research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-di­hydro­quinoxalin-1-yl)prop­yl]-3-phenyl-1,2-di­hydro­quinoxalin-2-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and eDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 7 May 2024; accepted 10 May 2024; online 17 May 2024)

In the title compound, C31H24N4O2, the di­hydro­quinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the di­hydro­quinoxaline planes. In the crystal, one set of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C—H⋯O hydrogen bonds. Two sets of π-stacking inter­actions and C—H⋯π(ring) inter­actions join the double chains into the final three-dimensional structure.

1. Chemical context

The family of nitro­genous drugs, notably those containing the quinoxaline moiety, is important in medicinal chemistry because of the wide range of pharmacological activities exhibited, including anti­bacterial, anti­tuberculosis, anti-inflammatory, anti­fungal anti-glycation, anti-analgesic and anti­cancer properties. In particular, quinoxalin-2-one derivatives are a class of heterocyclic compounds with different applications in various fields (Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. 563406.]). They have been studied intensively as an important heterocyclic system for the synthesis of biologically active compounds ranging from herbicides and fungicides to therapeutically usable drugs (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]). These chemicals are active anti-tumor agents with tyrosine kinase receptor inhibition properties (Galal et al., 2014[Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122-132.]). They can also selectively antagonize the glycoprotein in cancer cells (Sun et al., 2009[Sun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202-208.]). Quinoxalin-2-one derivatives are also potential antagonist ligands for imaging the A2A adenosine receptor by positron emission tomography (PET) (Holschbach et al., 2005[Holschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421-437.]). Given the wide range of therapeutic applications for such compounds, we have previously reported a route for the preparation of quinoxalin-2-one derivatives using N-alkyl­ation reactions carried out with di-halogenated carbon chains (Missioui et al. 2022[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.]; Abad et al., 2024[Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300-304.]). A similar approach yielded the title compound, C31H24N4O2 (Fig. 1[link]). In addition to the synthesis, we also report the mol­ecular and crystal structure along with a Hirshfeld surface analysis.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the title compound.

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 2[link]). The di­hydro­quinoxaline unit containing N1 is planar to within 0.038 (1) Å (r.m.s. deviation of fitted atoms = 0.0209 Å) while that containing N3 is planar to within 0.021 (1) Å (r.m.s. deviation = 0.0124 Å). The dihedral angle between their mean planes is 64.82 (4)°. The C9–C14 benzene ring is inclined to the plane of the di­hydro­quinoxaline unit containing N1 by 7.35 (5)°, which is due in part to an intra­molecular C10—H10⋯O1 hydrogen bond (Table 1[link]). The corresponding angle on the other half of the mol­ecule is 37.63 (5)°. The greater out-of-plane orientation of the latter phenyl ring may be the result of its participation in C—H⋯π(ring) inter­actions (Table 1[link] and Fig. 3[link]). There are close contacts of H29A with O1 (2.31 Å) and H31B with O2 (2.32 Å), which might be considered additional hydrogen-bond inter­actions although the C—H⋯O angles are only 102°. The central C—C—C unit extends out from N3 in an all-trans conformation with a C29—C30—C31—N3 torsion angle of −175.74 (9)° but this does not continue to the second quinoxaline unit as the N1—C29—C30—C31 torsion angle is −69.98 (13)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C23–C28 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.58 3.3871 (16) 146
C10—H10⋯O1 0.93 2.22 2.8531 (16) 124
C27—H27⋯O2ii 0.93 2.59 3.4603 (18) 155
C30—H30ACg6iii 0.97 2.75 3.6013 (14) 147
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The title mol­ecule with labeling scheme and 50% probability ellipsoids.
[Figure 3]
Figure 3
Perspective view of the chains formed by C—H⋯O hydrogen bonds (dashed lines).

3. Supra­molecular features

In the crystal, chains of mol­ecules extending along the b-axis direction are formed by C3—H3⋯O1 hydrogen bonds and are linked in pairs into a Z-shaped motif by C27—H27⋯O2 hydrogen bonds (Table 1[link] and Fig. 3[link]). The paired chains are joined by π-stacking inter­actions between inversion-related di­hydro­quinoxaline moieties containing N1 (symmetry code: −x + 1, −y + 1, −z) with a distance of 3.5676 (7) Å between the centroids of the N1/C6/C1/N2/C8/C7 and C1–C6 rings as well as by corresponding inter­actions between those containing N3 (symmetry code: −x + 1, −y + 2, −z + 1) with a distance of 3.8641 (7) Å between the centroids of the N3/C20/C15/N4/C22/C21 and C15–C20 rings (Fig. 4[link]). These inter­actions are accompanied by inversion-related C30—H30ACg6 inter­actions (Table 1[link] and Fig. 4[link]; Cg6 is the centroid of ring C23–C28).

[Figure 4]
Figure 4
Packing viewed along the a-axis direction with C—H⋯O hydrogen bonds shown as black dashed lines and π-stacking and C—H⋯π(ring) inter­actions shown as orange and green dashed lines, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment shown in Fig. 5[link] (R = anything) yielded five hits. These contain R = n-pentyl (AZAZEC; Abad et al., 2021b[Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Krist. New Crys. Struct. 236, 173-175.]), 2-oxy-3-phenyl­quinoxaline (KOPKAF; Abad et al., 2024[Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300-304.]), OH (RIRBOM; Abad et al., 2018[Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181633.]), n-hexyl (UDAMIZ; Abad et al., 2021a[Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037-1042.]) and Et (UFITEM; Abad et al., 2023[Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023). J. Mol. Struct. 1286, 135622.]). In AZAZEC, the quinoxaline unit is planar with the exception of the nitro­gen bearing the alkyl chain while in the others, the unit shows somewhat greater deviations from planarity. The dihedral angle between the mean planes of the quinoxaline unit and the attached phenyl ring vary from 12.90 (4)° (AZAZEC) to 44.89 (3)° (RIRBOM) with the lower values resulting from intra­molecular C—H⋯O hydrogen bonding. In AZAZEC, RIRBOM and UFITEM there are C—H⋯π(ring) inter­actions, which help stabilize the crystal packing, while in UFITEM and KOPKAF there are π-stacking inter­actions between inversion-related quinoxaline moieties as in the present case. In UFITEM there are C=O⋯π(ring) inter­actions as well. In the examples containing a single quinoxaline moiety, the absolute values of the N—C—C—C torsion angles vary from 178.73 (8)° (KOPKAF) to 168.64 (8)° (RIRBOM) while in KOPKAF and RIRBOM, the O2—C17—C16—C15 torsion angles are, respectively, −68.46 (12) and −63.85 (11)°. These conformations are quite similar to that in the present structure.

[Figure 5]
Figure 5
Search fragment used in the database survey.

5. Hirshfeld surface analysis

To qu­antify the inter­molecular inter­actions, the Hirshfeld surface was calculated with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Descriptions of the plots generated and their inter­pretation have been published previously (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 6[link] shows the dnorm surface plotted over the range −0.1072 to 1.3548 a.u. together with two neighboring mol­ecules and the connecting C—H⋯O hydrogen bonds. The red spots on the surface clearly indicate the sites of these inter­actions. Fig. 7[link] shows the surface plotted over the shape-index with three neighboring mol­ecules included. The pattern of blue and orange triangles marking a site of π-stacking inter­actions is clearly visible in the upper right of the surface with the inter­action denoted by two lines. On the lower left, the C—H⋯π(ring) inter­action is shown by a third line. The 2-D fingerprint plots (Fig. 8[link]) show that the greatest contribution to the total inter­molecular inter­actions is from H⋯H contacts at 49.6% (Fig. 8[link]a), which is expected due to the significant hydrogen content and the fact that most of the hydrogen atoms are attached to aromatic rings. The other large contribution is from C⋯H/H⋯C contacts (23.0%, Fig. 8[link]b), which come primarily from the C—H⋯π(ring) inter­actions. In addition, there are O⋯H/H⋯O contacts (7.4%, Fig. 8[link]c), C⋯C contacts (5.8%, Fig. 8[link]d) and N⋯H/H⋯N contacts (5.2%, Fig. 8[link]e). The C⋯C contacts are primarily the π-stacking inter­actions.

[Figure 6]
Figure 6
The Hirshfeld surface plotted over dnorm showing the C—H⋯O hydrogen bonds to neighboring mol­ecules.
[Figure 7]
Figure 7
The Hirshfeld surface plotted over shape-index showing the π-stacking and C—H⋯π(ring) inter­actions to neighboring mol­ecules.
[Figure 8]
Figure 8
The 2-D fingerprint plots delineated into: (a) H⋯H inter­actions, (b) C⋯H/H⋯C inter­actions, (c) O⋯H/H⋯O inter­actions, (d) C⋯C inter­actions and (e) N⋯H/H⋯N inter­actions.

6. Synthesis and crystallization

To a solution of 3-phenyl­quinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in N,N-di­methyl­formamide (15 mL) were added 1,3-di­bromo­propane (0.12 ml, 1.125 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained upon solvent removal was recrystallized from ethanol to afford thick, colorless, plate-like crystals of the title compound with a yield of 30%, m.p. = 321–325 K, 1H NMR (300 MHz, CDCl3) δ ppm: 2.54 (quin, 2H, CH2); 3.85 (t, 2H, N—CH2, J = 6Hz); 3.96 (t, 2H, O—CH2—N, J = 6Hz); 7.33–8.12 (m, 18H, CHarom).13C NMR (75 MHz, CDCl3) δ ppm: 22.16 (CH2); 33.19 (N—CH2); 34.87(N—CH2); 113.43–134.23 (CHarom); 134.33–144.11 (Cq); 155.34 (C=O); 155.65 (C=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(H).

Table 2
Experimental details

Crystal data
Chemical formula C31H24N4O2
Mr 484.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 9.0384 (3), 9.4484 (4), 14.9524 (6)
α, β, γ (°) 77.267 (1), 83.991 (1), 72.708 (1)
V3) 1188.16 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS;Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 23105, 6318, 4347
Rint 0.027
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.08
No. of reflections 6318
No. of parameters 334
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Madison, WI.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1-[3-(2-Oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)propyl]-3-phenyl-1,2-dihydroquinoxalin-2-one top
Crystal data top
C31H24N4O2Z = 2
Mr = 484.54F(000) = 508
Triclinic, P1Dx = 1.354 Mg m3
a = 9.0384 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4484 (4) ÅCell parameters from 7750 reflections
c = 14.9524 (6) Åθ = 2.4–28.6°
α = 77.267 (1)°µ = 0.09 mm1
β = 83.991 (1)°T = 298 K
γ = 72.708 (1)°Thick plate, colourless
V = 1188.16 (8) Å30.35 × 0.30 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6318 independent reflections
Radiation source: fine-focus sealed tube4347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.3°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS;Krause et al., 2015)
k = 1212
Tmin = 0.89, Tmax = 0.99l = 2019
23105 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
6318 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39620 (10)0.88674 (9)0.06918 (6)0.0490 (2)
O20.21475 (12)0.71620 (14)0.39102 (6)0.0692 (3)
N10.44699 (10)0.63291 (10)0.11355 (6)0.0352 (2)
N20.21498 (11)0.64096 (11)0.00336 (6)0.0396 (2)
N30.43990 (11)0.77981 (11)0.38219 (6)0.0395 (2)
N40.42341 (11)0.74089 (11)0.57324 (7)0.0408 (2)
C10.28939 (13)0.50787 (13)0.06015 (8)0.0379 (3)
C20.24951 (16)0.37603 (15)0.05881 (9)0.0485 (3)
H20.1699600.3811980.0224100.058*
C30.32574 (17)0.23990 (15)0.11018 (10)0.0546 (4)
H30.2997920.1525670.1080830.066*
C40.44215 (17)0.23383 (15)0.16538 (10)0.0544 (3)
H40.4936380.1412810.2005960.065*
C50.48393 (15)0.36109 (14)0.16963 (9)0.0475 (3)
H50.5613080.3545750.2079980.057*
C60.40876 (13)0.49995 (12)0.11567 (7)0.0362 (3)
C70.36729 (13)0.77086 (13)0.06313 (7)0.0349 (2)
C80.24934 (12)0.76485 (13)0.00243 (7)0.0338 (2)
C90.16777 (12)0.90221 (13)0.06329 (7)0.0359 (3)
C100.20206 (15)1.03996 (15)0.08165 (9)0.0502 (3)
H100.2809461.0516770.0512110.060*
C110.11914 (16)1.15982 (16)0.14513 (10)0.0563 (4)
H110.1426511.2516970.1563030.068*
C120.00292 (14)1.14611 (16)0.19197 (9)0.0492 (3)
H120.0517811.2274210.2345790.059*
C130.03084 (16)1.01039 (16)0.17471 (10)0.0579 (4)
H130.1080100.9987760.2066480.070*
C140.04859 (16)0.89079 (15)0.11040 (10)0.0529 (3)
H140.0218100.8004860.0982890.063*
C150.54198 (13)0.78976 (13)0.52169 (8)0.0390 (3)
C160.65404 (14)0.81762 (15)0.56774 (9)0.0480 (3)
H160.6456710.8059130.6313060.058*
C170.77608 (14)0.86201 (16)0.52021 (10)0.0522 (3)
H170.8503110.8803350.5512340.063*
C180.78793 (15)0.87935 (15)0.42545 (10)0.0513 (3)
H180.8712130.9088170.3933120.062*
C190.67912 (14)0.85389 (14)0.37802 (9)0.0465 (3)
H190.6886510.8668590.3144110.056*
C200.55402 (13)0.80842 (12)0.42573 (8)0.0371 (3)
C210.31637 (14)0.73619 (15)0.43057 (8)0.0439 (3)
C220.31797 (13)0.71537 (13)0.53167 (8)0.0387 (3)
C230.19375 (13)0.66197 (13)0.58906 (8)0.0383 (3)
C240.13789 (15)0.71825 (15)0.66841 (9)0.0473 (3)
H240.1753550.7916370.6830150.057*
C250.02711 (16)0.66568 (17)0.72557 (10)0.0569 (4)
H250.0103970.7047790.7780510.068*
C260.02799 (16)0.55617 (16)0.70545 (10)0.0543 (3)
H260.1027570.5215120.7441510.065*
C270.02727 (15)0.49781 (14)0.62819 (9)0.0485 (3)
H270.0089830.4225270.6151010.058*
C280.13690 (14)0.55079 (14)0.56969 (8)0.0432 (3)
H280.1728430.5117590.5170230.052*
C290.58258 (13)0.62965 (14)0.16149 (8)0.0400 (3)
H29A0.6196690.7154130.1313540.048*
H29B0.6645310.5385710.1551010.048*
C300.55317 (14)0.63387 (13)0.26271 (8)0.0424 (3)
H30A0.6521210.6104760.2904780.051*
H30B0.5046830.5554020.2916370.051*
C310.45142 (14)0.78405 (14)0.28279 (8)0.0419 (3)
H31A0.4952410.8646560.2512940.050*
H31B0.3487600.8046280.2603180.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0647 (6)0.0385 (5)0.0502 (5)0.0216 (4)0.0196 (4)0.0048 (4)
O20.0685 (6)0.1113 (9)0.0408 (5)0.0518 (6)0.0143 (4)0.0002 (5)
N10.0409 (5)0.0362 (5)0.0305 (5)0.0135 (4)0.0033 (4)0.0064 (4)
N20.0472 (6)0.0418 (6)0.0344 (5)0.0199 (4)0.0024 (4)0.0068 (4)
N30.0441 (5)0.0432 (6)0.0304 (5)0.0122 (4)0.0047 (4)0.0042 (4)
N40.0399 (5)0.0469 (6)0.0350 (5)0.0121 (4)0.0046 (4)0.0060 (4)
C10.0469 (6)0.0379 (6)0.0317 (6)0.0176 (5)0.0048 (5)0.0081 (5)
C20.0617 (8)0.0467 (7)0.0462 (7)0.0289 (6)0.0051 (6)0.0129 (6)
C30.0732 (9)0.0407 (7)0.0558 (8)0.0274 (7)0.0155 (7)0.0146 (6)
C40.0675 (9)0.0340 (7)0.0549 (9)0.0119 (6)0.0089 (7)0.0037 (6)
C50.0539 (7)0.0389 (7)0.0451 (7)0.0096 (6)0.0013 (6)0.0043 (6)
C60.0431 (6)0.0357 (6)0.0307 (6)0.0137 (5)0.0054 (4)0.0084 (5)
C70.0418 (6)0.0362 (6)0.0293 (6)0.0148 (5)0.0013 (4)0.0071 (4)
C80.0377 (6)0.0388 (6)0.0278 (5)0.0148 (5)0.0008 (4)0.0083 (5)
C90.0386 (6)0.0415 (6)0.0285 (6)0.0130 (5)0.0001 (4)0.0072 (5)
C100.0562 (8)0.0510 (8)0.0483 (7)0.0274 (6)0.0160 (6)0.0032 (6)
C110.0634 (9)0.0497 (8)0.0571 (9)0.0278 (7)0.0138 (7)0.0082 (6)
C120.0469 (7)0.0509 (8)0.0427 (7)0.0106 (6)0.0065 (5)0.0028 (6)
C130.0578 (8)0.0569 (9)0.0609 (9)0.0166 (7)0.0258 (7)0.0042 (7)
C140.0584 (8)0.0439 (7)0.0602 (9)0.0176 (6)0.0219 (7)0.0052 (6)
C150.0366 (6)0.0405 (6)0.0378 (6)0.0074 (5)0.0046 (5)0.0067 (5)
C160.0451 (7)0.0571 (8)0.0416 (7)0.0124 (6)0.0085 (5)0.0096 (6)
C170.0408 (7)0.0564 (8)0.0619 (9)0.0145 (6)0.0105 (6)0.0122 (7)
C180.0433 (7)0.0488 (8)0.0613 (9)0.0154 (6)0.0035 (6)0.0095 (6)
C190.0490 (7)0.0451 (7)0.0428 (7)0.0126 (6)0.0025 (5)0.0067 (6)
C200.0364 (6)0.0340 (6)0.0387 (6)0.0065 (5)0.0038 (5)0.0065 (5)
C210.0448 (7)0.0508 (7)0.0360 (6)0.0163 (6)0.0080 (5)0.0015 (5)
C220.0407 (6)0.0391 (6)0.0342 (6)0.0093 (5)0.0048 (5)0.0044 (5)
C230.0375 (6)0.0391 (6)0.0345 (6)0.0082 (5)0.0063 (4)0.0005 (5)
C240.0518 (7)0.0475 (7)0.0453 (7)0.0173 (6)0.0014 (5)0.0118 (6)
C250.0626 (9)0.0630 (9)0.0471 (8)0.0218 (7)0.0145 (6)0.0172 (7)
C260.0537 (8)0.0551 (8)0.0530 (8)0.0226 (6)0.0049 (6)0.0018 (7)
C270.0515 (7)0.0432 (7)0.0509 (8)0.0183 (6)0.0108 (6)0.0011 (6)
C280.0474 (7)0.0441 (7)0.0369 (6)0.0111 (5)0.0091 (5)0.0045 (5)
C290.0394 (6)0.0434 (7)0.0382 (6)0.0126 (5)0.0060 (5)0.0069 (5)
C300.0516 (7)0.0405 (7)0.0337 (6)0.0118 (5)0.0117 (5)0.0019 (5)
C310.0501 (7)0.0429 (7)0.0303 (6)0.0119 (5)0.0057 (5)0.0021 (5)
Geometric parameters (Å, º) top
O1—C71.2222 (13)C13—H130.9300
O2—C211.2227 (13)C14—H140.9300
N1—C71.3815 (14)C15—C161.3978 (15)
N1—C61.3917 (13)C15—C201.4031 (16)
N1—C291.4726 (13)C16—C171.3701 (18)
N2—C81.2943 (14)C16—H160.9300
N2—C11.3787 (15)C17—C181.3864 (19)
N3—C211.3830 (15)C17—H170.9300
N3—C201.3946 (14)C18—C191.3748 (17)
N3—C311.4714 (14)C18—H180.9300
N4—C221.2959 (14)C19—C201.3988 (16)
N4—C151.3856 (15)C19—H190.9300
C1—C21.4006 (15)C21—C221.4819 (16)
C1—C61.4039 (16)C22—C231.4818 (16)
C2—C31.367 (2)C23—C281.3920 (16)
C2—H20.9300C23—C241.3922 (17)
C3—C41.384 (2)C24—C251.3818 (17)
C3—H30.9300C24—H240.9300
C4—C51.3788 (18)C25—C261.3727 (19)
C4—H40.9300C25—H250.9300
C5—C61.3971 (17)C26—C271.373 (2)
C5—H50.9300C26—H260.9300
C7—C81.4916 (14)C27—C281.3849 (17)
C8—C91.4879 (16)C27—H270.9300
C9—C141.3891 (16)C28—H280.9300
C9—C101.3892 (16)C29—C301.5162 (16)
C10—C111.3840 (18)C29—H29A0.9700
C10—H100.9300C29—H29B0.9700
C11—C121.3732 (17)C30—C311.5178 (17)
C11—H110.9300C30—H30A0.9700
C12—C131.3691 (19)C30—H30B0.9700
C12—H120.9300C31—H31A0.9700
C13—C141.3785 (18)C31—H31B0.9700
C7—N1—C6122.56 (9)C15—C16—H16119.7
C7—N1—C29116.94 (9)C16—C17—C18119.41 (12)
C6—N1—C29120.40 (9)C16—C17—H17120.3
C8—N2—C1120.56 (10)C18—C17—H17120.3
C21—N3—C20122.01 (10)C19—C18—C17121.36 (12)
C21—N3—C31116.59 (9)C19—C18—H18119.3
C20—N3—C31121.26 (10)C17—C18—H18119.3
C22—N4—C15119.21 (10)C18—C19—C20119.80 (12)
N2—C1—C2118.84 (11)C18—C19—H19120.1
N2—C1—C6121.69 (10)C20—C19—H19120.1
C2—C1—C6119.39 (11)N3—C20—C19122.91 (11)
C3—C2—C1120.99 (13)N3—C20—C15118.01 (10)
C3—C2—H2119.5C19—C20—C15119.08 (11)
C1—C2—H2119.5O2—C21—N3121.12 (11)
C2—C3—C4119.07 (12)O2—C21—C22123.53 (11)
C2—C3—H3120.5N3—C21—C22115.35 (10)
C4—C3—H3120.5N4—C22—C23117.70 (10)
C5—C4—C3121.87 (13)N4—C22—C21123.37 (11)
C5—C4—H4119.1C23—C22—C21118.92 (10)
C3—C4—H4119.1C28—C23—C24118.47 (11)
C4—C5—C6119.28 (13)C28—C23—C22122.47 (11)
C4—C5—H5120.4C24—C23—C22118.95 (10)
C6—C5—H5120.4C25—C24—C23120.36 (12)
N1—C6—C5123.06 (11)C25—C24—H24119.8
N1—C6—C1117.58 (10)C23—C24—H24119.8
C5—C6—C1119.37 (11)C26—C25—C24120.48 (13)
O1—C7—N1120.38 (10)C26—C25—H25119.8
O1—C7—C8124.38 (10)C24—C25—H25119.8
N1—C7—C8115.24 (9)C25—C26—C27119.99 (12)
N2—C8—C9117.15 (9)C25—C26—H26120.0
N2—C8—C7122.00 (10)C27—C26—H26120.0
C9—C8—C7120.84 (9)C26—C27—C28120.14 (12)
C14—C9—C10117.63 (11)C26—C27—H27119.9
C14—C9—C8117.09 (11)C28—C27—H27119.9
C10—C9—C8125.28 (10)C27—C28—C23120.55 (12)
C11—C10—C9120.18 (11)C27—C28—H28119.7
C11—C10—H10119.9C23—C28—H28119.7
C9—C10—H10119.9N1—C29—C30115.05 (9)
C12—C11—C10121.47 (12)N1—C29—H29A108.5
C12—C11—H11119.3C30—C29—H29A108.5
C10—C11—H11119.3N1—C29—H29B108.5
C13—C12—C11118.69 (12)C30—C29—H29B108.5
C13—C12—H12120.7H29A—C29—H29B107.5
C11—C12—H12120.7C29—C30—C31114.50 (10)
C12—C13—C14120.56 (12)C29—C30—H30A108.6
C12—C13—H13119.7C31—C30—H30A108.6
C14—C13—H13119.7C29—C30—H30B108.6
C13—C14—C9121.44 (12)C31—C30—H30B108.6
C13—C14—H14119.3H30A—C30—H30B107.6
C9—C14—H14119.3N3—C31—C30110.11 (9)
N4—C15—C16118.36 (11)N3—C31—H31A109.6
N4—C15—C20121.96 (10)C30—C31—H31A109.6
C16—C15—C20119.66 (11)N3—C31—H31B109.6
C17—C16—C15120.69 (12)C30—C31—H31B109.6
C17—C16—H16119.7H31A—C31—H31B108.2
C8—N2—C1—C2179.66 (10)C20—C15—C16—C170.43 (19)
C8—N2—C1—C62.80 (17)C15—C16—C17—C180.0 (2)
N2—C1—C2—C3176.47 (11)C16—C17—C18—C190.4 (2)
C6—C1—C2—C30.46 (18)C17—C18—C19—C200.5 (2)
C1—C2—C3—C41.1 (2)C21—N3—C20—C19179.43 (11)
C2—C3—C4—C50.4 (2)C31—N3—C20—C195.04 (17)
C3—C4—C5—C61.1 (2)C21—N3—C20—C150.85 (17)
C7—N1—C6—C5177.01 (10)C31—N3—C20—C15174.67 (10)
C29—N1—C6—C56.80 (16)C18—C19—C20—N3179.64 (11)
C7—N1—C6—C13.35 (15)C18—C19—C20—C150.07 (18)
C29—N1—C6—C1172.84 (10)N4—C15—C20—N31.57 (17)
C4—C5—C6—N1177.90 (10)C16—C15—C20—N3179.89 (11)
C4—C5—C6—C11.74 (18)N4—C15—C20—C19178.15 (10)
N2—C1—C6—N11.83 (16)C16—C15—C20—C190.38 (18)
C2—C1—C6—N1178.67 (10)C20—N3—C21—O2177.67 (12)
N2—C1—C6—C5177.83 (10)C31—N3—C21—O26.61 (18)
C2—C1—C6—C50.99 (17)C20—N3—C21—C222.68 (17)
C6—N1—C7—O1173.86 (10)C31—N3—C21—C22173.04 (10)
C29—N1—C7—O19.82 (16)C15—N4—C22—C23179.48 (10)
C6—N1—C7—C86.86 (15)C15—N4—C22—C210.21 (18)
C29—N1—C7—C8169.45 (9)O2—C21—C22—N4177.92 (12)
C1—N2—C8—C9177.83 (9)N3—C21—C22—N42.43 (18)
C1—N2—C8—C71.19 (16)O2—C21—C22—C232.39 (19)
O1—C7—C8—N2174.88 (11)N3—C21—C22—C23177.26 (10)
N1—C7—C8—N25.88 (16)N4—C22—C23—C28139.78 (12)
O1—C7—C8—C96.14 (17)C21—C22—C23—C2839.93 (16)
N1—C7—C8—C9173.10 (9)N4—C22—C23—C2436.31 (16)
N2—C8—C9—C147.41 (16)C21—C22—C23—C24143.98 (12)
C7—C8—C9—C14173.56 (11)C28—C23—C24—C250.83 (19)
N2—C8—C9—C10172.08 (11)C22—C23—C24—C25177.07 (11)
C7—C8—C9—C106.96 (18)C23—C24—C25—C260.7 (2)
C14—C9—C10—C110.2 (2)C24—C25—C26—C270.2 (2)
C8—C9—C10—C11179.29 (12)C25—C26—C27—C281.0 (2)
C9—C10—C11—C120.6 (2)C26—C27—C28—C230.87 (19)
C10—C11—C12—C130.2 (2)C24—C23—C28—C270.03 (17)
C11—C12—C13—C141.1 (2)C22—C23—C28—C27176.13 (11)
C12—C13—C14—C92.0 (2)C7—N1—C29—C3099.27 (12)
C10—C9—C14—C131.5 (2)C6—N1—C29—C3084.34 (12)
C8—C9—C14—C13178.05 (13)N1—C29—C30—C3169.98 (13)
C22—N4—C15—C16179.59 (11)C21—N3—C31—C3092.34 (13)
C22—N4—C15—C201.86 (17)C20—N3—C31—C3083.41 (13)
N4—C15—C16—C17178.15 (12)C29—C30—C31—N3175.74 (9)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C23–C28 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.583.3871 (16)146
C10—H10···O10.932.222.8531 (16)124
C27—H27···O2ii0.932.593.4603 (18)155
C30—H30A···Cg6iii0.972.753.6013 (14)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, EME and YR; methodology, AS; investigation, NA; writing (original draft), JTM and NA; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR; crystal structure determination and validation, JTM; resources, AYAA

References

First citationAbad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037–1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Krist. New Crys. Struct. 236, 173–175.  CAS Google Scholar
First citationAbad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023). J. Mol. Struct. 1286, 135622.  Web of Science CSD CrossRef Google Scholar
First citationAbad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300–304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181633.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Madison, WI.  Google Scholar
First citationGalal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421–437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. 563406.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202–208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds