research communications
H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-benzimidazol-2-one
Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, eScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, fLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and gLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: mustapha.zouhair@um5r.ac.ma
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the Hirshfeld surface analysis of the reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state.
CCDC reference: 2352892
1. Chemical context
et al., 2022), antibacterial (Al-Ghulikah et al., 2023; Saber et al., 2020), anticancer (Dimov et al., 2021) and antiviral (Ferro et al., 2017) activities.
comprising the benzimidazolone fragment have attracted interest due to their remarkable usefulness in various therapeutic applications. Extensive research has revealed several pharmacological and biological properties associated with these compounds, including antiproliferative (GuillonOur current studies focus on the syntheses of new benzimidazol-2-one derivatives by combining them with the 1,2,3-triazole moiety by using `click chemistry'. Specifically, the copper-catalysed azide-alkyne cycloaddition (CuAAC) method has proved useful in obtaining the title compound, 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-benzimidazol-2-one (Fig. 1). In this context, we determined its performed a Hirshfeld surface analysis and calculated intermolecular interaction energies and energy frameworks. A comparison of the experimentally determined molecular structure in the solid state with the molecular structure optimized by using density functional theory (DFT) at the B3LYP/6-311G(d,p) level was also carried out.
2. Structural commentary
In the molecular structure of the title compound (Fig. 2), the benzimidazole entity is almost planar (r.m.s. deviation of atoms C1–C7/N1–N2/O1 is 0.0262 Å); rings A (C1–C6) and B (N1/N2/C1/C2/C7) are oriented at a dihedral angle of 1.20 (4)°. The triazole ring C (N3–N5/C12/C13) is oriented almost perpendicular to the benzimidazole fragment with dihedral angles of A/C = 85.36 (4)° and B/C = 86.52 (4)°. Atoms O1, C8 and C11 are −0.0139 (9) Å, 0.0759 (12) Å and −0.0632 (12) Å away, while atoms C11 and C14 are 0.0245 (11) Å and −0.0835 (13) Å away from the best least-squares planes of rings B and C, respectively. Hence, they appear almost coplanar with the corresponding ring planes.
3. Supramolecular features
In the crystal, bifurcated C—H⋯O hydrogen bonds (Table 1, Fig. 3) link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions (Table 1) may also be effective in the stabilization of the crystal packing.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the ; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue surfaces contacts shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS does not reveal any relevant π–π interactions (Fig. 6). However, the shape-index shows C—H⋯π interactions present as `red p-holes', which are related to the electron ring interactions between the CH groups and the centroids of the aromatic rings of neighbouring molecules (Table 1; Fig. 6). The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/ O⋯H, C⋯N/N⋯C, C⋯C and C⋯O/O⋯C interactions (McKinnon et al., 2007) are illustrated in Fig. 7b–h, respectively, together with their relative contributions to the HS. The most important interaction is H⋯H contributing with 57.9% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.20 Å. As a result of the presence of C—H⋯π interactions, the H⋯C/C⋯H contacts contribute 18.1% to the overall crystal packing, as reflected in Fig. 7c with the tips at de + di = 2.66 Å. The symmetrical pair of wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 7d), with 14.9% contribution to the HS, has the tips at de + di = 2.66 Å. The symmetrical pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 7e), 8.3% contribution to the HS, have the tips at de + di = 2.22 Å. Finally, the C⋯N/N⋯C (Fig. 7f), C⋯C (Fig. 7g) and C⋯O/O⋯C (Fig. 7h) interactions make small contibutions of 0.4%, 0.2% and 0.1%, respectively, to the HS.
of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977The nearest neighbour environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The HS representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯N/N⋯H interactions in Fig. 8a–c, respectively. The HS analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯N/N⋯H interactions suggest that van der Waals and hydrogen-bonding interactions play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–B3LYP/6–311G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within a radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −32.1 (Eele), −9.4 (Epol), −53.7 (Edis), 48.4 (Erep) and −57.7 (Etot) for C10—H10B⋯O1 and −21.0 (Eele), −7.7 (Epol), −65.2 (Edis), 51.6 (Erep) and −52.8 (Etot) for the C11—H11B⋯O1 hydrogen frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 9a–c). The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via dispersion energies in the of the title compound.
6. DFT calculations
The molecular structure in the gas phase was optimized using density functional theory (DFT) with the B3LYP functional and 6-311G(d,p) basis-set calculations, as implemented in GAUSSIAN 09 (Frisch et al. 2009). The optimized parameters, including bond lengths and angles, showed satisfactory agreement with the experimental structural data (Table 2). The largest differences between the calculated and experimental values were observed for the C1—N1 (0.04 Å), N1—C7 and N1—C8 (0.02 Å) bond lengths, the N4—N3—C12 (0.82°) bond angle and the torsion angle N3—C12—C13—N5 (0.3°). These differences may be due to the fact that the calculations are based on an isolated molecule at 0 K, while the experimental results were obtained from interacting molecules in the solid state, where intra- and intermolecular interactions with neighbouring molecules are present.
|
7. Database survey
A survey of the Cambridge Structural Database (CSD, updated March 2024; Groom et al., 2016) indicates that there are several molecules similar to the title compound (Fig. 10). These include I (CSD refcode YIVWUZ; Zouhair et al., 2023), II with R1 = –C6H9, R2 = –C6H5 and R3 = H (CSD refcode PAZFOO; Adardour et al., 2017), III with R1 = –C(CH3)=CH2, R2 = –C10H22 and R3 = –H (CSD refcode ETAJOB; Saber et al., 2021) and IV with R1 = –CH2C6H5, R2 = -C12H26 and R3 = H (CSD refcode ETAKAO; Saber et al., 2021). The benzimidazol-2-one unit in all of these compounds is almost planar, with the dihedral angle between the constituent rings being less than 1°, or having the nitrogen atom bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms.
8. Synthesis and crystallization
To a solution of 2.87 mmol of 1-(prop-1-en-2-yl)-3-(prop-2-ynyl)-1H-benzimidazol-2-one and 0.45 mmol of 1-azidobutane in 10 ml of ethanol were added 1.64 mmol of CuSO4 and 3.73 mmol of sodium ascorbate dissolved in 10 ml of distilled water. The reaction mixture was stirred for 10 h at room temperature and monitored by TLC. After filtration and concentration of the solution under reduced pressure, the residue obtained was chromatographed on a silica gel column using ethyl acetate/hexane (3/1) as The resulting solid was filtered off, washed with water, dried, and then recrystallized from ethanol, yield: 73%.
9. Refinement
Crystal data, data collection and structure . Methylene hydrogens attached to C10 were located in a difference-Fourier map, and were included as riding contributions in idealized positions with Uiso(H) = 1.2Ueq(C). Aromatic H atoms were treated the same way, and methyl H atoms with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2352892
https://doi.org/10.1107/S2056989024004043/wm5715sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004043/wm5715Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004043/wm5715Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004043/wm5715Isup4.cml
C17H21N5O | F(000) = 664 |
Mr = 311.39 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 5.7032 (1) Å | Cell parameters from 10273 reflections |
b = 24.2184 (5) Å | θ = 3.6–76.4° |
c = 11.8683 (2) Å | µ = 0.66 mm−1 |
β = 91.312 (2)° | T = 160 K |
V = 1638.85 (5) Å3 | Plate, colourless |
Z = 4 | 0.19 × 0.12 × 0.05 mm |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3435 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 2968 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.3801 pixels mm-1 | θmax = 76.8°, θmin = 3.7° |
ω scans | h = −7→7 |
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2023) using a multifaceted crystal model (Clark & Reid, 1995)] | k = −30→26 |
Tmin = 0.894, Tmax = 0.971 | l = −14→14 |
19825 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4935P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.22 e Å−3 |
3435 reflections | Δρmin = −0.21 e Å−3 |
219 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0018 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.57633 (19) | 0.82949 (4) | 0.42568 (9) | 0.0208 (2) | |
N1 | 0.71001 (16) | 0.82797 (4) | 0.52597 (8) | 0.0223 (2) | |
O1 | 1.04428 (14) | 0.77946 (4) | 0.58607 (6) | 0.02597 (19) | |
C2 | 0.68397 (19) | 0.79364 (4) | 0.35005 (9) | 0.0202 (2) | |
N2 | 0.87645 (16) | 0.77053 (4) | 0.40675 (7) | 0.0203 (2) | |
N3 | 1.17211 (17) | 0.63652 (4) | 0.43348 (9) | 0.0262 (2) | |
C3 | 0.5972 (2) | 0.78704 (5) | 0.24096 (9) | 0.0252 (2) | |
H3 | 0.671876 | 0.763257 | 0.189186 | 0.030* | |
C4 | 0.3964 (2) | 0.81658 (5) | 0.21003 (10) | 0.0298 (3) | |
H4 | 0.332148 | 0.812748 | 0.135891 | 0.036* | |
N4 | 1.08726 (18) | 0.59076 (4) | 0.47758 (9) | 0.0300 (2) | |
C5 | 0.2882 (2) | 0.85168 (5) | 0.28603 (11) | 0.0302 (3) | |
H5 | 0.151175 | 0.871223 | 0.262565 | 0.036* | |
N5 | 0.85618 (17) | 0.59867 (4) | 0.48951 (8) | 0.0245 (2) | |
C6 | 0.3761 (2) | 0.85880 (5) | 0.39558 (10) | 0.0264 (2) | |
H6 | 0.301892 | 0.882696 | 0.447298 | 0.032* | |
C7 | 0.89510 (19) | 0.79157 (5) | 0.51438 (9) | 0.0206 (2) | |
H10A | 0.459 (3) | 0.8759 (7) | 0.7493 (13) | 0.037 (4)* | |
H10B | 0.365 (3) | 0.8256 (7) | 0.6610 (13) | 0.041 (4)* | |
C8 | 0.6746 (2) | 0.86076 (5) | 0.62539 (9) | 0.0235 (2) | |
C9 | 0.8628 (2) | 0.90232 (6) | 0.65046 (12) | 0.0349 (3) | |
H9A | 1.013615 | 0.883371 | 0.660827 | 0.052* | |
H9B | 0.825804 | 0.922450 | 0.719442 | 0.052* | |
H9C | 0.872346 | 0.928362 | 0.587528 | 0.052* | |
C10 | 0.4838 (2) | 0.85325 (5) | 0.68373 (11) | 0.0296 (3) | |
C11 | 1.03801 (19) | 0.72874 (5) | 0.36645 (9) | 0.0221 (2) | |
H11A | 1.200895 | 0.740317 | 0.384875 | 0.027* | |
H11B | 1.021480 | 0.725930 | 0.283427 | 0.027* | |
C12 | 0.99452 (19) | 0.67315 (5) | 0.41755 (9) | 0.0201 (2) | |
C13 | 0.79133 (19) | 0.64923 (5) | 0.45341 (9) | 0.0230 (2) | |
H13 | 0.638578 | 0.664893 | 0.452876 | 0.028* | |
C14 | 0.7134 (2) | 0.55616 (5) | 0.54332 (11) | 0.0289 (3) | |
H14A | 0.746715 | 0.519827 | 0.508967 | 0.035* | |
H14B | 0.545234 | 0.564507 | 0.529705 | 0.035* | |
C15 | 0.7638 (2) | 0.55325 (5) | 0.66936 (11) | 0.0297 (3) | |
H15A | 0.733683 | 0.589859 | 0.703238 | 0.036* | |
H15B | 0.931469 | 0.544300 | 0.682716 | 0.036* | |
C16 | 0.6139 (3) | 0.51012 (6) | 0.72697 (12) | 0.0392 (3) | |
H16A | 0.446195 | 0.519093 | 0.713803 | 0.047* | |
H16B | 0.643818 | 0.473503 | 0.693086 | 0.047* | |
C17 | 0.6652 (3) | 0.50730 (6) | 0.85305 (13) | 0.0462 (4) | |
H17A | 0.832201 | 0.499571 | 0.866492 | 0.069* | |
H17B | 0.571337 | 0.477838 | 0.886196 | 0.069* | |
H17C | 0.625225 | 0.542686 | 0.887757 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0202 (5) | 0.0196 (5) | 0.0226 (5) | −0.0020 (4) | −0.0017 (4) | 0.0017 (4) |
N1 | 0.0207 (4) | 0.0248 (5) | 0.0214 (5) | 0.0030 (4) | −0.0015 (3) | −0.0022 (4) |
O1 | 0.0235 (4) | 0.0322 (4) | 0.0221 (4) | 0.0034 (3) | −0.0036 (3) | 0.0013 (3) |
C2 | 0.0193 (5) | 0.0188 (5) | 0.0223 (5) | −0.0020 (4) | −0.0008 (4) | 0.0037 (4) |
N2 | 0.0203 (4) | 0.0214 (5) | 0.0193 (4) | 0.0022 (4) | −0.0003 (3) | 0.0006 (3) |
N3 | 0.0205 (5) | 0.0255 (5) | 0.0329 (5) | 0.0027 (4) | 0.0022 (4) | 0.0050 (4) |
C3 | 0.0283 (6) | 0.0252 (6) | 0.0220 (5) | −0.0036 (5) | −0.0017 (4) | 0.0010 (4) |
C4 | 0.0309 (6) | 0.0318 (6) | 0.0262 (6) | −0.0047 (5) | −0.0081 (5) | 0.0067 (5) |
N4 | 0.0223 (5) | 0.0254 (5) | 0.0424 (6) | 0.0038 (4) | 0.0038 (4) | 0.0068 (4) |
C5 | 0.0233 (6) | 0.0291 (6) | 0.0379 (7) | 0.0002 (5) | −0.0072 (5) | 0.0086 (5) |
N5 | 0.0203 (5) | 0.0228 (5) | 0.0302 (5) | −0.0011 (4) | 0.0002 (4) | 0.0026 (4) |
C6 | 0.0224 (5) | 0.0235 (6) | 0.0332 (6) | 0.0016 (4) | −0.0008 (4) | 0.0028 (5) |
C7 | 0.0195 (5) | 0.0215 (5) | 0.0210 (5) | −0.0009 (4) | 0.0010 (4) | 0.0019 (4) |
C8 | 0.0248 (5) | 0.0214 (5) | 0.0241 (5) | 0.0025 (4) | −0.0027 (4) | −0.0035 (4) |
C9 | 0.0308 (6) | 0.0317 (7) | 0.0422 (7) | −0.0055 (5) | −0.0005 (5) | −0.0098 (5) |
C10 | 0.0275 (6) | 0.0325 (6) | 0.0290 (6) | 0.0029 (5) | 0.0018 (5) | −0.0057 (5) |
C11 | 0.0221 (5) | 0.0224 (5) | 0.0219 (5) | 0.0022 (4) | 0.0042 (4) | 0.0016 (4) |
C12 | 0.0198 (5) | 0.0220 (5) | 0.0186 (5) | 0.0017 (4) | −0.0012 (4) | −0.0008 (4) |
C13 | 0.0189 (5) | 0.0234 (5) | 0.0268 (5) | 0.0019 (4) | −0.0007 (4) | 0.0022 (4) |
C14 | 0.0259 (6) | 0.0237 (6) | 0.0372 (7) | −0.0056 (5) | 0.0001 (5) | 0.0038 (5) |
C15 | 0.0291 (6) | 0.0242 (6) | 0.0358 (7) | −0.0014 (5) | 0.0025 (5) | 0.0029 (5) |
C16 | 0.0488 (8) | 0.0292 (7) | 0.0401 (7) | −0.0074 (6) | 0.0097 (6) | 0.0037 (5) |
C17 | 0.0656 (10) | 0.0335 (7) | 0.0399 (8) | 0.0074 (7) | 0.0122 (7) | 0.0062 (6) |
C1—N1 | 1.3992 (14) | C8—C10 | 1.3158 (17) |
C1—C2 | 1.4007 (15) | C9—H9A | 0.9800 |
C1—C6 | 1.3847 (16) | C9—H9B | 0.9800 |
N1—C7 | 1.3847 (14) | C9—H9C | 0.9800 |
N1—C8 | 1.4402 (14) | C10—H10A | 0.966 (16) |
O1—C7 | 1.2250 (13) | C10—H10B | 0.987 (17) |
C2—N2 | 1.3919 (13) | C11—H11A | 0.9900 |
C2—C3 | 1.3846 (16) | C11—H11B | 0.9900 |
N2—C7 | 1.3770 (14) | C11—C12 | 1.4995 (15) |
N2—C11 | 1.4568 (14) | C12—C13 | 1.3719 (15) |
N3—N4 | 1.3222 (14) | C13—H13 | 0.9500 |
N3—C12 | 1.3564 (14) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C3—C4 | 1.3924 (17) | C14—C15 | 1.5184 (17) |
C4—H4 | 0.9500 | C15—H15A | 0.9900 |
C4—C5 | 1.3938 (19) | C15—H15B | 0.9900 |
N4—N5 | 1.3424 (13) | C15—C16 | 1.5218 (17) |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
C5—C6 | 1.3933 (17) | C16—H16B | 0.9900 |
N5—C13 | 1.3464 (15) | C16—C17 | 1.520 (2) |
N5—C14 | 1.4678 (15) | C17—H17A | 0.9800 |
C6—H6 | 0.9500 | C17—H17B | 0.9800 |
C8—C9 | 1.4965 (16) | C17—H17C | 0.9800 |
N1—C1—C2 | 106.90 (9) | H9B—C9—H9C | 109.5 |
C6—C1—N1 | 131.54 (11) | H10A—C10—H10B | 119.5 (13) |
C6—C1—C2 | 121.57 (10) | C8—C10—H10A | 119.0 (9) |
C1—N1—C8 | 126.77 (9) | C8—C10—H10B | 121.5 (9) |
C7—N1—C1 | 109.51 (9) | N2—C11—H11A | 109.1 |
C7—N1—C8 | 123.64 (9) | N2—C11—H11B | 109.1 |
N2—C2—C1 | 106.96 (9) | N2—C11—C12 | 112.28 (9) |
C3—C2—C1 | 121.22 (10) | H11A—C11—H11B | 107.9 |
C3—C2—N2 | 131.81 (11) | C12—C11—H11A | 109.1 |
C2—N2—C11 | 128.19 (9) | C12—C11—H11B | 109.1 |
C7—N2—C2 | 110.06 (9) | N3—C12—C11 | 120.90 (10) |
C7—N2—C11 | 121.71 (9) | N3—C12—C13 | 108.30 (10) |
N4—N3—C12 | 108.94 (9) | C13—C12—C11 | 130.79 (10) |
C2—C3—H3 | 121.3 | N5—C13—C12 | 104.77 (10) |
C2—C3—C4 | 117.47 (11) | N5—C13—H13 | 127.6 |
C4—C3—H3 | 121.3 | C12—C13—H13 | 127.6 |
C3—C4—H4 | 119.5 | N5—C14—H14A | 109.3 |
C3—C4—C5 | 121.10 (11) | N5—C14—H14B | 109.3 |
C5—C4—H4 | 119.5 | N5—C14—C15 | 111.53 (10) |
N3—N4—N5 | 106.93 (9) | H14A—C14—H14B | 108.0 |
C4—C5—H5 | 119.2 | C15—C14—H14A | 109.3 |
C6—C5—C4 | 121.62 (11) | C15—C14—H14B | 109.3 |
C6—C5—H5 | 119.2 | C14—C15—H15A | 109.1 |
N4—N5—C13 | 111.07 (9) | C14—C15—H15B | 109.1 |
N4—N5—C14 | 120.09 (9) | C14—C15—C16 | 112.28 (11) |
C13—N5—C14 | 128.71 (10) | H15A—C15—H15B | 107.9 |
C1—C6—C5 | 117.01 (11) | C16—C15—H15A | 109.1 |
C1—C6—H6 | 121.5 | C16—C15—H15B | 109.1 |
C5—C6—H6 | 121.5 | C15—C16—H16A | 109.2 |
O1—C7—N1 | 127.03 (10) | C15—C16—H16B | 109.2 |
O1—C7—N2 | 126.40 (10) | H16A—C16—H16B | 107.9 |
N2—C7—N1 | 106.56 (9) | C17—C16—C15 | 112.07 (12) |
N1—C8—C9 | 114.85 (10) | C17—C16—H16A | 109.2 |
C10—C8—N1 | 119.21 (11) | C17—C16—H16B | 109.2 |
C10—C8—C9 | 125.91 (11) | C16—C17—H17A | 109.5 |
C8—C9—H9A | 109.5 | C16—C17—H17B | 109.5 |
C8—C9—H9B | 109.5 | C16—C17—H17C | 109.5 |
C8—C9—H9C | 109.5 | H17A—C17—H17B | 109.5 |
H9A—C9—H9B | 109.5 | H17A—C17—H17C | 109.5 |
H9A—C9—H9C | 109.5 | H17B—C17—H17C | 109.5 |
C1—N1—C7—O1 | −178.68 (11) | C3—C2—N2—C11 | −4.13 (19) |
C1—N1—C7—N2 | 0.08 (12) | C3—C4—C5—C6 | 0.16 (19) |
C1—N1—C8—C9 | −112.17 (13) | C4—C5—C6—C1 | 0.11 (18) |
C1—N1—C8—C10 | 66.21 (16) | N4—N3—C12—C11 | −178.92 (10) |
C1—C2—N2—C7 | −1.17 (12) | N4—N3—C12—C13 | 0.13 (13) |
C1—C2—N2—C11 | 176.71 (10) | N4—N5—C13—C12 | 0.08 (13) |
C1—C2—C3—C4 | −1.20 (17) | N4—N5—C14—C15 | 71.86 (14) |
N1—C1—C2—N2 | 1.18 (12) | N5—C14—C15—C16 | 178.92 (11) |
N1—C1—C2—C3 | −178.09 (10) | C6—C1—N1—C7 | 179.65 (12) |
N1—C1—C6—C5 | 178.57 (12) | C6—C1—N1—C8 | −3.6 (2) |
C2—C1—N1—C7 | −0.79 (12) | C6—C1—C2—N2 | −179.20 (10) |
C2—C1—N1—C8 | 175.93 (10) | C6—C1—C2—C3 | 1.53 (17) |
C2—C1—C6—C5 | −0.93 (17) | C7—N1—C8—C9 | 64.12 (15) |
C2—N2—C7—N1 | 0.68 (12) | C7—N1—C8—C10 | −117.50 (13) |
C2—N2—C7—O1 | 179.46 (11) | C7—N2—C11—C12 | 72.83 (13) |
C2—N2—C11—C12 | −104.83 (12) | C8—N1—C7—O1 | 4.47 (18) |
C2—C3—C4—C5 | 0.38 (18) | C8—N1—C7—N2 | −176.77 (10) |
N2—C2—C3—C4 | 179.74 (11) | C11—N2—C7—N1 | −177.36 (9) |
N2—C11—C12—N3 | −150.31 (10) | C11—N2—C7—O1 | 1.41 (17) |
N2—C11—C12—C13 | 30.88 (16) | C11—C12—C13—N5 | 178.80 (11) |
N3—N4—N5—C13 | 0.00 (13) | C12—N3—N4—N5 | −0.08 (13) |
N3—N4—N5—C14 | −176.20 (10) | C13—N5—C14—C15 | −103.59 (14) |
N3—C12—C13—N5 | −0.12 (12) | C14—N5—C13—C12 | 175.86 (11) |
C3—C2—N2—C7 | 177.99 (12) | C14—C15—C16—C17 | 179.91 (12) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O1i | 0.987 (17) | 2.303 (17) | 3.2691 (16) | 165.9 (13) |
C11—H11B···O1ii | 0.99 | 2.35 | 3.3346 (14) | 171 |
C11—H11A···Cg1i | 0.99 | 2.70 | 3.4833 (12) | 136 |
C15—H15A···Cg1iii | 0.99 | 2.90 | 3.8400 (13) | 159 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z−1/2; (iii) x, −y−1/2, z−3/2. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
C1—N1 | 1.3992 (14) | 1.352 |
N1—C7 | 1.3847 (14) | 1.364 |
N1—C8 | 1.4402 (14) | 1.461 |
O1—C7 | 1.2250 (13) | 1.235 |
C2—N2 | 1.3919 (13) | 1.378 |
N2—C7 | 1.3770 (14) | 1.382 |
N2—C11 | 1.4568 (14) | 1.438 |
N3—N4 | 1.3222 (14) | 1.311 |
N4—N3—C12 | 108.94 (9) | 108.12 |
N3—N4—N5 | 106.93 (9) | 106.47 |
N4—N5—C13 | 111.07 (9) | 111.64 |
N4—N5—C14 | 120.09 (9) | 120.71 |
C13—N5—C14 | 128.71 (10) | 128.48 |
N2—C7—N1 | 106.56 (9) | 106.29 |
N3—N4—N5—C13 | 0.00 (13) | 0.02 |
N3—C12—C13—N5 | –0.12 (12) | 0.18 |
C1—N1—C7—O1 | –178.68 (11) | –178.74 |
C1—N1—C7—N2 | 0.08 (12) | 0.07 |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Adardour, M., Loughzail, M., Dahaoui, S., Baouid, A. & Berraho, M. (2017). IUCrData, 2, x170907. Google Scholar
Al-Ghulikah, H., Ghabi, A., haouas, A., Mtiraoui, H., Jeanneau, E. & Msaddek, M. (2023). Arab. J. Chem. 16, 104566. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dimov, S., Mavrova, A. T., Yancheva, D., Nikolova, B. & Tsoneva, I. (2021). Anticancer Agents Med. Chem. 21, 1441–1450. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferro, S., Buemi, M. R., De Luca, L., Agharbaoui, F. E., Pannecouque, C. & Monforte, A. M. (2017). Bioorg. & Med. Chem. 25, 3861–3870. Web of Science CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillon, J., Savrimoutou, S., Albenque-Rubio, S., Pinaud, N., Moreau, S. & Desplat, V. (2022). Molbank, M1333. Web of Science CSD CrossRef Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku, OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.. Google Scholar
Saber, A., Anouar, E. H., Sebbar, G., Ibrahimi, B. E., Srhir, M., Hökelek, T., Mague, J. T., Ghayati, L. E., Sebbar, N. K. & Essassi, E. M. (2021). J. Mol. Struct. 1242, 130719. Web of Science CSD CrossRef Google Scholar
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zouhair, M., El Ghayati, L., El Monfalouti, H., Abchihi, H., Hökelek, T., Ahmed, M., Mague, J. T. & Sebbar, N. K. (2023). Acta Cryst. E79, 1179–1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.