research communications
High-resolution 3)6]2[Ni(H2O)6]3·6H2O
of the double nitrate hydrate [La(NOaCrystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
*Correspondence e-mail: wen.bi@epfl.ch
This study introduces bis[hexakis(nitrato-κ2O,O′)lanthanum(III)] tris[hexaaquanickel(II)] hexahydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexagonal R. The salt comprises [La(NO3)6]3− icosahedra and [Ni(H2O)6]2+ octahedra, thus forming an intricate network of interpenetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octahedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexagonal plate-like crystals.
Keywords: crystal structure; double nitrate; X-ray diffraction; hydrogen bonding.
CCDC reference: 2348374
1. Chemical context
Double nitrates, which contain two different metal cations and nitrate anions, have applications in various fields. They exhibit unique solubility properties, crystalline structures and special magnetic properties, and act as excellent precursors for the synthesis of mixed oxides. For example, double nitrates of Zn and Cu have been used to produce a mixed Cu and Zn oxide that exhibits high 2 and H2 from CO and H2O (Smith et al., 2010), as well as selective CO2 hydrogenation into methanol (Zhong et al., 2020). Rare earth (RE) transition-metal (TM) double nitrates with the general formula RE2TM3(NO3)12·24H2O attracted much attention in the 1960s, in which the RE is a trivalent cation with an lower than that of Ho and the TM is a divalent cation, including Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ (Hellwege & Hellwege, 1953; Brochard & Hellwege, 1953; Buckmaster et al., 1968). It should be noted that when RE has a +4 double nitrates are isomorphic with the triclinic MgTh(NO3)6(H2O)8 salt (Šćavničar & Prodić, 1965). Cerium(III) magnesium and cerium(III) zinc double nitrates have been used extensively in nuclear orientation experiments because very low temperatures can be obtained by adiabatic demagnetization of the salt (Culvahouse, 1961). Their properties make them suitable magnetic thermometers (Thornley, 1963). Like ruby single crystals (Cr3+:Al2O3), a Ce-doped lanthanum magnesium double nitrate is an ideal medium to study phonon avalanche, a delayed and sudden relaxation of paramagnetic ions by the emission of phonons (Mims & Taylor, 1969). and susceptibility measurements suggested that Mn, Ni, Co and Cu lanthanum double nitrates show antiferromagnetic transitions below 0.5 K (Mess et al., 1967, 1968). The lack of high-quality crystalline structures of these salts limits the profound understanding of the magnetic properties, as well as their theoretical investigation. We report herein on the growth of centimeter-large crystals of [La(NO3)6]2[Ni(H2O)6]3·6H2O (Fig. 1) and the determined by single-crystal X-ray diffraction.
in reactions such as the water gas shift reaction to produce CO2. Structural commentary
Similar to those found in the corresponding magnesium double salt, the title compound is made up of two types of ions, [Ni(H2O)6]2+ and [La(NO3)6]3−, which are linked together by hydrogen bonds with water molecules in the structure. The La atom on the threefold axis is coordinated by 12 O atoms from six nitrate groups to form a slightly distorted icosahedron. The La—O distances range from 2.6339 (8) to 2.7012 (8) Å, which are comparable to those found in La2Mg3(NO3)12·24H2O determined by neutron diffraction (Anderson et al., 1977). As depicted in Fig. 2, the structure includes two crystallographically independent positions for Ni2+. Three water H7a—O7–H7b molecules and three water H8a—O8—H8b molecules surround Ni1, resulting in a distorted [Ni(H2O)6]2+ octahedron with C3 symmetry. In contrast, the Ni2-containing [Ni(H2O)6]2+ octahedron is highly symmetric, as Ni2 is situated in a site with symmetry. The Ni—O bond lengths in both octahedra vary from 2.0471 (8) to 2.0531 (8) Å, similar to those found in [Ni(H2O)6](NO3)2 (Breternitz et al., 2015).
As illustrated in Fig. 3, each [La(NO3)6]3− icosahedron is surrounded by three Ni1-containing [Ni(H2O)6]2+ clusters, and each Ni1-containing octahedron is surrounded by three icosahedra. These two interpenetrating honeycomb networks are arranged in a layer parallel to the ab plane. In this layer, the icosahedra are linked to the [Ni(H2O)6]2+ clusters through strong O7—H7A⋯O4, O9—H9A⋯O1 and O10—H10A⋯O9 hydrogen bonds. The six water H9A—O9—H9B molecules per do not participate in the coordination of either La or Ni. Two successive layers are separated by Ni2-containing [Ni(H2O)6]2+ clusters, which bridge the layers between them via O10—H10A⋯O9 hydrogen bonds. The complex hydrogen-bonding network between the clusters is shown in Fig. 2 and the actual data for the hydrogen bonds are given in Table 1. The network of bonded clusters form sheets that are stacked perpendicular to the c axis (Fig. 4). The sheets are held together by in the [La(NO3)6]2[Ni(H2O)6]3·6H2O structure.
3. Database survey
No record of the same compound was found in the Crystallography Open Database (COD) or the Inorganic via single-crystal XRD data and the experimental pattern recorded with powder obtained by crushing a few [La(NO3)6]2[Ni(H2O)6]3·6H2O single crystals. Notably, peaks below 10°, as well as those in the 22–23° region, are missing in the pattern found in PDF-00-49-1235 (Fig. 1).
Database (ICSD). It is listed only once in the Powder Diffraction File (PDF) 2024 version, entry 00-049-1235, without any atomic positions provided. The powder X-ray diffraction (PXRD) pattern available in this database deviates significantly from both the theoretical pattern simulated from the structure refined4. Synthesis and crystallization
Lanthanum(III) oxide was dissolved in dilute HNO3 with a concentration of 1 mol l−1 (1 M) and nickel(II) oxide in dilute HNO3 with a concentration of 0.5 mol l−1 (0.5 M). In order to dissolve the nickel(II) oxide in the dilute HNO3, the solution was heated at 423 K over a period of 12 h until the nickel(II) oxide completely dissolved and a green transparent solution was obtained. Lanthanum(III) oxide solution (0.2 l) was first mixed with nickel(II) oxide solution (1.2 l) and then 1 mol of citric acid was added to the mixture under vigorous stirring until complete dissolution. The solution was transferred to a fume hood for slow evaporation. After 30 d, green hexagonal plate-shaped crystals formed with different sizes, the maximum dimension being 2 cm.
5. Refinement
Crystal data, data collection and structure . H atoms on O atoms were first located in a difference Fourier map and then refined isotropically in riding mode, with Uiso(H) values of 1.5Ueq of the parent O atoms. The O—H distance was refined against the residual peaks, without further constraint.
details are summarized in Table 2Supporting information
CCDC reference: 2348374
https://doi.org/10.1107/S205698902400327X/tx2083sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400327X/tx2083Isup2.hkl
[La(NO3)6]2[Ni(H2O)6]3·6H2O | Dx = 2.238 Mg m−3 |
Mr = 1630.45 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, R3 | Cell parameters from 22661 reflections |
a = 11.0230 (1) Å | θ = 2.2–36.2° |
c = 34.4826 (4) Å | µ = 3.04 mm−1 |
V = 3628.53 (8) Å3 | T = 297 K |
Z = 3 | Plate, blue |
F(000) = 2430 | 0.21 × 0.19 × 0.11 mm |
XtaLAB Synergy-i HyPix3000 diffractometer | 2663 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.023 |
ω scans | θmax = 32.0°, θmin = 2.2° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2023) | h = −16→16 |
Tmin = 0.573, Tmax = 1.000 | k = −16→16 |
27264 measured reflections | l = −51→51 |
2833 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0161P)2 + 2.1621P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.034 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.30 e Å−3 |
2833 reflections | Δρmin = −0.38 e Å−3 |
126 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00015 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.666667 | 0.333333 | 0.58402 (2) | 0.01660 (3) | |
Ni1 | 0.333333 | 0.666667 | 0.59443 (2) | 0.02146 (5) | |
O1 | 0.82133 (9) | 0.59977 (8) | 0.60265 (2) | 0.03067 (17) | |
N1 | 0.88316 (10) | 0.58535 (9) | 0.63163 (3) | 0.02614 (17) | |
Ni2 | 0.000000 | 0.000000 | 0.500000 | 0.02201 (6) | |
O2 | 0.97264 (11) | 0.68693 (10) | 0.64928 (3) | 0.0487 (2) | |
N2 | 0.45188 (9) | 0.08678 (9) | 0.53286 (2) | 0.02312 (16) | |
O3 | 0.84704 (10) | 0.46142 (9) | 0.64135 (2) | 0.03567 (19) | |
O10 | 0.14730 (9) | 0.15389 (9) | 0.53499 (2) | 0.03423 (18) | |
H10A | 0.107682 | 0.185298 | 0.549969 | 0.051* | |
H10B | 0.202599 | 0.224634 | 0.521158 | 0.051* | |
O9 | 0.76944 (11) | 0.83079 (11) | 0.60307 (3) | 0.0422 (2) | |
H9A | 0.807994 | 0.887099 | 0.621866 | 0.063* | |
H9B | 0.807786 | 0.780452 | 0.602857 | 0.063* | |
O4 | 0.51001 (9) | 0.06874 (8) | 0.56231 (2) | 0.02866 (16) | |
O5 | 0.36341 (10) | −0.01345 (9) | 0.51426 (3) | 0.03803 (19) | |
O6 | 0.49052 (9) | 0.21141 (8) | 0.52368 (2) | 0.02951 (16) | |
O7 | 0.18944 (8) | 0.68410 (8) | 0.56094 (2) | 0.02971 (16) | |
H7A | 0.114671 | 0.604003 | 0.559052 | 0.045* | |
H7B | 0.219721 | 0.704444 | 0.537602 | 0.045* | |
O8 | 0.48738 (10) | 0.66808 (11) | 0.62819 (3) | 0.0386 (2) | |
H8A | 0.572758 | 0.707366 | 0.621395 | 0.058* | |
H8B | 0.478129 | 0.605850 | 0.644424 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01709 (4) | 0.01709 (4) | 0.01561 (5) | 0.00855 (2) | 0.000 | 0.000 |
Ni1 | 0.02300 (7) | 0.02300 (7) | 0.01838 (10) | 0.01150 (3) | 0.000 | 0.000 |
O1 | 0.0387 (4) | 0.0262 (4) | 0.0281 (4) | 0.0169 (3) | −0.0104 (3) | −0.0022 (3) |
N1 | 0.0273 (4) | 0.0246 (4) | 0.0244 (4) | 0.0113 (3) | −0.0047 (3) | −0.0029 (3) |
Ni2 | 0.02193 (9) | 0.02193 (9) | 0.02215 (14) | 0.01097 (4) | 0.000 | 0.000 |
O2 | 0.0486 (6) | 0.0326 (5) | 0.0447 (5) | 0.0052 (4) | −0.0219 (4) | −0.0080 (4) |
N2 | 0.0238 (4) | 0.0218 (4) | 0.0237 (4) | 0.0114 (3) | −0.0024 (3) | −0.0033 (3) |
O3 | 0.0502 (5) | 0.0268 (4) | 0.0307 (4) | 0.0198 (4) | −0.0134 (4) | −0.0016 (3) |
O10 | 0.0303 (4) | 0.0312 (4) | 0.0322 (4) | 0.0086 (3) | −0.0002 (3) | −0.0060 (3) |
O9 | 0.0550 (6) | 0.0493 (6) | 0.0348 (5) | 0.0353 (5) | 0.0018 (4) | 0.0013 (4) |
O4 | 0.0368 (4) | 0.0233 (3) | 0.0258 (4) | 0.0149 (3) | −0.0086 (3) | −0.0018 (3) |
O5 | 0.0370 (4) | 0.0285 (4) | 0.0420 (5) | 0.0115 (4) | −0.0174 (4) | −0.0113 (3) |
O6 | 0.0382 (4) | 0.0229 (3) | 0.0281 (4) | 0.0158 (3) | −0.0059 (3) | 0.0002 (3) |
O7 | 0.0262 (4) | 0.0313 (4) | 0.0279 (4) | 0.0116 (3) | −0.0052 (3) | −0.0006 (3) |
O8 | 0.0364 (4) | 0.0502 (5) | 0.0326 (4) | 0.0244 (4) | −0.0028 (3) | 0.0101 (4) |
La1—O1 | 2.6339 (8) | N1—O2 | 1.2217 (12) |
La1—O1i | 2.6340 (8) | N1—O3 | 1.2621 (12) |
La1—O1ii | 2.6340 (8) | Ni2—O10 | 2.0531 (8) |
La1—O4 | 2.6481 (8) | Ni2—O10v | 2.0531 (8) |
La1—O4ii | 2.6481 (8) | Ni2—O10vi | 2.0531 (8) |
La1—O4i | 2.6481 (8) | Ni2—O10vii | 2.0531 (8) |
La1—O3 | 2.6546 (8) | Ni2—O10viii | 2.0531 (8) |
La1—O3i | 2.6547 (8) | Ni2—O10ix | 2.0531 (8) |
La1—O3ii | 2.6547 (8) | N2—O5 | 1.2271 (11) |
La1—O6ii | 2.7011 (8) | N2—O6 | 1.2585 (11) |
La1—O6i | 2.7011 (8) | N2—O4 | 1.2684 (11) |
La1—O6 | 2.7012 (8) | O10—H10A | 0.8536 |
Ni1—O7iii | 2.0471 (8) | O10—H10B | 0.8554 |
Ni1—O7iv | 2.0471 (8) | O9—H9A | 0.8499 |
Ni1—O7 | 2.0472 (8) | O9—H9B | 0.8492 |
Ni1—O8 | 2.0526 | O7—H7A | 0.8576 |
Ni1—O8iii | 2.0526 | O7—H7B | 0.8571 |
Ni1—O8iv | 2.0526 | O8—H8A | 0.8489 |
O1—N1 | 1.2638 (11) | O8—H8B | 0.8510 |
O1—La1—O1i | 114.254 (14) | O4—La1—O6 | 47.44 (2) |
O1—La1—O1ii | 114.253 (14) | O4ii—La1—O6 | 111.22 (2) |
O1i—La1—O1ii | 114.252 (14) | O4i—La1—O6 | 70.19 (3) |
O1—La1—O4 | 177.58 (2) | O3—La1—O6 | 177.63 (2) |
O1i—La1—O4 | 67.33 (2) | O3i—La1—O6 | 111.60 (3) |
O1ii—La1—O4 | 66.00 (2) | O3ii—La1—O6 | 110.71 (3) |
O1—La1—O4ii | 67.33 (2) | O6ii—La1—O6 | 67.04 (3) |
O1i—La1—O4ii | 66.00 (2) | O6i—La1—O6 | 67.04 (3) |
O1ii—La1—O4ii | 177.58 (2) | O7iii—Ni1—O7iv | 91.31 (3) |
O4—La1—O4ii | 112.340 (15) | O7iii—Ni1—O7 | 91.31 (3) |
O1—La1—O4i | 66.00 (2) | O7iv—Ni1—O7 | 91.31 (3) |
O1i—La1—O4i | 177.58 (2) | O7iii—Ni1—O8 | 92.55 (4) |
O1ii—La1—O4i | 67.33 (2) | O7iv—Ni1—O8 | 85.37 (4) |
O4—La1—O4i | 112.341 (15) | O7—Ni1—O8 | 174.96 (4) |
O4ii—La1—O4i | 112.340 (15) | O7iii—Ni1—O8iii | 174.96 (4) |
O1—La1—O3 | 47.95 (2) | O7iv—Ni1—O8iii | 92.55 (4) |
O1i—La1—O3 | 72.20 (3) | O7—Ni1—O8iii | 85.37 (3) |
O1ii—La1—O3 | 115.50 (3) | O8—Ni1—O8iii | 91.0 |
O4—La1—O3 | 134.33 (2) | O7iii—Ni1—O8iv | 85.37 (4) |
O4ii—La1—O3 | 66.91 (3) | O7iv—Ni1—O8iv | 174.96 (4) |
O4i—La1—O3 | 108.96 (3) | O7—Ni1—O8iv | 92.55 (4) |
O1—La1—O3i | 115.51 (3) | O8—Ni1—O8iv | 91.0 |
O1i—La1—O3i | 47.95 (2) | O8iii—Ni1—O8iv | 91.0 |
O1ii—La1—O3i | 72.20 (3) | N1—O1—La1 | 98.15 (6) |
O4—La1—O3i | 66.91 (3) | O2—N1—O3 | 122.21 (10) |
O4ii—La1—O3i | 108.96 (3) | O2—N1—O1 | 121.18 (10) |
O4i—La1—O3i | 134.33 (2) | O3—N1—O1 | 116.61 (9) |
O3—La1—O3i | 70.62 (3) | O10—Ni2—O10v | 180.0 |
O1—La1—O3ii | 72.20 (3) | O10—Ni2—O10vi | 91.03 (3) |
O1i—La1—O3ii | 115.50 (3) | O10v—Ni2—O10vi | 88.97 (3) |
O1ii—La1—O3ii | 47.95 (2) | O10—Ni2—O10vii | 88.97 (3) |
O4—La1—O3ii | 108.96 (3) | O10v—Ni2—O10vii | 91.03 (3) |
O4ii—La1—O3ii | 134.33 (2) | O10vi—Ni2—O10vii | 91.03 (3) |
O4i—La1—O3ii | 66.91 (3) | O10—Ni2—O10viii | 91.03 (3) |
O3—La1—O3ii | 70.62 (3) | O10v—Ni2—O10viii | 88.97 (3) |
O3i—La1—O3ii | 70.62 (3) | O10vi—Ni2—O10viii | 88.97 (3) |
O1—La1—O6ii | 108.56 (3) | O10vii—Ni2—O10viii | 180.00 (4) |
O1i—La1—O6ii | 66.37 (3) | O10—Ni2—O10ix | 88.97 (3) |
O1ii—La1—O6ii | 130.25 (2) | O10v—Ni2—O10ix | 91.03 (3) |
O4—La1—O6ii | 70.19 (3) | O10vi—Ni2—O10ix | 180.00 (4) |
O4ii—La1—O6ii | 47.43 (2) | O10vii—Ni2—O10ix | 88.97 (3) |
O4i—La1—O6ii | 111.22 (2) | O10viii—Ni2—O10ix | 91.03 (3) |
O3—La1—O6ii | 111.60 (3) | O5—N2—O6 | 122.29 (9) |
O3i—La1—O6ii | 110.71 (3) | O5—N2—O4 | 120.90 (9) |
O3ii—La1—O6ii | 177.63 (2) | O6—N2—O4 | 116.80 (8) |
O1—La1—O6i | 66.37 (3) | N1—O3—La1 | 97.19 (6) |
O1i—La1—O6i | 130.25 (2) | Ni2—O10—H10A | 109.7 |
O1ii—La1—O6i | 108.56 (3) | Ni2—O10—H10B | 109.5 |
O4—La1—O6i | 111.22 (2) | H10A—O10—H10B | 104.1 |
O4ii—La1—O6i | 70.19 (3) | H9A—O9—H9B | 104.7 |
O4i—La1—O6i | 47.43 (2) | N2—O4—La1 | 98.97 (6) |
O3—La1—O6i | 110.71 (3) | N2—O6—La1 | 96.66 (6) |
O3i—La1—O6i | 177.63 (2) | Ni1—O7—H7A | 109.7 |
O3ii—La1—O6i | 111.60 (3) | Ni1—O7—H7B | 109.6 |
O6ii—La1—O6i | 67.04 (3) | H7A—O7—H7B | 104.2 |
O1—La1—O6 | 130.25 (2) | Ni1—O8—H8A | 123.3 |
O1i—La1—O6 | 108.57 (3) | Ni1—O8—H8B | 127.0 |
O1ii—La1—O6 | 66.37 (3) | H8A—O8—H8B | 104.4 |
La1—O1—N1—O2 | 177.19 (10) | O5—N2—O4—La1 | −177.06 (9) |
La1—O1—N1—O3 | −3.22 (10) | O6—N2—O4—La1 | 3.67 (9) |
O2—N1—O3—La1 | −177.23 (10) | O5—N2—O6—La1 | 177.16 (9) |
O1—N1—O3—La1 | 3.19 (10) | O4—N2—O6—La1 | −3.58 (9) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, x−y, z; (iii) −y+1, x−y+1, z; (iv) −x+y, −x+1, z; (v) −x, −y, −z+1; (vi) x−y, x, −z+1; (vii) −y, x−y, z; (viii) y, −x+y, −z+1; (ix) −x+y, −x, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8A···O9 | 0.85 | 2.00 | 2.8386 (15) | 169 |
O10—H10A···O9iv | 0.85 | 2.03 | 2.8149 (13) | 153 |
O10—H10B···O5vi | 0.86 | 2.14 | 2.9626 (13) | 161 |
O7—H7A···O4vii | 0.86 | 1.92 | 2.7656 (11) | 168 |
O7—H7B···O6x | 0.86 | 2.13 | 2.9393 (11) | 158 |
Symmetry codes: (iv) −x+y, −x+1, z; (vi) x−y, x, −z+1; (vii) −y, x−y, z; (x) y, −x+y+1, −z+1. |
References
Anderson, M. R., Jenkin, G. T. & White, J. W. (1977). Acta Cryst. B33, 3933–3936. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breternitz, J., Farrugia, L. J., Godula-Jopek, A., Saremi-Yarahmadi, S., Malka, I. E., Hoang, T. K. A. & Gregory, D. H. (2015). J. Cryst. Growth, 412, 1–6. Web of Science CrossRef ICSD CAS Google Scholar
Brochard, J. & Hellwege, K. H. (1953). Z. Phys. 135, 620–638. CrossRef Web of Science Google Scholar
Buckmaster, H. A., Dering, J. C. & Fry, D. J. I. (1968). J. Phys. C.: Solid State Phys. 1, 599–607. CrossRef Web of Science Google Scholar
Culvahouse, J. W. (1961). Phys. Rev. 124, 1413–1417. CrossRef CAS Web of Science Google Scholar
Hellwege, A. M. & Hellwege, K. H. (1953). Z. Phys. 135, 615–619. CrossRef CAS Web of Science Google Scholar
Mess, K. W., Blöte, H. W. J. & Huiskamp, W. J. (1968). Phys. Lett. A, 27, 353–354. CrossRef CAS Web of Science Google Scholar
Mess, K. W., Lagendijk, E. & Huiskamp, W. J. (1967). Phys. Lett. A, 25, 329–331. CrossRef CAS Web of Science Google Scholar
Mims, W. B. & Taylor, D. R. (1969). Phys. Rev. Lett. 22, 1430–1432. CrossRef CAS Web of Science Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Šćavničar, S. & Prodić, B. (1965). Acta Cryst. 18, 698–702. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, B., Loganathan, M. & Shantha, M. (2010). Int. J. Chem. Reactor Eng. 8. https://doi.org/10.2202/1542. Google Scholar
Thornley, J. H. M. (1963). Phys. Rev. 132, 1492–1493. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y. & Zhang, Y. (2020). Chem. Soc. Rev. 49, 1385–1413. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.