research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of the cluster (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]

crossmark logo

aNanjing Normal University, 1 Wenyuan Road, Qixia district, Nanjing, Jiangsu 210023, People's Republic of China, and bSchool of Science and Technology, Hong Kong Metropolitan University, Hong Kong
*Correspondence e-mail: xdchen@njnu.edu.cn

Edited by S.-L. Zheng, Harvard University, USA (Received 7 May 2024; accepted 23 May 2024; online 31 May 2024)

The title compound, tetra­ethyl­ammonium tri­azido­tri-μ3-sulfido-[μ3-(tri­methyl­sil­yl)aza­nediido][tris­(3,5-di­methyl­pyrazol-1-yl)hydro­borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris­(3,5-di­methyl­pyrazol-1-yl)hydro­bor­ate(1−)], crystallizes as needle-like black crystals in space group P[\overline{1}]. In this cluster, the Mo site is in a distorted octa­hedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetra­hedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitro­genase FeMo cofactor. The residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported mol­ecular weight and density.

1. Chemical context

Nitro­gen is abundant in the atmosphere in the form of di­nitro­gen gas, but this type of nitro­gen cannot be metabolized by organisms directly (Jia & Quadrelli, 2014[Jia, H.-P. & Quadrelli, E. A. (2014). Chem. Soc. Rev. 43, 547-564.]; MacKay & Fryzuk, 2004[MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385-402.]). It must be fixed by nitro­genase in some selected microorganisms (Dos Santos et al., 2012[Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. (2012). BMC Genomics, 13, 162-173.]). Nitro­genase can transform N2 to NH3, and then the biochemical N cycle sets off (Cheng, 2008[Cheng, Q. (2008). J. Integr. Plant Biol. 50, 786-798.]; Canfield et al., 2010[Canfield, D. E., Glazer, A. N. & Falkowski, P. G. (2010). Science, 330, 192-196.]). The exploration of synthetic structural analogs of nitro­genase is therefore a crucial area in modern science research.

The FeMo cofactor is believed to be one of the most important parts in nitro­genase responsible for nitro­gen fixation. The FeMo cofactor contains a 2p atom in the center, which has been proven to be a carbide, resulting in the structure as [MoFe7S9C] (Spatzal et al., 2011[Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940-940.]; Lancaster et al., 2011[Lancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974-977.]). To mimic the structure of the FeMo cofactor, a large number of iron–sulfur clusters have been synthesized (Lee & Holm, 2004[Lee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135-1158.]; Holm, 1977[Holm, R. H. (1977). Acc. Chem. Res. 10, 427-434.]; Herskovitz et al., 1972[Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Proc. Natl Acad. Sci. USA, 69, 2437-2441.]; Liu et al., 1990[Liu, Q., Huang, L., Liu, H., Lei, X., Wu, D., Kang, B. & Lu, J. (1990). Inorg. Chem. 29, 4131-4137.]; Nordlander et al., 1993[Nordlander, E., Lee, S. C., Cen, W., Wu, Z. Y., Natoli, C. R., Di Cicco, A., Filipponi, A., Hedman, B., Hodgson, K. O. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 5549-5558.]). However, synthesizing heteroleptic analogs with a 2p atom in the core of the cluster is a tough challenge for researchers in this area (Sickerman et al., 2017[Sickerman, N. S., Tanifuji, K., Hu, Y. & Ribbe, M. W. (2017). Chem. Eur. J. 23, 12425-12432.]). With the unremitting efforts of scientists, some synthetic homometallic or heterometallic iron–sulfur clusters with a 2p atom in the core have been synthesized. Lee's group have used the dinuclear precursors for the selective synthesis of the homometallic cubane clusters [Fe4(NtBu)n(S)4–nCl4]z with (n, z = 3, 1−, 2, 2− or 1, 2−; Chen et al., 2010[Chen, X.-D., Duncan, J. S., Verma, A. K. & Lee, S. C. (2010). J. Am. Chem. Soc. 132, 15884-15886.]). Our group have developed core ligand metathesis and core ligand redox metathesis strategies and successfully synthesized versatile heterometallic iron–sulfur clusters containing a core 2p atom, including the [MFe3S2(μ2-Q)]1+ and [MFe3S3(μ3-Q)]2+ (M = W and Mo, Q = NR, OR) cubane clusters (Xu et al., 2018[Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089-5092.]; He et al., 2022[He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150-4158.]), and the [(Tp*)2W2Fe6(μ4-N)2S6L4]2− [Tp* = tris­(3,5-di­methyl­pyrazol-1-yl)-hydro­borate(1−), L = Cl or Br] double cubane clusters (Xu et al., 2019[Xu, G., Zhou, J., Wang, Z., Holm, R. H. & Chen, X. D. (2019). Angew. Chem. Int. Ed. 58, 16469-16473.]). Previously in our laboratory, the molybdenum–iron–sulfur cluster [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3], which resembles one of the cubic subunits of the FeMo cofactor, was synthesized through a LEGO-like strategy. Based on this cluster, which has a μ3-bridging N atom in the core, we explored the effects of terminal ligands on the Fe sites of heterometallic heteroleptic iron–sulfur clusters. In this work, terminal ligand substitution using NaN3 was applied to produce the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]. The synthesis and structural analysis of this compound may provide useful information for a better understanding of the structure and reactivity of the FeMo cofactor, as well as how the terminal ligand affects the physical property of the cluster (Xu et al., 2018[Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089-5092.]; He et al., 2022[He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150-4158.]).

[Scheme 1]

2. Structural commentary

This title cluster crystallized as the Et4N+ salt in the triclinic crystal system, space group P[\overline{1}]. The different metal atoms exhibit distinct coordination models in this cluster. The Mo site coordinates three N atoms of the Tp* ligand and three μ3-bridging S atoms in the core of the cluster, showing a distorted octa­hedral coordination sphere. Each Fe site coordinates two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and one N atom on the terminal ligand, resulting in a distorted tetra­hedral geometry. The cluster exhibits quasi-threefold symmetry in its crystal form, as a result of the steric constraint generated by the crystal packing. In the core of the cluster, the Mo—S bond lengths range from 2.3638 (13) to 2.3758 (14) Å, with an average value of 2.369 (2) Å. The Mo⋯Fe distances are between 2.7743 (12) Å and 2.8012 (13) Å, averaging 2.789 (1) Å. The Fe⋯Fe distances fall in the range 2.6123 (12) Å and 2.6368 (11) Å, with a mean value of 2.626 (1) Å. The Fe—S bond lengths range from 2.2678 (14) to 2.2923 (13) Å, with an average value of 2.282 (1) Å. The Fe—N(imide) bond lengths are in the range of 1.917 (2) Å to 1.9386 (19) Å, with an average value of 1.931 (2) Å. The Fe—N(azide) bond lengths are between 1.922 (2) and 1.937 (2) Å, with an average value of 1.930 (2) Å. The N—Si bond length is 1.753 (2) Å. The Fe—N—Fe angles range from 84.78 (7) to 86.29 (7)° with an average of 85.7 (1) °. The structure of the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] is shown in Fig. 1[link] and some selected geometric parameters are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Mo1—Fe1 2.7743 (12) Fe1—N2 1.937 (2)
Mo1—Fe2 2.8012 (13) Fe2—Fe3 2.6286 (11)
Mo1—Fe3 2.7920 (11) Fe2—S2 2.2906 (14)
Mo1—S1 2.3660 (15) Fe2—S3 2.2923 (13)
Mo1—S2 2.3638 (13) Fe2—N1 1.917 (2)
Mo1—S3 2.3758 (14) Fe2—N5 1.932 (2)
Fe1—Fe2 2.6368 (12) Fe3—S1 2.2824 (12)
Fe1—Fe3 2.6123 (12) Fe3—S3 2.2784 (14)
Fe1—S1 2.2794 (14) Fe3—N1 1.936 (2)
Fe1—S2 2.2678 (14) Fe3—N8 1.922 (2)
Fe1—N1 1.9386 (19) Si1—N1 1.7530 (19)
       
Fe1—N1—Fe2 86.29 (7) Fe2—N1—Fe3 86.02 (7)
Fe1—N1—Fe3 84.78 (7)    
[Figure 1]
Figure 1
Structure of the anionic cluster in the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, there are two sets of cluster counter-ions in each unit cell. The anionic clusters and the Et4N+ cations are arranged in alternating layers, where electrostatic inter­actions might be the dominant supra­molecular inter­actions. No significant hydrogen-bonding or ππ stacking inter­actions were identified in the crystal structure. The packing of the title compound is shown in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing of the title compound. Hydrogen atoms are omitted for clarity.

4. Database survey

Heteroleptic cubane-type M–Fe–S–N clusters (M = Mo or W) are very rare. In the literature, there are currently only two types of M–Fe–S–N clusters (Xu et al., 2018[Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089-5092.]; He et al., 2022[He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150-4158.]; Zhang et al., 2023[Zhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166-7174.]). Thus far, cubane-type Mo–Fe–S–N clusters with azide terminal ligands have not been synthesized successfully.

A search of the Cambridge Structural Database with WebCSD (updated to November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two types of heteroleptic cubane-type M–Fe–S–N clusters (M = Mo, W), viz. [(Tp*)WFe3S3(μ3-NSiMe3)L3] [NIFBIQ (L= Cl); Xu et al., 2018[Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089-5092.]; XIGKEH, XIGKAD, XIGKOR, XIGKIL, XIGKUX (L = SMe, SEt, SPh, SPhMe, N3); Zhang et al., 2023[Zhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166-7174.]] and [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3] (RAWLAG; He et al., 2022[He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150-4158.]).

5. Synthesis and crystallization

All reactions and manipulations were performed in a glovebox under an atmosphere of dry N2. DMF was refluxed over CaH2 until dry and was distilled under an N2 atmosphere. Diethyl ether was refluxed over sodium metal and benzo­phenone until dry and was distilled under an N2 atmosphere. All solvents were stored in a glovebox over activated mol­ecular sieves (3 Å). NaN3 was stored in a glovebox under an atmosphere of dry N2. As shown in Fig. 3[link], NaN3 (7.8 mg, 0.12 mmol) was added into a DMF solution (3.0 mL) of (Et4N)[(Tp*)MoFe3(μ3-S)3(μ3-NSiMe3)Cl3] (29.4 mg, 0.03 mmol). After overnight stirring, the color of the reaction mixture changed to brownish yellow. Filtration was done through celite and the filtrate was diffused by diethyl ether at room temperature to give needle-like black crystals (10.9 mg, yield: 36%). 1H NMR (DMSO-d6, 400 MHz, δ, ppm): 5.83 (s, 3H, CH), −0.01 (s, 9H, CH3), −8.15 (vbr, 9H, CH3). Other proton signals could not be located due to paramagnetic broadening. Elemental analysis: calculated for C26H51BFe3MoN17S3Si: C, 31.22; H, 5.14; N, 23.80. Found: C, 31.73; H, 5.35; N, 23.27. IR (cm−1): ν (N=N), 2059 (vs). UV (nm) λ: 245, 345, 555.

[Figure 3]
Figure 3
Synthesis of (Et4N)[(Tp*)MoFe3(μ3-S)3(μ3-NSiMe3)(N3)3].

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were added at idealized positions and refined using a riding model. The residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) function was applied in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). A total of 40 electrons in a volume of 146 Å3 were counted by SQUEEZE and removed per unit cell. This accounts for about one solvent mol­ecule (probably diethyl ether) per unit cell.

Table 2
Experimental details

Crystal data
Chemical formula (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3]
Mr 1000.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.689 (6), 11.321 (6), 19.030 (11)
α, β, γ (°) 75.306 (7), 84.362 (7), 86.829 (7)
V3) 2216 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.02 × 0.01 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31083, 10181, 8508
Rint 0.022
(sin θ/λ)max−1) 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.02
No. of reflections 10181
No. of parameters 482
No. of restraints 36
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker. (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Tetraethylammonium triazidotri-µ3-sulfido-[µ3-(trimethylsilyl)azanediido][tris(3,5-dimethylpyrazol-1-yl)hydroborato]triiron(+2.33)molybdenum(VI) top
Crystal data top
(C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3]Z = 2
Mr = 1000.40F(000) = 1026
Triclinic, P1Dx = 1.500 Mg m3
a = 10.689 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.321 (6) ÅCell parameters from 9959 reflections
c = 19.030 (11) Åθ = 2.3–27.5°
α = 75.306 (7)°µ = 1.45 mm1
β = 84.362 (7)°T = 296 K
γ = 86.829 (7)°Needle, dark black
V = 2216 (2) Å30.02 × 0.01 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
10181 independent reflections
Radiation source: sealed tube8508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8 pixels mm-1θmax = 27.7°, θmin = 1.9°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.615, Tmax = 0.746l = 2424
31083 measured reflections
Refinement top
Refinement on F236 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.6048P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
10181 reflectionsΔρmax = 0.34 e Å3
482 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data for the title compound was collected at 296 K on a Bruker APEX II CCD diffractometer operating at 50 kV and 30 mA using Mo-Kα radiation (λ = 0.71073 Å). Crystal was mounted on a loop using Parabar 10312 oil for data collection. Data was collected with a series of φ and/or ω scans. Data was integrated using SAINT and scaled with either a numerical or multiscan absorption correction using SADABS. Structure was solved using SHELXT and refined by full-matrix least-squares on F2 using the SHELXL and OLEX2 (Dolomanov et al., 2009) programs. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.37687 (2)0.19344 (2)0.70187 (2)0.02871 (5)
Fe10.35280 (3)0.34195 (3)0.79844 (2)0.03469 (7)
Fe20.51034 (3)0.15159 (3)0.82587 (2)0.03669 (8)
Fe30.56554 (3)0.34312 (3)0.71799 (2)0.03547 (8)
S10.37571 (5)0.40934 (5)0.67454 (3)0.03587 (11)
S20.29666 (5)0.14413 (5)0.82569 (3)0.03783 (12)
S30.59472 (5)0.14523 (5)0.71135 (3)0.03843 (12)
Si10.59645 (6)0.37702 (6)0.88600 (3)0.04076 (14)
N10.52635 (16)0.32102 (16)0.82195 (10)0.0364 (4)
N20.2542 (2)0.4505 (2)0.84783 (13)0.0617 (6)
N30.24283 (19)0.47829 (19)0.90328 (12)0.0523 (5)
N40.2266 (3)0.5107 (3)0.95606 (16)0.0911 (9)
N50.5950 (2)0.0405 (2)0.90254 (13)0.0628 (6)
N60.65128 (19)0.0383 (2)0.95230 (11)0.0530 (5)
N70.7116 (3)0.0328 (3)1.00051 (14)0.0868 (9)
N80.7028 (2)0.4497 (2)0.67838 (13)0.0599 (6)
N90.7403 (3)0.5394 (3)0.68504 (15)0.0784 (7)
N100.7844 (5)0.6258 (4)0.6907 (3)0.164 (2)
N110.17455 (15)0.21022 (16)0.67200 (9)0.0348 (4)
N120.14031 (15)0.14605 (16)0.62444 (9)0.0364 (4)
N130.34995 (16)0.00852 (16)0.70729 (10)0.0386 (4)
N140.28322 (16)0.03796 (16)0.65579 (10)0.0376 (4)
N150.41462 (16)0.20726 (16)0.58126 (9)0.0366 (4)
N160.34604 (16)0.13737 (17)0.54964 (9)0.0391 (4)
C10.5783 (3)0.5462 (2)0.86171 (17)0.0630 (7)
H1A0.6114740.5781260.8121360.094*
H1B0.6233580.5785960.8935200.094*
H1C0.4908280.5694060.8669280.094*
C20.7669 (2)0.3327 (3)0.88212 (17)0.0609 (7)
H2A0.7766770.2453230.8972470.091*
H2B0.8077410.3685820.9140240.091*
H2C0.8041210.3612150.8330930.091*
C30.5166 (3)0.3129 (3)0.97832 (14)0.0679 (8)
H3A0.4318390.3453950.9805660.102*
H3B0.5612310.3346191.0143580.102*
H3C0.5155420.2255030.9876300.102*
C40.0628 (2)0.3588 (2)0.73746 (14)0.0502 (6)
H4A0.0211380.3929820.7407810.075*
H4B0.1205600.4232020.7172940.075*
H4C0.0844420.3156660.7852180.075*
C50.06979 (19)0.2730 (2)0.68965 (12)0.0395 (5)
C60.0299 (2)0.2471 (2)0.65436 (13)0.0473 (6)
H60.1122020.2777940.6577100.057*
C70.0164 (2)0.1681 (2)0.61406 (13)0.0444 (5)
C80.0496 (2)0.1139 (3)0.56439 (17)0.0670 (8)
H8A0.1371890.1375960.5671140.100*
H8B0.0406320.0264490.5789820.100*
H8C0.0131880.1428770.5152090.100*
C90.4515 (3)0.1292 (2)0.81859 (16)0.0667 (8)
H9A0.5298130.0885970.8036670.100*
H9B0.4678710.2142720.8401570.100*
H9C0.4036030.0931530.8536370.100*
C100.3789 (2)0.1161 (2)0.75371 (13)0.0441 (5)
C110.3304 (2)0.2115 (2)0.73203 (14)0.0494 (6)
H110.3373550.2943130.7548840.059*
C120.2705 (2)0.1603 (2)0.67069 (13)0.0432 (5)
C130.2017 (3)0.2218 (2)0.62601 (17)0.0620 (7)
H13A0.2085090.3087010.6449840.093*
H13B0.2376280.2003020.5763620.093*
H13C0.1146720.1957700.6279290.093*
C140.5931 (2)0.3525 (3)0.53659 (14)0.0548 (6)
H14A0.6537820.3068890.5677430.082*
H14B0.5531010.4145480.5580560.082*
H14C0.6346260.3900030.4898010.082*
C150.4963 (2)0.2684 (2)0.52753 (12)0.0430 (5)
C160.4801 (2)0.2372 (3)0.46324 (13)0.0552 (6)
H160.5244640.2669480.4181710.066*
C170.3864 (2)0.1541 (3)0.47857 (12)0.0502 (6)
C180.3358 (3)0.0878 (3)0.42916 (15)0.0789 (10)
H18A0.3391690.0015380.4510140.118*
H18B0.3856990.1049930.3831570.118*
H18C0.2502630.1144630.4216270.118*
B10.2358 (2)0.0624 (2)0.59292 (13)0.0387 (5)
H10.1947000.0249940.5604880.046*
N170.05817 (17)0.82275 (17)0.86189 (12)0.0459 (5)
C190.0230 (2)0.7189 (2)0.84364 (18)0.0634 (7)
H19A0.0581710.7450720.7934000.076*
H19B0.0926000.7030330.8742100.076*
C200.0436 (3)0.6007 (3)0.8532 (2)0.0762 (9)
H20A0.1132100.6151060.8234680.114*
H20B0.0739550.5706850.9034170.114*
H20C0.0139880.5414090.8386520.114*
C210.1151 (3)0.7881 (3)0.94073 (15)0.0603 (7)
H21A0.1663520.8568160.9501270.072*
H21B0.1702810.7204910.9466210.072*
C220.0203 (4)0.7522 (4)0.9976 (2)0.1076 (13)
H22A0.0428630.8127290.9877490.161*
H22B0.0186340.6744360.9957610.161*
H22C0.0624940.7467321.0451690.161*
C230.0264 (2)0.9312 (3)0.84888 (19)0.0695 (8)
H23A0.0939860.9088840.8807210.083*
H23B0.0640550.9481950.7990030.083*
C240.0391 (3)1.0463 (3)0.8616 (2)0.0892 (11)
H24A0.1092051.0669480.8323930.134*
H24B0.0187621.1118400.8483180.134*
H24C0.0685711.0334700.9121900.134*
C250.1686 (2)0.8524 (3)0.81586 (16)0.0618 (7)
H25A0.2196880.9171700.8303440.074*
H25B0.2198410.7808910.8261740.074*
C260.1337 (4)0.8915 (3)0.73461 (19)0.1038 (13)
H26A0.2088370.9072540.7094850.156*
H26B0.0839860.8277230.7193860.156*
H26C0.0861420.9644640.7233420.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02915 (9)0.03079 (9)0.02823 (9)0.00145 (6)0.00491 (6)0.01069 (7)
Fe10.03339 (15)0.03888 (16)0.03479 (16)0.00628 (12)0.00428 (12)0.01577 (13)
Fe20.03843 (16)0.03578 (16)0.03790 (17)0.00523 (12)0.01024 (13)0.01174 (13)
Fe30.03283 (15)0.03801 (16)0.03821 (17)0.00029 (12)0.00218 (12)0.01491 (13)
S10.0392 (3)0.0329 (3)0.0357 (3)0.0027 (2)0.0061 (2)0.0085 (2)
S20.0382 (3)0.0434 (3)0.0311 (3)0.0030 (2)0.0026 (2)0.0077 (2)
S30.0333 (3)0.0422 (3)0.0451 (3)0.0073 (2)0.0064 (2)0.0211 (2)
Si10.0429 (3)0.0444 (3)0.0423 (3)0.0074 (3)0.0129 (3)0.0228 (3)
N10.0354 (9)0.0407 (10)0.0389 (10)0.0042 (7)0.0080 (7)0.0199 (8)
N20.0562 (12)0.0772 (15)0.0643 (14)0.0234 (11)0.0097 (11)0.0443 (13)
N30.0475 (11)0.0576 (13)0.0591 (13)0.0150 (9)0.0091 (10)0.0297 (11)
N40.096 (2)0.120 (2)0.0768 (18)0.0343 (18)0.0206 (15)0.0637 (18)
N50.0733 (15)0.0528 (13)0.0634 (15)0.0100 (11)0.0338 (12)0.0089 (11)
N60.0509 (12)0.0603 (13)0.0405 (11)0.0139 (10)0.0056 (9)0.0021 (10)
N70.0888 (19)0.114 (2)0.0518 (15)0.0193 (17)0.0253 (14)0.0073 (15)
N80.0541 (12)0.0585 (14)0.0704 (15)0.0208 (11)0.0061 (11)0.0223 (12)
N90.098 (2)0.0624 (16)0.0773 (18)0.0253 (15)0.0151 (15)0.0145 (14)
N100.239 (5)0.104 (3)0.165 (4)0.085 (3)0.032 (4)0.039 (3)
N110.0312 (8)0.0413 (10)0.0346 (9)0.0004 (7)0.0053 (7)0.0139 (8)
N120.0334 (9)0.0415 (10)0.0381 (10)0.0005 (7)0.0106 (7)0.0144 (8)
N130.0447 (10)0.0340 (9)0.0401 (10)0.0009 (8)0.0124 (8)0.0118 (8)
N140.0390 (9)0.0377 (10)0.0410 (10)0.0006 (7)0.0081 (8)0.0174 (8)
N150.0383 (9)0.0442 (10)0.0300 (9)0.0022 (8)0.0035 (7)0.0138 (8)
N160.0418 (10)0.0484 (11)0.0327 (9)0.0032 (8)0.0058 (7)0.0189 (8)
C10.0721 (18)0.0512 (15)0.0770 (19)0.0073 (13)0.0146 (15)0.0358 (14)
C20.0464 (14)0.0615 (17)0.080 (2)0.0057 (12)0.0200 (13)0.0239 (15)
C30.0783 (19)0.086 (2)0.0428 (15)0.0183 (16)0.0071 (13)0.0261 (14)
C40.0371 (12)0.0598 (15)0.0596 (15)0.0097 (11)0.0028 (11)0.0287 (13)
C50.0325 (10)0.0442 (12)0.0419 (12)0.0022 (9)0.0034 (9)0.0117 (10)
C60.0305 (11)0.0581 (15)0.0547 (14)0.0047 (10)0.0090 (10)0.0159 (12)
C70.0356 (11)0.0502 (13)0.0494 (13)0.0029 (10)0.0129 (10)0.0121 (11)
C80.0521 (15)0.081 (2)0.081 (2)0.0002 (14)0.0302 (14)0.0354 (17)
C90.099 (2)0.0361 (13)0.0663 (18)0.0066 (13)0.0411 (16)0.0041 (12)
C100.0522 (13)0.0347 (11)0.0473 (13)0.0011 (10)0.0111 (10)0.0114 (10)
C110.0583 (14)0.0310 (11)0.0597 (15)0.0003 (10)0.0100 (12)0.0111 (11)
C120.0421 (12)0.0377 (12)0.0549 (14)0.0028 (9)0.0024 (10)0.0216 (11)
C130.0659 (17)0.0518 (15)0.081 (2)0.0043 (13)0.0172 (15)0.0343 (14)
C140.0540 (14)0.0683 (17)0.0406 (13)0.0176 (13)0.0077 (11)0.0123 (12)
C150.0405 (12)0.0547 (14)0.0344 (12)0.0026 (10)0.0004 (9)0.0133 (10)
C160.0565 (15)0.0805 (19)0.0298 (12)0.0107 (13)0.0057 (10)0.0177 (12)
C170.0519 (14)0.0704 (17)0.0334 (12)0.0046 (12)0.0034 (10)0.0220 (12)
C180.094 (2)0.112 (3)0.0445 (16)0.026 (2)0.0062 (15)0.0395 (17)
B10.0408 (13)0.0443 (14)0.0372 (13)0.0007 (10)0.0088 (10)0.0197 (11)
N170.0336 (9)0.0420 (10)0.0625 (13)0.0003 (8)0.0035 (9)0.0145 (9)
C190.0444 (14)0.0592 (17)0.092 (2)0.0125 (12)0.0051 (14)0.0315 (15)
C200.0679 (18)0.0555 (17)0.117 (3)0.0133 (14)0.0203 (18)0.0416 (18)
C210.0664 (17)0.0541 (16)0.0604 (17)0.0067 (13)0.0031 (13)0.0165 (13)
C220.145 (4)0.109 (3)0.078 (2)0.006 (3)0.047 (2)0.028 (2)
C230.0474 (15)0.0598 (17)0.104 (2)0.0187 (13)0.0132 (15)0.0286 (17)
C240.077 (2)0.0534 (18)0.138 (3)0.0241 (16)0.021 (2)0.033 (2)
C250.0562 (15)0.0550 (16)0.0770 (19)0.0117 (12)0.0220 (14)0.0183 (14)
C260.155 (4)0.082 (3)0.074 (2)0.013 (2)0.034 (2)0.013 (2)
Geometric parameters (Å, º) top
Mo1—Fe12.7743 (12)Fe1—N21.937 (2)
Mo1—Fe22.8012 (13)Fe2—Fe32.6286 (11)
Mo1—Fe32.7920 (11)Fe2—S22.2906 (14)
Mo1—S12.3660 (15)Fe2—S32.2923 (13)
Mo1—S22.3638 (13)Fe2—N11.917 (2)
Mo1—S32.3758 (14)Fe2—N51.932 (2)
Fe1—Fe22.6368 (12)Fe3—S12.2824 (12)
Fe1—Fe32.6123 (12)Fe3—S32.2784 (14)
Fe1—S12.2794 (14)Fe3—N11.936 (2)
Fe1—S22.2678 (14)Fe3—N81.922 (2)
Fe1—N11.9386 (19)Si1—N11.7530 (19)
Fe1—Mo1—Fe256.45 (3)C17—N16—B1128.75 (18)
Fe1—Mo1—Fe355.98 (2)Si1—C1—H1A109.5
Fe3—Mo1—Fe256.06 (2)Si1—C1—H1B109.5
S1—Mo1—Fe151.91 (3)Si1—C1—H1C109.5
S1—Mo1—Fe296.584 (17)H1A—C1—H1B109.5
S1—Mo1—Fe351.73 (3)H1A—C1—H1C109.5
S1—Mo1—S3101.05 (2)H1B—C1—H1C109.5
S2—Mo1—Fe151.63 (3)Si1—C2—H2A109.5
S2—Mo1—Fe251.81 (4)Si1—C2—H2B109.5
S2—Mo1—Fe395.96 (3)Si1—C2—H2C109.5
S2—Mo1—S1101.54 (2)H2A—C2—H2B109.5
S2—Mo1—S3101.72 (3)H2A—C2—H2C109.5
S3—Mo1—Fe196.298 (18)H2B—C2—H2C109.5
S3—Mo1—Fe251.77 (2)Si1—C3—H3A109.5
S3—Mo1—Fe351.56 (3)Si1—C3—H3B109.5
N11—Mo1—Fe198.22 (4)Si1—C3—H3C109.5
N11—Mo1—Fe2139.46 (4)H3A—C3—H3B109.5
N11—Mo1—Fe3139.11 (5)H3A—C3—H3C109.5
N11—Mo1—S187.57 (5)H3B—C3—H3C109.5
N11—Mo1—S287.78 (5)H4A—C4—H4B109.5
N11—Mo1—S3165.47 (5)H4A—C4—H4C109.5
N11—Mo1—N1381.98 (6)H4B—C4—H4C109.5
N13—Mo1—Fe1136.92 (5)C5—C4—H4A109.5
N13—Mo1—Fe296.16 (4)C5—C4—H4B109.5
N13—Mo1—Fe3138.87 (5)C5—C4—H4C109.5
N13—Mo1—S1167.20 (4)N11—C5—C4125.30 (19)
N13—Mo1—S285.49 (5)N11—C5—C6109.4 (2)
N13—Mo1—S387.79 (5)C6—C5—C4125.25 (19)
N15—Mo1—Fe1140.00 (5)C5—C6—H6126.6
N15—Mo1—Fe2138.97 (5)C7—C6—C5106.85 (19)
N15—Mo1—Fe399.00 (5)C7—C6—H6126.6
N15—Mo1—S188.24 (5)N12—C7—C6107.88 (19)
N15—Mo1—S2165.03 (5)N12—C7—C8123.1 (2)
N15—Mo1—S387.27 (5)C6—C7—C8129.0 (2)
N15—Mo1—N1181.28 (6)C7—C8—H8A109.5
N15—Mo1—N1382.90 (6)C7—C8—H8B109.5
Fe2—Fe1—Mo162.29 (3)C7—C8—H8C109.5
Fe3—Fe1—Mo162.35 (2)H8A—C8—H8B109.5
Fe3—Fe1—Fe260.10 (3)H8A—C8—H8C109.5
S1—Fe1—Mo154.78 (4)H8B—C8—H8C109.5
S1—Fe1—Fe2103.55 (2)H9A—C9—H9B109.5
S1—Fe1—Fe355.12 (2)H9A—C9—H9C109.5
S2—Fe1—Mo154.81 (3)H9B—C9—H9C109.5
S2—Fe1—Fe255.06 (4)C10—C9—H9A109.5
S2—Fe1—Fe3103.60 (2)C10—C9—H9B109.5
S2—Fe1—S1107.36 (2)C10—C9—H9C109.5
N1—Fe1—Mo195.61 (5)N13—C10—C9124.7 (2)
N1—Fe1—Fe246.51 (6)N13—C10—C11109.7 (2)
N1—Fe1—Fe347.58 (6)C11—C10—C9125.6 (2)
N1—Fe1—S1101.71 (6)C10—C11—H11126.6
N1—Fe1—S2100.35 (6)C12—C11—C10106.9 (2)
N2—Fe1—Mo1151.18 (7)C12—C11—H11126.6
N2—Fe1—Fe2140.51 (8)N14—C12—C11107.39 (19)
N2—Fe1—Fe3138.19 (8)N14—C12—C13123.8 (2)
N2—Fe1—S1114.78 (8)C11—C12—C13128.8 (2)
N2—Fe1—S2117.42 (9)C12—C13—H13A109.5
N2—Fe1—N1113.18 (9)C12—C13—H13B109.5
Fe1—Fe2—Mo161.262 (19)C12—C13—H13C109.5
Fe3—Fe2—Mo161.79 (3)H13A—C13—H13B109.5
Fe3—Fe2—Fe159.49 (3)H13A—C13—H13C109.5
S2—Fe2—Mo154.20 (2)H13B—C13—H13C109.5
S2—Fe2—Fe154.26 (3)H14A—C14—H14B109.5
S2—Fe2—Fe3102.45 (2)H14A—C14—H14C109.5
S2—Fe2—S3106.67 (3)H14B—C14—H14C109.5
S3—Fe2—Mo154.50 (4)C15—C14—H14A109.5
S3—Fe2—Fe1102.32 (3)C15—C14—H14B109.5
S3—Fe2—Fe354.65 (3)C15—C14—H14C109.5
N1—Fe2—Mo195.26 (5)N15—C15—C14125.3 (2)
N1—Fe2—Fe147.19 (6)N15—C15—C16109.4 (2)
N1—Fe2—Fe347.30 (6)C16—C15—C14125.2 (2)
N1—Fe2—S2100.22 (5)C15—C16—H16126.5
N1—Fe2—S3100.87 (6)C17—C16—C15107.1 (2)
N1—Fe2—N5114.41 (9)C17—C16—H16126.5
N5—Fe2—Mo1150.13 (7)N16—C17—C16107.5 (2)
N5—Fe2—Fe1143.49 (8)N16—C17—C18123.6 (2)
N5—Fe2—Fe3137.79 (8)C16—C17—C18128.8 (2)
N5—Fe2—S2119.35 (8)C17—C18—H18A109.5
N5—Fe2—S3113.06 (8)C17—C18—H18B109.5
Fe1—Fe3—Mo161.67 (3)C17—C18—H18C109.5
Fe1—Fe3—Fe260.41 (2)H18A—C18—H18B109.5
Fe2—Fe3—Mo162.14 (3)H18A—C18—H18C109.5
S1—Fe3—Mo154.47 (4)H18B—C18—H18C109.5
S1—Fe3—Fe155.01 (4)N12—B1—H1109.3
S1—Fe3—Fe2103.72 (3)N14—B1—N12108.87 (18)
S3—Fe3—Mo154.75 (3)N14—B1—N16110.20 (18)
S3—Fe3—Fe1103.47 (2)N14—B1—H1109.3
S3—Fe3—Fe255.14 (4)N16—B1—N12109.76 (18)
S3—Fe3—S1106.74 (2)N16—B1—H1109.3
N1—Fe3—Mo195.10 (6)C19—N17—C21111.1 (2)
N1—Fe3—Fe147.65 (5)C19—N17—C23106.64 (19)
N1—Fe3—Fe246.68 (6)C23—N17—C21110.8 (2)
N1—Fe3—S1101.67 (6)C25—N17—C19111.1 (2)
N1—Fe3—S3100.75 (6)C25—N17—C21105.62 (19)
N8—Fe3—Mo1151.35 (8)C25—N17—C23111.6 (2)
N8—Fe3—Fe1139.18 (7)N17—C19—H19A108.5
N8—Fe3—Fe2139.85 (8)N17—C19—H19B108.5
N8—Fe3—S1115.52 (8)H19A—C19—H19B107.5
N8—Fe3—S3116.62 (8)C20—C19—N17115.3 (2)
N8—Fe3—N1113.54 (9)C20—C19—H19A108.5
Fe1—S1—Mo173.32 (2)C20—C19—H19B108.5
Fe1—S1—Fe369.87 (3)C19—C20—H20A109.5
Fe3—S1—Mo173.81 (2)C19—C20—H20B109.5
Fe1—S2—Mo173.56 (2)C19—C20—H20C109.5
Fe1—S2—Fe270.68 (2)H20A—C20—H20B109.5
Fe2—S2—Mo173.98 (3)H20A—C20—H20C109.5
Fe2—S3—Mo173.73 (3)H20B—C20—H20C109.5
Fe3—S3—Mo173.690 (18)N17—C21—H21A108.5
Fe3—S3—Fe270.21 (2)N17—C21—H21B108.5
N1—Si1—C1108.62 (11)H21A—C21—H21B107.5
N1—Si1—C2108.68 (11)C22—C21—N17115.0 (3)
N1—Si1—C3109.06 (13)C22—C21—H21A108.5
C1—Si1—C2109.26 (13)C22—C21—H21B108.5
C1—Si1—C3109.89 (14)C21—C22—H22A109.5
C2—Si1—C3111.28 (14)C21—C22—H22B109.5
Fe1—N1—Fe286.29 (7)C21—C22—H22C109.5
Fe1—N1—Fe384.78 (7)H22A—C22—H22B109.5
Fe2—N1—Fe386.02 (7)H22A—C22—H22C109.5
Si1—N1—Fe1128.04 (9)H22B—C22—H22C109.5
Si1—N1—Fe2125.15 (10)N17—C23—H23A108.6
Si1—N1—Fe3131.52 (11)N17—C23—H23B108.6
N3—N2—Fe1141.17 (19)H23A—C23—H23B107.6
N4—N3—N2176.0 (3)C24—C23—N17114.7 (2)
N6—N5—Fe2142.0 (2)C24—C23—H23A108.6
N7—N6—N5176.8 (3)C24—C23—H23B108.6
N9—N8—Fe3138.5 (2)C23—C24—H24A109.5
N10—N9—N8175.9 (5)C23—C24—H24B109.5
N12—N11—Mo1119.02 (12)C23—C24—H24C109.5
C5—N11—Mo1134.92 (14)H24A—C24—H24B109.5
C5—N11—N12106.07 (16)H24A—C24—H24C109.5
N11—N12—B1121.02 (16)H24B—C24—H24C109.5
C7—N12—N11109.76 (17)N17—C25—H25A108.6
C7—N12—B1129.20 (18)N17—C25—H25B108.6
N14—N13—Mo1119.09 (12)N17—C25—C26114.8 (3)
C10—N13—Mo1135.19 (14)H25A—C25—H25B107.5
C10—N13—N14105.60 (17)C26—C25—H25A108.6
N13—N14—B1120.39 (17)C26—C25—H25B108.6
C12—N14—N13110.38 (17)C25—C26—H26A109.5
C12—N14—B1129.22 (18)C25—C26—H26B109.5
N16—N15—Mo1118.99 (13)C25—C26—H26C109.5
C15—N15—Mo1134.89 (14)H26A—C26—H26B109.5
C15—N15—N16106.07 (17)H26A—C26—H26C109.5
N15—N16—B1121.19 (17)H26B—C26—H26C109.5
C17—N16—N15109.92 (18)
Mo1—N11—N12—C7179.77 (14)C3—Si1—N1—Fe3176.87 (13)
Mo1—N11—N12—B11.1 (2)C4—C5—C6—C7177.8 (2)
Mo1—N11—C5—C41.8 (4)C5—N11—N12—C70.8 (2)
Mo1—N11—C5—C6179.82 (16)C5—N11—N12—B1179.43 (19)
Mo1—N13—N14—C12176.06 (14)C5—C6—C7—N120.1 (3)
Mo1—N13—N14—B14.2 (2)C5—C6—C7—C8178.2 (3)
Mo1—N13—C10—C94.3 (4)C7—N12—B1—N14117.7 (2)
Mo1—N13—C10—C11175.44 (16)C7—N12—B1—N16121.7 (2)
Mo1—N15—N16—C17177.10 (15)C9—C10—C11—C12179.8 (3)
Mo1—N15—N16—B16.9 (2)C10—N13—N14—C120.6 (2)
Mo1—N15—C15—C140.3 (4)C10—N13—N14—B1179.13 (19)
Mo1—N15—C15—C16177.25 (17)C10—C11—C12—N140.3 (3)
N11—N12—C7—C60.4 (3)C10—C11—C12—C13179.4 (2)
N11—N12—C7—C8178.9 (2)C12—N14—B1—N12116.7 (2)
N11—N12—B1—N1460.7 (3)C12—N14—B1—N16122.8 (2)
N11—N12—B1—N1660.0 (2)C14—C15—C16—C17177.1 (2)
N11—C5—C6—C70.7 (3)C15—N15—N16—C170.9 (2)
N12—N11—C5—C4177.5 (2)C15—N15—N16—B1175.06 (19)
N12—N11—C5—C60.9 (2)C15—C16—C17—N160.9 (3)
N13—N14—C12—C110.6 (3)C15—C16—C17—C18177.4 (3)
N13—N14—C12—C13179.1 (2)C17—N16—B1—N12119.9 (2)
N13—N14—B1—N1263.6 (2)C17—N16—B1—N14120.2 (2)
N13—N14—B1—N1656.8 (2)B1—N12—C7—C6178.9 (2)
N13—C10—C11—C120.1 (3)B1—N12—C7—C82.6 (4)
N14—N13—C10—C9179.9 (2)B1—N14—C12—C11179.1 (2)
N14—N13—C10—C110.4 (3)B1—N14—C12—C131.2 (4)
N15—N16—C17—C161.2 (3)B1—N16—C17—C16174.4 (2)
N15—N16—C17—C18177.3 (3)B1—N16—C17—C187.1 (4)
N15—N16—B1—N1255.3 (2)C19—N17—C21—C2258.4 (3)
N15—N16—B1—N1464.6 (2)C19—N17—C23—C24177.9 (3)
N15—C15—C16—C170.4 (3)C19—N17—C25—C2660.3 (3)
N16—N15—C15—C14177.8 (2)C21—N17—C19—C2059.0 (3)
N16—N15—C15—C160.3 (3)C21—N17—C23—C2461.0 (3)
C1—Si1—N1—Fe159.18 (17)C21—N17—C25—C26179.1 (2)
C1—Si1—N1—Fe2175.96 (13)C23—N17—C19—C20179.9 (3)
C1—Si1—N1—Fe363.38 (16)C23—N17—C21—C2260.0 (3)
C2—Si1—N1—Fe1177.95 (14)C23—N17—C25—C2658.6 (3)
C2—Si1—N1—Fe265.27 (16)C25—N17—C19—C2058.3 (3)
C2—Si1—N1—Fe355.39 (17)C25—N17—C21—C22179.0 (3)
C3—Si1—N1—Fe160.57 (17)C25—N17—C23—C2456.3 (4)
C3—Si1—N1—Fe256.21 (15)
 

Footnotes

These authors contributed equally to this work.

Acknowledgements

We thank the Priority Academic Program Development of Jiangsu Higher Educational Institutions, the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, the State Key Laboratory of Coordination Chemistry in Nanjing University, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province for financial support.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant Nos. 92361303, 92261107 and 22071110); Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX22_1550).

References

First citationBruker. (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanfield, D. E., Glazer, A. N. & Falkowski, P. G. (2010). Science, 330, 192–196.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, X.-D., Duncan, J. S., Verma, A. K. & Lee, S. C. (2010). J. Am. Chem. Soc. 132, 15884–15886.  CrossRef CAS PubMed Google Scholar
First citationCheng, Q. (2008). J. Integr. Plant Biol. 50, 786–798.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. (2012). BMC Genomics, 13, 162–173.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150–4158.  CrossRef CAS PubMed Google Scholar
First citationHerskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Proc. Natl Acad. Sci. USA, 69, 2437–2441.  CrossRef CAS PubMed Google Scholar
First citationHolm, R. H. (1977). Acc. Chem. Res. 10, 427–434.  CrossRef CAS Google Scholar
First citationJia, H.-P. & Quadrelli, E. A. (2014). Chem. Soc. Rev. 43, 547–564.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974–977.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135–1158.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Q., Huang, L., Liu, H., Lei, X., Wu, D., Kang, B. & Lu, J. (1990). Inorg. Chem. 29, 4131–4137.  CrossRef CAS Google Scholar
First citationMacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNordlander, E., Lee, S. C., Cen, W., Wu, Z. Y., Natoli, C. R., Di Cicco, A., Filipponi, A., Hedman, B., Hodgson, K. O. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 5549–5558.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSickerman, N. S., Tanifuji, K., Hu, Y. & Ribbe, M. W. (2017). Chem. Eur. J. 23, 12425–12432.  CrossRef CAS PubMed Google Scholar
First citationSpatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940–940.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089–5092.  CrossRef CAS PubMed Google Scholar
First citationXu, G., Zhou, J., Wang, Z., Holm, R. H. & Chen, X. D. (2019). Angew. Chem. Int. Ed. 58, 16469–16473.  CrossRef CAS Google Scholar
First citationZhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166–7174.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds