research communications
Synthesis, Z)-4-[(4-amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one
and Hirshfeld surface analysis of (3aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow, 119571, Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C6H4BrF3N4O2, the oxadiazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, molecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π interactions connect the molecules, forming a three-dimensional network. The F atoms of the trifluoromethyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The intermolecular interactions in the were investigated and quantified using Hirshfeld surface analysis.
Keywords: crystal structure; α-haloketone; diaminofurazan; non-covalent interactions; oxadiazole ring; disorder; Hirshfeld surface analysis.
CCDC reference: 2352897
1. Chemical context
Among the main trends in the development of organic chemistry over the past 20 years, one can note the key role and rapid development of the chemistry of organofluorine compounds (Meanwell, 2018). This is due to the extremely high practical importance of organofluorine molecules. The introduction of fluorine into the target molecule changes such important parameters as solubility, binding to receptors, metabolism, acid–base characteristics, and conformational properties of compounds. Currently, about 25% of new drugs and 35% of substances used in agriculture (agrochemicals) contain at least one fluorine atom (Chandra et al., 2023; Han et al., 2020; Mei et al., 2019; Shabir et al., 2023; Zhang et al.,, 2022).
Diaminofurazanes and their derivatives are widely used to obtain useful et al., 2023; Chen et al., 2022; Dutta et al., 2022; Liao et al., 2020; Liu et al., 2022; Ugrak et al., 2023). Similarly to other N-ligands (Gurbanov et al., 2022a,b; Kopylovich et al., 2011a,b, 2012), new derivatives of furazan can also be used in crystal engineering (Gurbanov et al., 2020) as well as the synthesis of coordination compounds for catalysis (Mac Leod et al., 2012; Mahmudov et al., 2013; Mizar et al., 2012) and biological studies (Martins et al., 2017). In fact, the non-covalent bond-acceptor ability of the furazan motif can be employed as a unique tool for crystal engineering. We believe that the combination of trifluoromethyl and furazan fragments in one molecule can lead to the synthesis of new compounds with useful properties. Therefore, we studied the condensation of (Z)-3-bromo-4-ethoxy-1,1,1-trifluorobut-3-en-2-one with diaminofurazan in different polar solvents, with the best yield being in ethanol. It was shown that the reaction occurs only with the participation of the vinyl fragment and the active ketone group is not affected. The condensation product is an enamine, and its structure was confirmed by NMR spectroscopy and X-ray diffraction analysis.
high-energy explosives with great potential application value, antimicrobials, highly effective biocidal and antitumor agents, as well as in (Chang2. Structural commentary
In the title compound (Fig. 1), the oxadiazole ring (N1/O2/N3/C4/C5) is essentially planar [maximum deviation = 0.003 (2) Å for C4]. In the molecule, the intramolecular N—H⋯Br, C—H⋯F and C—H⋯N hydrogen bonds form S(5), S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995; Table 1; Fig. 1). The N3—C4—N7—C8, C4—N7—C8—C9, C8—C9—C10—O10 and C8—C9—C10—C11 torsion angles are −7.5 (4), 173.0 (2), −178.3 (2) and −2.8 (4)°, respectively. The geometric parameters are normal and comparable to those of related compounds listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an (8) motif (Bernstein et al., 1995; Table 1; Fig. 2). The dimers are linked into layers parallel to the (10) plane by N—H⋯O hydrogen bonds (Table 1; Fig. 2). In addition, C—O⋯π and C—Br⋯π interactions connect the molecules, forming a three-dimensional network (Figs. 2 and 3).
To quantify the intermolecular interactions, a Hirshfeld surface analysis was performed and CrystalExplorer17.5 (Spackman et al., 2021) was used to obtain two-dimensional fingerprint plots. Fig. 4 shows the Hirshfeld surface mapped over dnorm using a common surface resolution and a constant color scale of −0.5339 (red) to + 0.9642 (blue) a.u. On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal to the sum of the van der Waals radii are indicated by white spots.
Fig. 5 depicts the two-dimensional fingerprint plots of (di, de) points from all contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important intermolecular interactions are F⋯H/H⋯F, O⋯H/H⋯O and N⋯H/H⋯N contacts, contributing to 12.8%, 11.9% and 10.7%, respectively, to the overall crystal packing. Other interactions and their respective contributions are F⋯O/O⋯F (8.8%), F⋯N/N⋯F (7.4%), F⋯F (6.3%), Br⋯H/H⋯Br (5.7%), Br⋯F/F⋯Br (5.2%), F⋯C/C⋯F (4.9%), Br⋯C/C⋯Br (4.5%), Br⋯O/O⋯Br (3.8%), Br⋯N/N⋯Br (3.5%), O⋯C/C⋯O (3.4%), N⋯C/C⋯N (3.1%), C⋯H/H⋯C (3.0%), O⋯N/N⋯O (2.3%), H⋯H (2.2%) and N⋯N (0.4%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) gave four compounds closely related to the title compounds, viz. CSD refcodes KIMZEP (I: Okmanov et al., 2023), KIMZIT (II: Okmanov et al., 2023), ZARJEJ (III: Jia et al., 2012) and PUHDUS (IV: Zhang et al., 2009).
In the crystals of I and II, C—H⋯π interactions are observed between neighboring molecules. In the crystal of III, one of the amino H atoms forms an intramolecular N—H⋯N hydrogen bond; adjacent molecules are linked by N—H⋯N hydrogen bonds, forming a chain running along [10]. In the crystal of IV, intermolecular N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
5. Synthesis and crystallization
Equimolar amounts of (Z)-3-bromo-4-ethoxy-1,1,1-trifluorobut-3-en-2-one (0.247 g, 1.0 mmol) and diaminofurazan (0.100 g, 1.0 mmol) were dissolved in 25 ml of ethanol and refluxed for 3 h. The reaction was monitored by 1H NMR. A characteristic disappearance of the signals associated with the ethoxy group was observed. At the end of the reaction, the solvent was removed in vacuo. (3Z)-4-[(4-amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one in the form of a yellow precipitate, which was then recrystallized from acetone. Yield 0.249 g (83%); m.p. 444–445 K. Analysis calculated (%) for C6H4BrF3N4O2: C 23.94, H 1.34, Br 26.54, F 18.93, N 18.93, O 10.63; found: C23.92, H 1.31, Br 26.57, F 18.93, N 18.94, O 10.60. 1H NMR (300 MHz, acetone-d6): 5.88 (br, 2H, NH2), 8.52 (s, 1H, CH), 9.05 (br, 1H, NH). 13C NMR (75 MHz, DMSO-d6): 97.89, 114.30, 120.06, 146.71, 147.01, 206.20. ESI–MS: m/z: 298.9408 [M − H]+.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference map and freely refined. The F atoms of the trifluoromethyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The C—F bond lengths in the disordered trifluoromethyl group were constrained to be the same (using SADI), as were the thermal parameters of the F atoms (using EADP).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2352897
https://doi.org/10.1107/S2056989024004080/tx2085sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004080/tx2085Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004080/tx2085Isup3.cml
C6H4BrF3N4O2 | F(000) = 584 |
Mr = 301.04 | Dx = 2.134 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 4.95281 (3) Å | Cell parameters from 17512 reflections |
b = 14.0515 (1) Å | θ = 4.5–78.8° |
c = 13.5208 (1) Å | µ = 6.46 mm−1 |
β = 95.1372 (6)° | T = 100 K |
V = 937.19 (1) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.04 × 0.04 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2038 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2010 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 79.7°, θmin = 4.6° |
ω scans | h = −5→6 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | k = −17→17 |
Tmin = 0.490, Tmax = 1.000 | l = −17→17 |
24751 measured reflections |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | All H-atom parameters refined |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0212P)2 + 2.0497P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2038 reflections | Δρmax = 0.73 e Å−3 |
159 parameters | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br9 | 0.19184 (5) | 0.35928 (2) | 0.19637 (2) | 0.02267 (9) | |
F12 | 0.8845 (8) | 0.5446 (3) | 0.3711 (3) | 0.0259 (3) | 0.515 (6) |
F13 | 0.5295 (8) | 0.5812 (3) | 0.4473 (3) | 0.0259 (3) | 0.515 (6) |
F14 | 0.6521 (9) | 0.6697 (4) | 0.3275 (4) | 0.0259 (3) | 0.515 (6) |
F12A | 0.8549 (8) | 0.5453 (3) | 0.4018 (3) | 0.0259 (3) | 0.485 (6) |
F14A | 0.7062 (9) | 0.6639 (4) | 0.3163 (4) | 0.0259 (3) | 0.485 (6) |
F13A | 0.4825 (8) | 0.6121 (3) | 0.4364 (3) | 0.0259 (3) | 0.485 (6) |
O2 | 1.2074 (4) | 0.20748 (12) | 0.50222 (14) | 0.0254 (4) | |
O10 | 0.2781 (4) | 0.57289 (12) | 0.23355 (13) | 0.0249 (4) | |
N1 | 1.0965 (4) | 0.11662 (14) | 0.48774 (16) | 0.0220 (4) | |
N3 | 1.0442 (4) | 0.27473 (15) | 0.45145 (17) | 0.0254 (4) | |
N6 | 0.7135 (5) | 0.05515 (16) | 0.3947 (2) | 0.0298 (5) | |
H6A | 0.568 (7) | 0.065 (2) | 0.373 (3) | 0.029 (9)* | |
H6B | 0.748 (7) | 0.000 (3) | 0.427 (3) | 0.033 (9)* | |
N7 | 0.6329 (4) | 0.27298 (14) | 0.35067 (15) | 0.0194 (4) | |
H7 | 0.525 (6) | 0.241 (2) | 0.316 (2) | 0.024 (8)* | |
C4 | 0.8417 (5) | 0.22775 (16) | 0.40856 (17) | 0.0195 (4) | |
C5 | 0.8708 (5) | 0.12796 (17) | 0.43003 (18) | 0.0197 (4) | |
C8 | 0.6209 (5) | 0.36888 (17) | 0.34691 (18) | 0.0198 (5) | |
H8 | 0.748 (6) | 0.400 (2) | 0.393 (2) | 0.019 (7)* | |
C9 | 0.4468 (5) | 0.42186 (16) | 0.28686 (17) | 0.0192 (4) | |
C10 | 0.4376 (5) | 0.52457 (17) | 0.28565 (17) | 0.0199 (5) | |
C11 | 0.6293 (5) | 0.58284 (17) | 0.36048 (18) | 0.0224 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br9 | 0.02440 (14) | 0.01774 (14) | 0.02471 (14) | −0.00003 (9) | −0.00423 (9) | −0.00055 (9) |
F12 | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
F13 | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
F14 | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
F12A | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
F14A | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
F13A | 0.0292 (8) | 0.0196 (6) | 0.0282 (7) | −0.0003 (6) | −0.0016 (6) | −0.0005 (7) |
O2 | 0.0264 (9) | 0.0158 (8) | 0.0317 (9) | −0.0015 (7) | −0.0105 (7) | 0.0016 (7) |
O10 | 0.0278 (9) | 0.0194 (8) | 0.0261 (9) | 0.0031 (7) | −0.0062 (7) | 0.0032 (7) |
N1 | 0.0236 (10) | 0.0156 (9) | 0.0258 (10) | 0.0000 (8) | −0.0031 (8) | 0.0003 (8) |
N3 | 0.0263 (10) | 0.0171 (10) | 0.0308 (11) | 0.0009 (8) | −0.0090 (9) | 0.0023 (8) |
N6 | 0.0219 (11) | 0.0165 (10) | 0.0478 (14) | −0.0013 (8) | −0.0142 (10) | 0.0046 (10) |
N7 | 0.0190 (9) | 0.0147 (9) | 0.0238 (10) | 0.0004 (8) | −0.0024 (8) | 0.0006 (8) |
C4 | 0.0198 (11) | 0.0166 (11) | 0.0216 (11) | 0.0012 (8) | −0.0009 (8) | 0.0009 (9) |
C5 | 0.0194 (10) | 0.0174 (11) | 0.0218 (11) | 0.0019 (8) | −0.0005 (9) | 0.0015 (9) |
C8 | 0.0216 (11) | 0.0166 (11) | 0.0210 (11) | 0.0009 (9) | 0.0008 (9) | −0.0009 (9) |
C9 | 0.0204 (11) | 0.0166 (11) | 0.0202 (11) | −0.0018 (9) | −0.0002 (8) | −0.0007 (8) |
C10 | 0.0209 (11) | 0.0179 (11) | 0.0209 (11) | −0.0004 (9) | 0.0006 (8) | 0.0015 (9) |
C11 | 0.0256 (12) | 0.0180 (11) | 0.0227 (11) | −0.0004 (9) | −0.0026 (9) | 0.0029 (9) |
Br9—C9 | 1.894 (2) | N6—C5 | 1.347 (3) |
F12—C11 | 1.369 (5) | N6—H6A | 0.76 (4) |
F13—C11 | 1.314 (4) | N6—H6B | 0.89 (4) |
F14—C11 | 1.307 (5) | N7—C8 | 1.350 (3) |
F12A—C11 | 1.314 (5) | N7—C4 | 1.393 (3) |
F14A—C11 | 1.356 (6) | N7—H7 | 0.82 (3) |
F13A—C11 | 1.373 (5) | C4—C5 | 1.437 (3) |
O2—N3 | 1.385 (3) | C8—C9 | 1.353 (3) |
O2—N1 | 1.397 (3) | C8—H8 | 0.95 (3) |
O10—C10 | 1.217 (3) | C9—C10 | 1.444 (3) |
N1—C5 | 1.314 (3) | C10—C11 | 1.557 (3) |
N3—C4 | 1.294 (3) | ||
N3—O2—N1 | 110.46 (17) | C8—C9—C10 | 125.1 (2) |
C5—N1—O2 | 105.97 (18) | C8—C9—Br9 | 118.96 (18) |
C4—N3—O2 | 105.58 (19) | C10—C9—Br9 | 115.99 (17) |
C5—N6—H6A | 120 (3) | O10—C10—C9 | 125.6 (2) |
C5—N6—H6B | 114 (2) | O10—C10—C11 | 114.1 (2) |
H6A—N6—H6B | 118 (3) | C9—C10—C11 | 120.1 (2) |
C8—N7—C4 | 120.3 (2) | F14—C11—F13 | 111.9 (3) |
C8—N7—H7 | 120 (2) | F12A—C11—F14A | 105.3 (3) |
C4—N7—H7 | 119 (2) | F14—C11—F12 | 107.1 (3) |
N3—C4—N7 | 121.7 (2) | F13—C11—F12 | 108.5 (3) |
N3—C4—C5 | 110.3 (2) | F12A—C11—F13A | 106.8 (3) |
N7—C4—C5 | 127.9 (2) | F14A—C11—F13A | 105.4 (3) |
N1—C5—N6 | 123.5 (2) | F14—C11—C10 | 109.6 (3) |
N1—C5—C4 | 107.6 (2) | F13—C11—C10 | 108.3 (2) |
N6—C5—C4 | 128.7 (2) | F12A—C11—C10 | 120.7 (3) |
N7—C8—C9 | 126.5 (2) | F14A—C11—C10 | 109.5 (3) |
N7—C8—H8 | 114.1 (18) | F12—C11—C10 | 111.4 (3) |
C9—C8—H8 | 119.4 (18) | F13A—C11—C10 | 108.1 (2) |
N3—O2—N1—C5 | −0.3 (3) | Br9—C9—C10—O10 | 1.6 (3) |
N1—O2—N3—C4 | 0.5 (3) | C8—C9—C10—C11 | −2.8 (4) |
O2—N3—C4—N7 | 179.6 (2) | Br9—C9—C10—C11 | 177.15 (17) |
O2—N3—C4—C5 | −0.5 (3) | O10—C10—C11—F14 | −24.2 (4) |
C8—N7—C4—N3 | −7.5 (4) | C9—C10—C11—F14 | 159.8 (3) |
C8—N7—C4—C5 | 172.6 (2) | O10—C10—C11—F13 | 98.1 (3) |
O2—N1—C5—N6 | 176.1 (2) | C9—C10—C11—F13 | −77.9 (3) |
O2—N1—C5—C4 | 0.0 (3) | O10—C10—C11—F12A | −161.5 (3) |
N3—C4—C5—N1 | 0.4 (3) | C9—C10—C11—F12A | 22.5 (4) |
N7—C4—C5—N1 | −179.7 (2) | O10—C10—C11—F14A | −39.1 (4) |
N3—C4—C5—N6 | −175.5 (3) | C9—C10—C11—F14A | 144.9 (3) |
N7—C4—C5—N6 | 4.4 (4) | O10—C10—C11—F12 | −142.7 (3) |
C4—N7—C8—C9 | 173.0 (2) | C9—C10—C11—F12 | 41.4 (3) |
N7—C8—C9—C10 | 179.2 (2) | O10—C10—C11—F13A | 75.2 (3) |
N7—C8—C9—Br9 | −0.7 (4) | C9—C10—C11—F13A | −100.8 (3) |
C8—C9—C10—O10 | −178.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···O10i | 0.77 (4) | 2.14 (4) | 2.871 (3) | 159 (4) |
N6—H6B···N1ii | 0.90 (4) | 2.11 (4) | 2.995 (3) | 169 (3) |
N7—H7···Br9 | 0.81 (3) | 2.76 (3) | 3.127 (2) | 109 (2) |
C8—H8···F12 | 0.95 (3) | 2.17 (3) | 2.799 (5) | 123 (2) |
C8—H8···F12A | 0.95 (3) | 2.11 (3) | 2.808 (5) | 129 (2) |
C8—H8···N3 | 0.95 (3) | 2.38 (3) | 2.759 (3) | 103.3 (19) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+2, −y, −z+1. |
Acknowledgements
The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, VOO, BIU, OML and AIS; X-ray analysis, VOO, BIU, OML and AIS; writing (review and editing of the manuscript) FIG, STÇ and MA; supervision, MA and AB.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chandra, G., Singh, D. V., Mahato, G. K. & Patel, S. (2023). Chem. Pap. 77, 4085–4106. Web of Science CrossRef CAS Google Scholar
Chang, J., Hu, L., Pang, S. & He, C. (2023). J. Mater. Chem. A, 11, 15979–15985. Web of Science CSD CrossRef CAS Google Scholar
Chen, W., Chen, C., Chang, T. T., Hsieh, F. C., Chen, W. & Li, W. (2022). J. Chin. Chem. Soc. 69, 375–387. Web of Science CrossRef CAS Google Scholar
Dutta, S., Liu, N., Gao, Y., Beck, L. & Wang, X. (2022). Bioorg. Med. Chem. Lett. 72, 128878. Web of Science CrossRef PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Han, J. L., Remete, A. M., Dobson, L. S., Kiss, L., Izawa, K., Moriwaki, H., Soloshonok, V. A. & O'Hagan, D. (2020). J. Fluor. Chem. 239, 109639. Web of Science CrossRef Google Scholar
Jia, S.-Y., Wang, B.-Z., Fan, X.-Z., Li, P. & Ng, S. W. (2012). Acta Cryst. E68, o1573. CSD CrossRef IUCr Journals Google Scholar
Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012). New J. Chem. 36, 1646–1654. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Liao, S., Deng, M. & Song, S. (2020). Chin. J. Energetic Mater. 28, 632–637. CAS Google Scholar
Liu, Y., Zeng, Z., Huang, W., Shreeve, J. M. & Tang, Y. (2022). J. Org. Chem. 87, 4226–4231. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Meanwell, N. A. (2018). J. Med. Chem. 61, 5822–5880. Web of Science CrossRef CAS PubMed Google Scholar
Mei, H., Han, J., Fustero, S., Medio–Simon, M., Sedgwick, D. M., Santi, C., Ruzziconi, R. & Soloshonok, V. A. (2019). Chem. A Eur. J. 25, 11797–11819. Web of Science CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Okmanov, R. Y., Ziyaev, A. A., Abdukarimov, A. S., Toshmurodov, T. T. & Kholikov, T. S. (2023). Acta Cryst. E79, 552–556. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shabir, G., Saeed, A., Zahid, W., Naseer, F., Riaz, Z., Khalil, N., Muneeba & Albericio, F. (2023). Pharmaceuticals, 16, 1162. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Ugrak, B. I., Shkineva, T. K., Sheremetev, A. B. & Dalinger, I. L. (2023). Russ. Chem. Bull. 72, 2706–2716. Web of Science CrossRef CAS Google Scholar
Zhang, C., Yan, K., Fu, C., Peng, H., Hawker, C. J. & Whittaker, A. K. (2022). Chem. Rev. 122, 167–208. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.