research communications
Synthesis,
and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)propyl]-3-phenyl-1,2-dihydroquinoxalin-2-oneaLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and eDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
In the title compound, C31H24N4O2, the dihydroquinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the dihydroquinoxaline planes. In the crystal, one set of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C—H⋯O hydrogen bonds. Two sets of π-stacking interactions and C—H⋯π(ring) interactions join the double chains into the final three-dimensional structure.
Keywords: crystal structure; hydrogen bond; dihydroquinoxaline; π-stacking; C—H⋯π(ring) interaction.
CCDC reference: 2354488
1. Chemical context
The family of nitrogenous drugs, notably those containing the quinoxaline moiety, is important in medicinal chemistry because of the wide range of pharmacological activities exhibited, including antibacterial, antituberculosis, anti-inflammatory, antifungal anti-glycation, anti-analgesic and anticancer properties. In particular, quinoxalin-2-one derivatives are a class of et al., 2014). They have been studied intensively as an important heterocyclic system for the synthesis of biologically active compounds ranging from herbicides and fungicides to therapeutically usable drugs (Ramli & Essassi, 2015). These chemicals are active anti-tumor agents with tyrosine kinase receptor inhibition properties (Galal et al., 2014). They can also selectively antagonize the glycoprotein in cancer cells (Sun et al., 2009). Quinoxalin-2-one derivatives are also potential antagonist ligands for imaging the A2A adenosine receptor by positron emission tomography (PET) (Holschbach et al., 2005). Given the wide range of therapeutic applications for such compounds, we have previously reported a route for the preparation of quinoxalin-2-one derivatives using N-alkylation reactions carried out with di-halogenated carbon chains (Missioui et al. 2022; Abad et al., 2024). A similar approach yielded the title compound, C31H24N4O2 (Fig. 1). In addition to the synthesis, we also report the molecular and along with a Hirshfeld surface analysis.
with different applications in various fields (Ramli2. Structural commentary
The title compound crystallizes in the triclinic P with one molecule in the (Fig. 2). The dihydroquinoxaline unit containing N1 is planar to within 0.038 (1) Å (r.m.s. deviation of fitted atoms = 0.0209 Å) while that containing N3 is planar to within 0.021 (1) Å (r.m.s. deviation = 0.0124 Å). The dihedral angle between their mean planes is 64.82 (4)°. The C9–C14 benzene ring is inclined to the plane of the dihydroquinoxaline unit containing N1 by 7.35 (5)°, which is due in part to an intramolecular C10—H10⋯O1 hydrogen bond (Table 1). The corresponding angle on the other half of the molecule is 37.63 (5)°. The greater out-of-plane orientation of the latter phenyl ring may be the result of its participation in C—H⋯π(ring) interactions (Table 1 and Fig. 3). There are close contacts of H29A with O1 (2.31 Å) and H31B with O2 (2.32 Å), which might be considered additional hydrogen-bond interactions although the C—H⋯O angles are only 102°. The central C—C—C unit extends out from N3 in an all-trans conformation with a C29—C30—C31—N3 torsion angle of −175.74 (9)° but this does not continue to the second quinoxaline unit as the N1—C29—C30—C31 torsion angle is −69.98 (13)°.
3. Supramolecular features
In the crystal, chains of molecules extending along the b-axis direction are formed by C3—H3⋯O1 hydrogen bonds and are linked in pairs into a Z-shaped motif by C27—H27⋯O2 hydrogen bonds (Table 1 and Fig. 3). The paired chains are joined by π-stacking interactions between inversion-related dihydroquinoxaline moieties containing N1 (symmetry code: −x + 1, −y + 1, −z) with a distance of 3.5676 (7) Å between the centroids of the N1/C6/C1/N2/C8/C7 and C1–C6 rings as well as by corresponding interactions between those containing N3 (symmetry code: −x + 1, −y + 2, −z + 1) with a distance of 3.8641 (7) Å between the centroids of the N3/C20/C15/N4/C22/C21 and C15–C20 rings (Fig. 4). These interactions are accompanied by inversion-related C30—H30A⋯Cg6 interactions (Table 1 and Fig. 4; Cg6 is the centroid of ring C23–C28).
4. Database survey
A search of the Cambridge Structural Database (CSD, updated to March 2024; Groom et al., 2016) with the search fragment shown in Fig. 5 (R = anything) yielded five hits. These contain R = n-pentyl (AZAZEC; Abad et al., 2021b), 2-oxy-3-phenylquinoxaline (KOPKAF; Abad et al., 2024), OH (RIRBOM; Abad et al., 2018), n-hexyl (UDAMIZ; Abad et al., 2021a) and Et (UFITEM; Abad et al., 2023). In AZAZEC, the quinoxaline unit is planar with the exception of the nitrogen bearing the alkyl chain while in the others, the unit shows somewhat greater deviations from planarity. The dihedral angle between the mean planes of the quinoxaline unit and the attached phenyl ring vary from 12.90 (4)° (AZAZEC) to 44.89 (3)° (RIRBOM) with the lower values resulting from intramolecular C—H⋯O hydrogen bonding. In AZAZEC, RIRBOM and UFITEM there are C—H⋯π(ring) interactions, which help stabilize the crystal packing, while in UFITEM and KOPKAF there are π-stacking interactions between inversion-related quinoxaline moieties as in the present case. In UFITEM there are C=O⋯π(ring) interactions as well. In the examples containing a single quinoxaline moiety, the absolute values of the N—C—C—C torsion angles vary from 178.73 (8)° (KOPKAF) to 168.64 (8)° (RIRBOM) while in KOPKAF and RIRBOM, the O2—C17—C16—C15 torsion angles are, respectively, −68.46 (12) and −63.85 (11)°. These conformations are quite similar to that in the present structure.
5. Hirshfeld surface analysis
To quantify the intermolecular interactions, the Hirshfeld surface was calculated with CrystalExplorer 21.5 (Spackman et al., 2021). Descriptions of the plots generated and their interpretation have been published previously (Tan et al., 2019). Fig. 6 shows the dnorm surface plotted over the range −0.1072 to 1.3548 a.u. together with two neighboring molecules and the connecting C—H⋯O hydrogen bonds. The red spots on the surface clearly indicate the sites of these interactions. Fig. 7 shows the surface plotted over the shape-index with three neighboring molecules included. The pattern of blue and orange triangles marking a site of π-stacking interactions is clearly visible in the upper right of the surface with the interaction denoted by two lines. On the lower left, the C—H⋯π(ring) interaction is shown by a third line. The 2-D fingerprint plots (Fig. 8) show that the greatest contribution to the total intermolecular interactions is from H⋯H contacts at 49.6% (Fig. 8a), which is expected due to the significant hydrogen content and the fact that most of the hydrogen atoms are attached to aromatic rings. The other large contribution is from C⋯H/H⋯C contacts (23.0%, Fig. 8b), which come primarily from the C—H⋯π(ring) interactions. In addition, there are O⋯H/H⋯O contacts (7.4%, Fig. 8c), C⋯C contacts (5.8%, Fig. 8d) and N⋯H/H⋯N contacts (5.2%, Fig. 8e). The C⋯C contacts are primarily the π-stacking interactions.
6. Synthesis and crystallization
To a solution of 3-phenylquinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in N,N-dimethylformamide (15 mL) were added 1,3-dibromopropane (0.12 ml, 1.125 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica gel column using a hexane/ethyl acetate 9:1 mixture as The solid obtained upon solvent removal was recrystallized from ethanol to afford thick, colorless, plate-like crystals of the title compound with a yield of 30%, m.p. = 321–325 K, 1H NMR (300 MHz, CDCl3) δ ppm: 2.54 (quin, 2H, CH2); 3.85 (t, 2H, N—CH2, J = 6Hz); 3.96 (t, 2H, O—CH2—N, J = 6Hz); 7.33–8.12 (m, 18H, CHarom).13C NMR (75 MHz, CDCl3) δ ppm: 22.16 (CH2); 33.19 (N—CH2); 34.87(N—CH2); 113.43–134.23 (CHarom); 134.33–144.11 (Cq); 155.34 (C=O); 155.65 (C=O).
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(H).
details are summarized in Table 2Supporting information
CCDC reference: 2354488
https://doi.org/10.1107/S2056989024004377/vm2302sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004377/vm2302Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004377/vm2302Isup3.cml
C31H24N4O2 | Z = 2 |
Mr = 484.54 | F(000) = 508 |
Triclinic, P1 | Dx = 1.354 Mg m−3 |
a = 9.0384 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4484 (4) Å | Cell parameters from 7750 reflections |
c = 14.9524 (6) Å | θ = 2.4–28.6° |
α = 77.267 (1)° | µ = 0.09 mm−1 |
β = 83.991 (1)° | T = 298 K |
γ = 72.708 (1)° | Thick plate, colourless |
V = 1188.16 (8) Å3 | 0.35 × 0.30 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 6318 independent reflections |
Radiation source: fine-focus sealed tube | 4347 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.2°, θmin = 2.3° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS;Krause et al., 2015) | k = −12→12 |
Tmin = 0.89, Tmax = 0.99 | l = −20→19 |
23105 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0793P)2] where P = (Fo2 + 2Fc2)/3 |
6318 reflections | (Δ/σ)max = 0.001 |
334 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.39620 (10) | 0.88674 (9) | 0.06918 (6) | 0.0490 (2) | |
O2 | 0.21475 (12) | 0.71620 (14) | 0.39102 (6) | 0.0692 (3) | |
N1 | 0.44699 (10) | 0.63291 (10) | 0.11355 (6) | 0.0352 (2) | |
N2 | 0.21498 (11) | 0.64096 (11) | 0.00336 (6) | 0.0396 (2) | |
N3 | 0.43990 (11) | 0.77981 (11) | 0.38219 (6) | 0.0395 (2) | |
N4 | 0.42341 (11) | 0.74089 (11) | 0.57324 (7) | 0.0408 (2) | |
C1 | 0.28939 (13) | 0.50787 (13) | 0.06015 (8) | 0.0379 (3) | |
C2 | 0.24951 (16) | 0.37603 (15) | 0.05881 (9) | 0.0485 (3) | |
H2 | 0.169960 | 0.381198 | 0.022410 | 0.058* | |
C3 | 0.32574 (17) | 0.23990 (15) | 0.11018 (10) | 0.0546 (4) | |
H3 | 0.299792 | 0.152567 | 0.108083 | 0.066* | |
C4 | 0.44215 (17) | 0.23383 (15) | 0.16538 (10) | 0.0544 (3) | |
H4 | 0.493638 | 0.141281 | 0.200596 | 0.065* | |
C5 | 0.48393 (15) | 0.36109 (14) | 0.16963 (9) | 0.0475 (3) | |
H5 | 0.561308 | 0.354575 | 0.207998 | 0.057* | |
C6 | 0.40876 (13) | 0.49995 (12) | 0.11567 (7) | 0.0362 (3) | |
C7 | 0.36729 (13) | 0.77086 (13) | 0.06313 (7) | 0.0349 (2) | |
C8 | 0.24934 (12) | 0.76485 (13) | 0.00243 (7) | 0.0338 (2) | |
C9 | 0.16777 (12) | 0.90221 (13) | −0.06329 (7) | 0.0359 (3) | |
C10 | 0.20206 (15) | 1.03996 (15) | −0.08165 (9) | 0.0502 (3) | |
H10 | 0.280946 | 1.051677 | −0.051211 | 0.060* | |
C11 | 0.11914 (16) | 1.15982 (16) | −0.14513 (10) | 0.0563 (4) | |
H11 | 0.142651 | 1.251697 | −0.156303 | 0.068* | |
C12 | 0.00292 (14) | 1.14611 (16) | −0.19197 (9) | 0.0492 (3) | |
H12 | −0.051781 | 1.227421 | −0.234579 | 0.059* | |
C13 | −0.03084 (16) | 1.01039 (16) | −0.17471 (10) | 0.0579 (4) | |
H13 | −0.108010 | 0.998776 | −0.206648 | 0.070* | |
C14 | 0.04859 (16) | 0.89079 (15) | −0.11040 (10) | 0.0529 (3) | |
H14 | 0.021810 | 0.800486 | −0.098289 | 0.063* | |
C15 | 0.54198 (13) | 0.78976 (13) | 0.52169 (8) | 0.0390 (3) | |
C16 | 0.65404 (14) | 0.81762 (15) | 0.56774 (9) | 0.0480 (3) | |
H16 | 0.645671 | 0.805913 | 0.631306 | 0.058* | |
C17 | 0.77608 (14) | 0.86201 (16) | 0.52021 (10) | 0.0522 (3) | |
H17 | 0.850311 | 0.880335 | 0.551234 | 0.063* | |
C18 | 0.78793 (15) | 0.87935 (15) | 0.42545 (10) | 0.0513 (3) | |
H18 | 0.871213 | 0.908817 | 0.393312 | 0.062* | |
C19 | 0.67912 (14) | 0.85389 (14) | 0.37802 (9) | 0.0465 (3) | |
H19 | 0.688651 | 0.866859 | 0.314411 | 0.056* | |
C20 | 0.55402 (13) | 0.80842 (12) | 0.42573 (8) | 0.0371 (3) | |
C21 | 0.31637 (14) | 0.73619 (15) | 0.43057 (8) | 0.0439 (3) | |
C22 | 0.31797 (13) | 0.71537 (13) | 0.53167 (8) | 0.0387 (3) | |
C23 | 0.19375 (13) | 0.66197 (13) | 0.58906 (8) | 0.0383 (3) | |
C24 | 0.13789 (15) | 0.71825 (15) | 0.66841 (9) | 0.0473 (3) | |
H24 | 0.175355 | 0.791637 | 0.683015 | 0.057* | |
C25 | 0.02711 (16) | 0.66568 (17) | 0.72557 (10) | 0.0569 (4) | |
H25 | −0.010397 | 0.704779 | 0.778051 | 0.068* | |
C26 | −0.02799 (16) | 0.55617 (16) | 0.70545 (10) | 0.0543 (3) | |
H26 | −0.102757 | 0.521512 | 0.744151 | 0.065* | |
C27 | 0.02727 (15) | 0.49781 (14) | 0.62819 (9) | 0.0485 (3) | |
H27 | −0.008983 | 0.422527 | 0.615101 | 0.058* | |
C28 | 0.13690 (14) | 0.55079 (14) | 0.56969 (8) | 0.0432 (3) | |
H28 | 0.172843 | 0.511759 | 0.517023 | 0.052* | |
C29 | 0.58258 (13) | 0.62965 (14) | 0.16149 (8) | 0.0400 (3) | |
H29A | 0.619669 | 0.715413 | 0.131354 | 0.048* | |
H29B | 0.664531 | 0.538571 | 0.155101 | 0.048* | |
C30 | 0.55317 (14) | 0.63387 (13) | 0.26271 (8) | 0.0424 (3) | |
H30A | 0.652121 | 0.610476 | 0.290478 | 0.051* | |
H30B | 0.504683 | 0.555402 | 0.291637 | 0.051* | |
C31 | 0.45142 (14) | 0.78405 (14) | 0.28279 (8) | 0.0419 (3) | |
H31A | 0.495241 | 0.864656 | 0.251294 | 0.050* | |
H31B | 0.348760 | 0.804628 | 0.260318 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0647 (6) | 0.0385 (5) | 0.0502 (5) | −0.0216 (4) | −0.0196 (4) | −0.0048 (4) |
O2 | 0.0685 (6) | 0.1113 (9) | 0.0408 (5) | −0.0518 (6) | −0.0143 (4) | −0.0002 (5) |
N1 | 0.0409 (5) | 0.0362 (5) | 0.0305 (5) | −0.0135 (4) | −0.0033 (4) | −0.0064 (4) |
N2 | 0.0472 (6) | 0.0418 (6) | 0.0344 (5) | −0.0199 (4) | −0.0024 (4) | −0.0068 (4) |
N3 | 0.0441 (5) | 0.0432 (6) | 0.0304 (5) | −0.0122 (4) | −0.0047 (4) | −0.0042 (4) |
N4 | 0.0399 (5) | 0.0469 (6) | 0.0350 (5) | −0.0121 (4) | −0.0046 (4) | −0.0060 (4) |
C1 | 0.0469 (6) | 0.0379 (6) | 0.0317 (6) | −0.0176 (5) | 0.0048 (5) | −0.0081 (5) |
C2 | 0.0617 (8) | 0.0467 (7) | 0.0462 (7) | −0.0289 (6) | 0.0051 (6) | −0.0129 (6) |
C3 | 0.0732 (9) | 0.0407 (7) | 0.0558 (8) | −0.0274 (7) | 0.0155 (7) | −0.0146 (6) |
C4 | 0.0675 (9) | 0.0340 (7) | 0.0549 (9) | −0.0119 (6) | 0.0089 (7) | −0.0037 (6) |
C5 | 0.0539 (7) | 0.0389 (7) | 0.0451 (7) | −0.0096 (6) | −0.0013 (6) | −0.0043 (6) |
C6 | 0.0431 (6) | 0.0357 (6) | 0.0307 (6) | −0.0137 (5) | 0.0054 (4) | −0.0084 (5) |
C7 | 0.0418 (6) | 0.0362 (6) | 0.0293 (6) | −0.0148 (5) | −0.0013 (4) | −0.0071 (4) |
C8 | 0.0377 (6) | 0.0388 (6) | 0.0278 (5) | −0.0148 (5) | 0.0008 (4) | −0.0083 (5) |
C9 | 0.0386 (6) | 0.0415 (6) | 0.0285 (6) | −0.0130 (5) | 0.0001 (4) | −0.0072 (5) |
C10 | 0.0562 (8) | 0.0510 (8) | 0.0483 (7) | −0.0274 (6) | −0.0160 (6) | 0.0032 (6) |
C11 | 0.0634 (9) | 0.0497 (8) | 0.0571 (9) | −0.0278 (7) | −0.0138 (7) | 0.0082 (6) |
C12 | 0.0469 (7) | 0.0509 (8) | 0.0427 (7) | −0.0106 (6) | −0.0065 (5) | 0.0028 (6) |
C13 | 0.0578 (8) | 0.0569 (9) | 0.0609 (9) | −0.0166 (7) | −0.0258 (7) | −0.0042 (7) |
C14 | 0.0584 (8) | 0.0439 (7) | 0.0602 (9) | −0.0176 (6) | −0.0219 (7) | −0.0052 (6) |
C15 | 0.0366 (6) | 0.0405 (6) | 0.0378 (6) | −0.0074 (5) | −0.0046 (5) | −0.0067 (5) |
C16 | 0.0451 (7) | 0.0571 (8) | 0.0416 (7) | −0.0124 (6) | −0.0085 (5) | −0.0096 (6) |
C17 | 0.0408 (7) | 0.0564 (8) | 0.0619 (9) | −0.0145 (6) | −0.0105 (6) | −0.0122 (7) |
C18 | 0.0433 (7) | 0.0488 (8) | 0.0613 (9) | −0.0154 (6) | 0.0035 (6) | −0.0095 (6) |
C19 | 0.0490 (7) | 0.0451 (7) | 0.0428 (7) | −0.0126 (6) | 0.0025 (5) | −0.0067 (6) |
C20 | 0.0364 (6) | 0.0340 (6) | 0.0387 (6) | −0.0065 (5) | −0.0038 (5) | −0.0065 (5) |
C21 | 0.0448 (7) | 0.0508 (7) | 0.0360 (6) | −0.0163 (6) | −0.0080 (5) | −0.0015 (5) |
C22 | 0.0407 (6) | 0.0391 (6) | 0.0342 (6) | −0.0093 (5) | −0.0048 (5) | −0.0044 (5) |
C23 | 0.0375 (6) | 0.0391 (6) | 0.0345 (6) | −0.0082 (5) | −0.0063 (4) | −0.0005 (5) |
C24 | 0.0518 (7) | 0.0475 (7) | 0.0453 (7) | −0.0173 (6) | 0.0014 (5) | −0.0118 (6) |
C25 | 0.0626 (9) | 0.0630 (9) | 0.0471 (8) | −0.0218 (7) | 0.0145 (6) | −0.0172 (7) |
C26 | 0.0537 (8) | 0.0551 (8) | 0.0530 (8) | −0.0226 (6) | 0.0049 (6) | −0.0018 (7) |
C27 | 0.0515 (7) | 0.0432 (7) | 0.0509 (8) | −0.0183 (6) | −0.0108 (6) | 0.0011 (6) |
C28 | 0.0474 (7) | 0.0441 (7) | 0.0369 (6) | −0.0111 (5) | −0.0091 (5) | −0.0045 (5) |
C29 | 0.0394 (6) | 0.0434 (7) | 0.0382 (6) | −0.0126 (5) | −0.0060 (5) | −0.0069 (5) |
C30 | 0.0516 (7) | 0.0405 (7) | 0.0337 (6) | −0.0118 (5) | −0.0117 (5) | −0.0019 (5) |
C31 | 0.0501 (7) | 0.0429 (7) | 0.0303 (6) | −0.0119 (5) | −0.0057 (5) | −0.0021 (5) |
O1—C7 | 1.2222 (13) | C13—H13 | 0.9300 |
O2—C21 | 1.2227 (13) | C14—H14 | 0.9300 |
N1—C7 | 1.3815 (14) | C15—C16 | 1.3978 (15) |
N1—C6 | 1.3917 (13) | C15—C20 | 1.4031 (16) |
N1—C29 | 1.4726 (13) | C16—C17 | 1.3701 (18) |
N2—C8 | 1.2943 (14) | C16—H16 | 0.9300 |
N2—C1 | 1.3787 (15) | C17—C18 | 1.3864 (19) |
N3—C21 | 1.3830 (15) | C17—H17 | 0.9300 |
N3—C20 | 1.3946 (14) | C18—C19 | 1.3748 (17) |
N3—C31 | 1.4714 (14) | C18—H18 | 0.9300 |
N4—C22 | 1.2959 (14) | C19—C20 | 1.3988 (16) |
N4—C15 | 1.3856 (15) | C19—H19 | 0.9300 |
C1—C2 | 1.4006 (15) | C21—C22 | 1.4819 (16) |
C1—C6 | 1.4039 (16) | C22—C23 | 1.4818 (16) |
C2—C3 | 1.367 (2) | C23—C28 | 1.3920 (16) |
C2—H2 | 0.9300 | C23—C24 | 1.3922 (17) |
C3—C4 | 1.384 (2) | C24—C25 | 1.3818 (17) |
C3—H3 | 0.9300 | C24—H24 | 0.9300 |
C4—C5 | 1.3788 (18) | C25—C26 | 1.3727 (19) |
C4—H4 | 0.9300 | C25—H25 | 0.9300 |
C5—C6 | 1.3971 (17) | C26—C27 | 1.373 (2) |
C5—H5 | 0.9300 | C26—H26 | 0.9300 |
C7—C8 | 1.4916 (14) | C27—C28 | 1.3849 (17) |
C8—C9 | 1.4879 (16) | C27—H27 | 0.9300 |
C9—C14 | 1.3891 (16) | C28—H28 | 0.9300 |
C9—C10 | 1.3892 (16) | C29—C30 | 1.5162 (16) |
C10—C11 | 1.3840 (18) | C29—H29A | 0.9700 |
C10—H10 | 0.9300 | C29—H29B | 0.9700 |
C11—C12 | 1.3732 (17) | C30—C31 | 1.5178 (17) |
C11—H11 | 0.9300 | C30—H30A | 0.9700 |
C12—C13 | 1.3691 (19) | C30—H30B | 0.9700 |
C12—H12 | 0.9300 | C31—H31A | 0.9700 |
C13—C14 | 1.3785 (18) | C31—H31B | 0.9700 |
C7—N1—C6 | 122.56 (9) | C15—C16—H16 | 119.7 |
C7—N1—C29 | 116.94 (9) | C16—C17—C18 | 119.41 (12) |
C6—N1—C29 | 120.40 (9) | C16—C17—H17 | 120.3 |
C8—N2—C1 | 120.56 (10) | C18—C17—H17 | 120.3 |
C21—N3—C20 | 122.01 (10) | C19—C18—C17 | 121.36 (12) |
C21—N3—C31 | 116.59 (9) | C19—C18—H18 | 119.3 |
C20—N3—C31 | 121.26 (10) | C17—C18—H18 | 119.3 |
C22—N4—C15 | 119.21 (10) | C18—C19—C20 | 119.80 (12) |
N2—C1—C2 | 118.84 (11) | C18—C19—H19 | 120.1 |
N2—C1—C6 | 121.69 (10) | C20—C19—H19 | 120.1 |
C2—C1—C6 | 119.39 (11) | N3—C20—C19 | 122.91 (11) |
C3—C2—C1 | 120.99 (13) | N3—C20—C15 | 118.01 (10) |
C3—C2—H2 | 119.5 | C19—C20—C15 | 119.08 (11) |
C1—C2—H2 | 119.5 | O2—C21—N3 | 121.12 (11) |
C2—C3—C4 | 119.07 (12) | O2—C21—C22 | 123.53 (11) |
C2—C3—H3 | 120.5 | N3—C21—C22 | 115.35 (10) |
C4—C3—H3 | 120.5 | N4—C22—C23 | 117.70 (10) |
C5—C4—C3 | 121.87 (13) | N4—C22—C21 | 123.37 (11) |
C5—C4—H4 | 119.1 | C23—C22—C21 | 118.92 (10) |
C3—C4—H4 | 119.1 | C28—C23—C24 | 118.47 (11) |
C4—C5—C6 | 119.28 (13) | C28—C23—C22 | 122.47 (11) |
C4—C5—H5 | 120.4 | C24—C23—C22 | 118.95 (10) |
C6—C5—H5 | 120.4 | C25—C24—C23 | 120.36 (12) |
N1—C6—C5 | 123.06 (11) | C25—C24—H24 | 119.8 |
N1—C6—C1 | 117.58 (10) | C23—C24—H24 | 119.8 |
C5—C6—C1 | 119.37 (11) | C26—C25—C24 | 120.48 (13) |
O1—C7—N1 | 120.38 (10) | C26—C25—H25 | 119.8 |
O1—C7—C8 | 124.38 (10) | C24—C25—H25 | 119.8 |
N1—C7—C8 | 115.24 (9) | C25—C26—C27 | 119.99 (12) |
N2—C8—C9 | 117.15 (9) | C25—C26—H26 | 120.0 |
N2—C8—C7 | 122.00 (10) | C27—C26—H26 | 120.0 |
C9—C8—C7 | 120.84 (9) | C26—C27—C28 | 120.14 (12) |
C14—C9—C10 | 117.63 (11) | C26—C27—H27 | 119.9 |
C14—C9—C8 | 117.09 (11) | C28—C27—H27 | 119.9 |
C10—C9—C8 | 125.28 (10) | C27—C28—C23 | 120.55 (12) |
C11—C10—C9 | 120.18 (11) | C27—C28—H28 | 119.7 |
C11—C10—H10 | 119.9 | C23—C28—H28 | 119.7 |
C9—C10—H10 | 119.9 | N1—C29—C30 | 115.05 (9) |
C12—C11—C10 | 121.47 (12) | N1—C29—H29A | 108.5 |
C12—C11—H11 | 119.3 | C30—C29—H29A | 108.5 |
C10—C11—H11 | 119.3 | N1—C29—H29B | 108.5 |
C13—C12—C11 | 118.69 (12) | C30—C29—H29B | 108.5 |
C13—C12—H12 | 120.7 | H29A—C29—H29B | 107.5 |
C11—C12—H12 | 120.7 | C29—C30—C31 | 114.50 (10) |
C12—C13—C14 | 120.56 (12) | C29—C30—H30A | 108.6 |
C12—C13—H13 | 119.7 | C31—C30—H30A | 108.6 |
C14—C13—H13 | 119.7 | C29—C30—H30B | 108.6 |
C13—C14—C9 | 121.44 (12) | C31—C30—H30B | 108.6 |
C13—C14—H14 | 119.3 | H30A—C30—H30B | 107.6 |
C9—C14—H14 | 119.3 | N3—C31—C30 | 110.11 (9) |
N4—C15—C16 | 118.36 (11) | N3—C31—H31A | 109.6 |
N4—C15—C20 | 121.96 (10) | C30—C31—H31A | 109.6 |
C16—C15—C20 | 119.66 (11) | N3—C31—H31B | 109.6 |
C17—C16—C15 | 120.69 (12) | C30—C31—H31B | 109.6 |
C17—C16—H16 | 119.7 | H31A—C31—H31B | 108.2 |
C8—N2—C1—C2 | −179.66 (10) | C20—C15—C16—C17 | −0.43 (19) |
C8—N2—C1—C6 | −2.80 (17) | C15—C16—C17—C18 | 0.0 (2) |
N2—C1—C2—C3 | 176.47 (11) | C16—C17—C18—C19 | 0.4 (2) |
C6—C1—C2—C3 | −0.46 (18) | C17—C18—C19—C20 | −0.5 (2) |
C1—C2—C3—C4 | 1.1 (2) | C21—N3—C20—C19 | −179.43 (11) |
C2—C3—C4—C5 | −0.4 (2) | C31—N3—C20—C19 | 5.04 (17) |
C3—C4—C5—C6 | −1.1 (2) | C21—N3—C20—C15 | 0.85 (17) |
C7—N1—C6—C5 | −177.01 (10) | C31—N3—C20—C15 | −174.67 (10) |
C29—N1—C6—C5 | 6.80 (16) | C18—C19—C20—N3 | −179.64 (11) |
C7—N1—C6—C1 | 3.35 (15) | C18—C19—C20—C15 | 0.07 (18) |
C29—N1—C6—C1 | −172.84 (10) | N4—C15—C20—N3 | 1.57 (17) |
C4—C5—C6—N1 | −177.90 (10) | C16—C15—C20—N3 | −179.89 (11) |
C4—C5—C6—C1 | 1.74 (18) | N4—C15—C20—C19 | −178.15 (10) |
N2—C1—C6—N1 | 1.83 (16) | C16—C15—C20—C19 | 0.38 (18) |
C2—C1—C6—N1 | 178.67 (10) | C20—N3—C21—O2 | 177.67 (12) |
N2—C1—C6—C5 | −177.83 (10) | C31—N3—C21—O2 | −6.61 (18) |
C2—C1—C6—C5 | −0.99 (17) | C20—N3—C21—C22 | −2.68 (17) |
C6—N1—C7—O1 | 173.86 (10) | C31—N3—C21—C22 | 173.04 (10) |
C29—N1—C7—O1 | −9.82 (16) | C15—N4—C22—C23 | 179.48 (10) |
C6—N1—C7—C8 | −6.86 (15) | C15—N4—C22—C21 | −0.21 (18) |
C29—N1—C7—C8 | 169.45 (9) | O2—C21—C22—N4 | −177.92 (12) |
C1—N2—C8—C9 | 177.83 (9) | N3—C21—C22—N4 | 2.43 (18) |
C1—N2—C8—C7 | −1.19 (16) | O2—C21—C22—C23 | 2.39 (19) |
O1—C7—C8—N2 | −174.88 (11) | N3—C21—C22—C23 | −177.26 (10) |
N1—C7—C8—N2 | 5.88 (16) | N4—C22—C23—C28 | −139.78 (12) |
O1—C7—C8—C9 | 6.14 (17) | C21—C22—C23—C28 | 39.93 (16) |
N1—C7—C8—C9 | −173.10 (9) | N4—C22—C23—C24 | 36.31 (16) |
N2—C8—C9—C14 | 7.41 (16) | C21—C22—C23—C24 | −143.98 (12) |
C7—C8—C9—C14 | −173.56 (11) | C28—C23—C24—C25 | −0.83 (19) |
N2—C8—C9—C10 | −172.08 (11) | C22—C23—C24—C25 | −177.07 (11) |
C7—C8—C9—C10 | 6.96 (18) | C23—C24—C25—C26 | 0.7 (2) |
C14—C9—C10—C11 | −0.2 (2) | C24—C25—C26—C27 | 0.2 (2) |
C8—C9—C10—C11 | 179.29 (12) | C25—C26—C27—C28 | −1.0 (2) |
C9—C10—C11—C12 | −0.6 (2) | C26—C27—C28—C23 | 0.87 (19) |
C10—C11—C12—C13 | 0.2 (2) | C24—C23—C28—C27 | 0.03 (17) |
C11—C12—C13—C14 | 1.1 (2) | C22—C23—C28—C27 | 176.13 (11) |
C12—C13—C14—C9 | −2.0 (2) | C7—N1—C29—C30 | 99.27 (12) |
C10—C9—C14—C13 | 1.5 (2) | C6—N1—C29—C30 | −84.34 (12) |
C8—C9—C14—C13 | −178.05 (13) | N1—C29—C30—C31 | −69.98 (13) |
C22—N4—C15—C16 | 179.59 (11) | C21—N3—C31—C30 | −92.34 (13) |
C22—N4—C15—C20 | −1.86 (17) | C20—N3—C31—C30 | 83.41 (13) |
N4—C15—C16—C17 | 178.15 (12) | C29—C30—C31—N3 | −175.74 (9) |
Cg6 is the centroid of the C23–C28 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.58 | 3.3871 (16) | 146 |
C10—H10···O1 | 0.93 | 2.22 | 2.8531 (16) | 124 |
C27—H27···O2ii | 0.93 | 2.59 | 3.4603 (18) | 155 |
C30—H30A···Cg6iii | 0.97 | 2.75 | 3.6013 (14) | 147 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, EME and YR; methodology, AS; investigation, NA; writing (original draft), JTM and NA; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR;
determination and validation, JTM; resources, AYAAReferences
Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037–1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Krist. New Crys. Struct. 236, 173–175. CAS Google Scholar
Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023). J. Mol. Struct. 1286, 135622. Web of Science CSD CrossRef Google Scholar
Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300–304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181633. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Madison, WI. Google Scholar
Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421–437. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595. Web of Science CSD CrossRef PubMed Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160. Google Scholar
Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. 563406. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202–208. Web of Science CrossRef PubMed CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.