C9—C10—C11—C12 | 179.8 (3) |
Mo1—N15—N16—B1 | 6.9 (2) | C10—N13—N14—C12 | 0.6 (2) |
Mo1—N15—C15—C14 | −0.3 (4) | C10—N13—N14—B1 | −179.13 (19) |
Mo1—N15—C15—C16 | 177.25 (17) | C10—C11—C12—N14 | 0.3 (3) |
N11—N12—C7—C6 | 0.4 (3) | C10—C11—C12—C13 | −179.4 (2) |
N11—N12—C7—C8 | 178.9 (2) | C12—N14—B1—N12 | 116.7 (2) |
N11—N12—B1—N14 | 60.7 (3) | C12—N14—B1—N16 | −122.8 (2) |
N11—N12—B1—N16 | −60.0 (2) | C14—C15—C16—C17 | 177.1 (2) |
N11—C5—C6—C7 | −0.7 (3) | C15—N15—N16—C17 | 0.9 (2) |
N12—N11—C5—C4 | −177.5 (2) | C15—N15—N16—B1 | −175.06 (19) |
N12—N11—C5—C6 | 0.9 (2) | C15—C16—C17—N16 | 0.9 (3) |
N13—N14—C12—C11 | −0.6 (3) | C15—C16—C17—C18 | −177.4 (3) |
N13—N14—C12—C13 | 179.1 (2) | C17—N16—B1—N12 | −119.9 (2) |
N13—N14—B1—N12 | −63.6 (2) | C17—N16—B1—N14 | 120.2 (2) |
N13—N14—B1—N16 | 56.8 (2) | B1—N12—C7—C6 | 178.9 (2) |
N13—C10—C11—C12 | 0.1 (3) | B1—N12—C7—C8 | −2.6 (4) |
N14—N13—C10—C9 | 179.9 (2) | B1—N14—C12—C11 | 179.1 (2) |
N14—N13—C10—C11 | −0.4 (3) | B1—N14—C12—C13 | −1.2 (4) |
N15—N16—C17—C16 | −1.2 (3) | B1—N16—C17—C16 | 174.4 (2) |
N15—N16—C17—C18 | 177.3 (3) | B1—N16—C17—C18 | −7.1 (4) |
N15—N16—B1—N12 | 55.3 (2) | C19—N17—C21—C22 | 58.4 (3) |
N15—N16—B1—N14 | −64.6 (2) | C19—N17—C23—C24 | 177.9 (3) |
N15—C15—C16—C17 | −0.4 (3) | C19—N17—C25—C26 | −60.3 (3) |
N16—N15—C15—C14 | −177.8 (2) | C21—N17—C19—C20 | 59.0 (3) |
N16—N15—C15—C16 | −0.3 (3) | C21—N17—C23—C24 | −61.0 (3) |
C1—Si1—N1—Fe1 | −59.18 (17) | C21—N17—C25—C26 | 179.1 (2) |
C1—Si1—N1—Fe2 | −175.96 (13) | C23—N17—C19—C20 | 179.9 (3) |
C1—Si1—N1—Fe3 | 63.38 (16) | C23—N17—C21—C22 | −60.0 (3) |
C2—Si1—N1—Fe1 | −177.95 (14) | C23—N17—C25—C26 | 58.6 (3) |
C2—Si1—N1—Fe2 | 65.27 (16) | C25—N17—C19—C20 | −58.3 (3) |
C2—Si1—N1—Fe3 | −55.39 (17) | C25—N17—C21—C22 | 179.0 (3) |
C3—Si1—N1—Fe1 | 60.57 (17) | C25—N17—C23—C24 | 56.3 (4) |
C3—Si1—N1—Fe2 | −56.21 (15) |
Footnotes
‡These authors contributed equally to this work.
Acknowledgements
We thank the Priority Academic Program Development of Jiangsu Higher Educational Institutions, the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, the State Key Laboratory of Coordination Chemistry in Nanjing University, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province for financial support.
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (grant Nos. 92361303, 92261107 and 22071110); Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX22_1550).
References
Bruker. (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. (2010). Science, 330, 192–196. Web of Science CrossRef CAS PubMed Google Scholar
Chen, X.-D., Duncan, J. S., Verma, A. K. & Lee, S. C. (2010). J. Am. Chem. Soc. 132, 15884–15886. CrossRef CAS PubMed Google Scholar
Cheng, Q. (2008). J. Integr. Plant Biol. 50, 786–798. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. (2012). BMC Genomics, 13, 162–173. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150–4158. CrossRef CAS PubMed Google Scholar
Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Proc. Natl Acad. Sci. USA, 69, 2437–2441. CrossRef CAS PubMed Google Scholar
Holm, R. H. (1977). Acc. Chem. Res. 10, 427–434. CrossRef CAS Google Scholar
Jia, H.-P. & Quadrelli, E. A. (2014). Chem. Soc. Rev. 43, 547–564. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974–977. Web of Science CrossRef CAS PubMed Google Scholar
Lee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135–1158. Web of Science CrossRef PubMed CAS Google Scholar
Liu, Q., Huang, L., Liu, H., Lei, X., Wu, D., Kang, B. & Lu, J. (1990). Inorg. Chem. 29, 4131–4137. CrossRef CAS Google Scholar
MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385–402. Web of Science CrossRef PubMed CAS Google Scholar
Nordlander, E., Lee, S. C., Cen, W., Wu, Z. Y., Natoli, C. R., Di Cicco, A., Filipponi, A., Hedman, B., Hodgson, K. O. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 5549–5558. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sickerman, N. S., Tanifuji, K., Hu, Y. & Ribbe, M. W. (2017). Chem. Eur. J. 23, 12425–12432. CrossRef CAS PubMed Google Scholar
Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940–940. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089–5092. CrossRef CAS PubMed Google Scholar
Xu, G., Zhou, J., Wang, Z., Holm, R. H. & Chen, X. D. (2019). Angew. Chem. Int. Ed. 58, 16469–16473. CrossRef CAS Google Scholar
Zhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166–7174. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.