research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of poly[di-μ3-chlorido-di-μ2-chlorido-bis­­[4-methyl-N-(pyridin-2-yl­methyl­­idene)aniline]dicadmium(II)]

crossmark logo

aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand, bOffice of Research, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand, and cNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 April 2024; accepted 8 May 2024; online 21 May 2024)

The title coordination polymer with the 4-methyl-N-(pyridin-2-yl­methyl­idene)aniline Schiff base ligand (L, C13H12N2), [Cd2Cl4(C13H12N2)]n (1), exhibits a columnar structure extending parallel to [100]. The columns are aligned in parallel and are decorated with chelating L ligands on both sides. They are elongated into a supra­molecular sheet extending parallel to (01[\overline{1}]) through ππ stacking inter­actions involving L ligands of neighbouring columns. Adjacent sheets are packed into the tri-periodic supra­molecular network through weak C—H⋯Cl hydrogen-bonding inter­actions that involve the phenyl CH groups and chlorido ligands. The thermal stability and photoluminescent properties of (1) have also been examined.

1. Chemical context

The design and construction of coordination polymers (CPs) have received continuous attention over the past three decades due to their intriguing functionalities (Batten et al., 2008[Batten, S. R., Neville, S. M. & Turner, D. R. (2008). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.]). These materials are assembled through the coordination bonds between metal ions and organic linkers, whereby their topologies and dimensionalities are highly dependent on synthetic parameters as well as the chemical nature of starting materials (Jiajaroen et al., 2022[Jiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420-7435.]; Li et al., 2022[Li, A., Chamoreau, L.-M., Baptiste, B., Delbes, L., Li, Y., Lloret, F., Journaux, Y. & Lisnard, L. (2022). Cryst. Growth Des. 22, 7518-7526.]). Among many others, CPs of group 12 metal ions have attracted great inter­est for their potential applications in photoluminescence and optoelectronics (Ren et al., 2014[Ren, H.-Y., Han, C.-Y., Qu, M. & Zhang, X.-M. (2014). RSC Adv. 4, 49090-49097.]; Shang et al., 2020[Shang, W., Zhu, X., Liang, T., Du, C., Hu, L., Li, T. & Liu, M. (2020). Angew. Chem. Int. Ed. 59, 12811-12816.]). In this context, organic linkers containing carboxyl­ates and/or nitro­gen heterocycles on their backbone have been widely used due to their abundant coordination sites when reacting with d10 metal ions (Zhang et al., 2020[Zhang, X., Yang, Q., Yun, M., Si, C., An, N., Jia, M., Liu, J. & Dong, X. (2020). Acta Cryst. B76, 1001-1017.]). On the other hand, inorganic halogenidometallates have also shown great potential as building blocks in various functional materials (Chen & Beatty, 2007[Chen, C.-L. & Beatty, A. M. (2007). Chem. Commun. pp. 76-78.]; Zhai et al., 2011[Zhai, Q.-G., Gao, X., Li, S.-N., Jiang, Y.-C. & Hu, M.-C. (2011). CrystEngComm, 13, 1602-1616.]; Freudenmann & Feldmann, 2014[Freudenmann, D. & Feldmann, C. (2014). Dalton Trans. 43, 14109-14113.]; Chen et al., 2015[Chen, K.-J., Perry Iv, J. J., Scott, H. S., Yang, Q.-Y. & Zaworotko, M. J. (2015). Chem. Sci. 6, 4784-4789.]). Specifically, chlorido­cadmate(II) anions are known to exist in various forms such as [CdCl3], [CdCl4], and [CdCl6] within different structural motifs (Gridley et al., 2013[Gridley, B. M., Blundell, T. J., Moxey, J. G., Lewis, W., Blake, A. J. & Kays, D. L. (2013). Chem. Commun. 49, 9752-9754.]; Mobin et al., 2014[Mobin, M., Mishra, V., Chaudhary, A., Rai, D. K., Golov, A. A. & Mathur, P. (2014). Cryst. Growth Des. 14, 4124-4137.]; Wang et al., 2017[Wang, R.-Y., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). Polyhedron, 128, 160-168.]; Hu et al., 2021[Hu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2021). Arab. J. Chem. 14, 103117.]). Notably, some of the corresponding materials exhibit high luminescence brightness (Zhai et al., 2011[Zhai, Q.-G., Gao, X., Li, S.-N., Jiang, Y.-C. & Hu, M.-C. (2011). CrystEngComm, 13, 1602-1616.]).

In this work, a coordination polymer, [Cd2Cl4(L)]n (1), has formed through self-assembly from CdCl2 and the 4-methyl-N-(pyridin-2-yl­methyl­idene)aniline (L) Schiff base ligand. Next to the structural set-up, the thermal stability and solid-state photoluminescence properties of (1) were investigated and are discussed in detail.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (1) contains two CdII atoms, one Schiff base ligand L, and four chlorido ligands. Both Cd1 and Cd2 have a distorted octa­hedral coordination environment. As depicted in Fig. 1[link], Cd1 displays a [Cl4N2] coordination set defined by two μ3-Cl atoms in the equatorial plane, two μ2-Cl atoms in the axial positions and two N atoms from the chelating ligand L in the remaining equatorial sites, whereas Cd2 is in a [Cl6] coordination set by two μ2- and four μ3-Cl atoms. The corresponding bond angles around the central Cd1 and Cd2 atoms vary from 72.51 (12) to 176.14 (3)° and 81.21 (3) to 176.84 (3)°, respectively. The Cd—Cl bond lengths are in the range 2.5729 (10) – 2.7555 (10) Å, expectedly longer than those of the Cd—N bonds (2.311 (3) and 2.378 (3) Å). These values are in the normal range reported for related CdII compounds (Zhai et al., 2011[Zhai, Q.-G., Gao, X., Li, S.-N., Jiang, Y.-C. & Hu, M.-C. (2011). CrystEngComm, 13, 1602-1616.]).

[Figure 1]
Figure 1
The expanded asymmetric unit of (1) showing the full coordination spheres of the two CdII atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) −x, −y, −z; (ii) x − 1, y, z.]

The μ2- and μ3-bridging character of the chlorido ligands leads to a columnar motif with composition [Cd2Cl4(L)]n running parallel to [100], as shown in Fig. 2[link]. The columns contain a cubane-like [Cd2Cl4] unit with a missing vertex with diagonal Cd⋯Cd separations in the range from 3.853 (3) to 3.973 (3) Å. The chelating ligands L are arranged on both sides of the column motif.

[Figure 2]
Figure 2
The columnar structure of (1) extending parallel to [100]. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, ligands L inter­act with those from neighbouring columns through ππ stacking inter­actions, where parallel planes of phen­yl/pyridyl rings are slightly offset (slippage 1.518 and 1.810 Å) with a centroid-to-centroid distance of 3.700 (3) Å and a dihedral angle of 5.61 (3)°. This arrangement leads to the formation of supra­molecular sheets extending parallel to (01[\overline{1}]) (Fig. 3[link]). There is also a weak C—H⋯Cl hydrogen bond between the phenyl CH group and a chlorido ligand in adjacent columns [C9—H9⋯Cl4(i) = 3.552 (2) Å, C9—H9⋯Cl4(i) = 146°, symmetry code: (i) 2 − x, 1 − y, 1 − z). The sheets are connected by additional C—H⋯Cl hydrogen bonds (C2—H2⋯Cl4(ii) = 3.697 (3) Å, C2—H2⋯Cl4(ii) = 159°, symmetry code: (ii) 1 − x, 1 − y, −z), resulting in a tri-periodic supra­molecular structure. It is noteworthy that no significant Cl⋯Cl halogen-bonding inter­actions occur. This likely is a result of the bidentate L ligands establishing steric hindrance within the coordination sphere of the Cd1 atom.

[Figure 3]
Figure 3
A view of the supra­molecular sheet structure in (1) with ππ inter­actions shown as dashed lines. Hydrogen atoms are omitted for clarity.

4. Powder X-ray diffraction (PXRD) and thermogravimetry (TG)

The phase purity of (1) was revealed by room-temperature PXRD measurements with a good match between experimental and simulated peak positions (Fig. 4[link]). It should be noted that the differences in the intensity may be due to preferred orientation of the crystallites in the sample.

[Figure 4]
Figure 4
Comparison of experimental and simulated PXRD patterns of (1) at room temperature.

The thermal stability of (1) was studied by TG measurements. As can be seen in Fig. 5[link], the TG curve of (1) shows three consecutive steps of mass loss in the range of 530–920 K. However, these steps cannot be assigned clearly. There is no mass loss from room temperature to 520 K, indicating that solvent mol­ecules are not incorporated.

[Figure 5]
Figure 5
TG curve of (1).

5. Solid-state photoluminescence properties

The solid-state photoluminescence spectra of the Schiff base ligand L and coordination polymer (1) were recorded at room temperature (Fig. 6[link]). Upon excitation at 325 nm, the free ligand L displays a broad blue fluorescent emission at 456 nm, while (1) exhibits photoluminescence with a maximum at 457 nm upon excitation at 340 nm. Because metal ions with d10 configuration usually are stable, the luminescence of complex (1) can solely be attributed to the intra-ligand ππ* emission state (i.e. ligand-based emission), which is also found in the free ligand L itself (Zhao et al., 2017[Zhao, H.-Y., Yang, F.-L., Li, N. & Wang, X.-J. (2017). J. Mol. Struct. 1148, 62-72.]).

[Figure 6]
Figure 6
The solid-state photoluminescence spectra of ligand L and (1) at room temperature.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.44, last update in April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the ConQuest software (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) yielded 17 hits for a fragment of a chlorido-bridged tetra­nuclear cadmium(II) compound with a defect cubane-like core. There are two mono-periodic coordination polymers that include organic ligands organised on both sides of the chain motif, similar to the arrangement in (1), viz. IQATAY (Hu et al., 2021[Hu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2021). Arab. J. Chem. 14, 103117.]) and SOGREN (Biet & Avarvari, 2014[Biet, T. & Avarvari, N. (2014). CrystEngComm, 16, 6612-6620.]). In addition, 50 complexes of the title Schiff base ligand 4-methyl-N-(pyridin-2-yl­methyl­idene)aniline appear in the CSD. All these complexes are mononuclear with the Schiff base ligands acting in a bidentate chelating fashion. In the crystal packing of these compounds, ππ stacking and weak C—H⋯π inter­actions are frequently observed.

7. Synthesis and crystallization

A solution of 4-methyl-N-(2-pyridyl­methyl­ene)aniline (61.6 mg, 0.2 mmol) in dry di­chloro­methane (2 ml) was placed in a test tube. A mixture of aceto­nitrile and di­chloro­methane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CdCl2·6H2O (19.8 mg, 0.2 mmol) in dry aceto­nitrile (2 ml) was then carefully layered on the top of the aceto­nitrile/di­chloro­methane mixed solution. After slow diffusion at room temperature for a week, light-yellow block-shaped crystals of (1) were obtained. Yield: 57% based on Cd. Analysis calculated for C13H12Cd2Cl4N2: C, 27.74; H, 2.15; N, 4.98%; found: C, 27.69; H, 2.18; N, 4.72%. IR (ATR mode, cm−1): 3027 (w), 2943 (w), 1899 (w), 1590 (m), 1504 (m), 1441 (m), 1268 (m), 1158 (m), 1015 (m), 908 (m), 817 (s), 781 (s), 638 (m), 539 (s), 412 (m).

Experimental details

All commercially available chemicals and solvents were of reagent grade and were used as received without further purification. Elemental (C, H, N) analysis was performed on a LECO CHNS 932 elemental analyser. IR spectra were recorded on a Bruker model INVENIO R spectrometer using ATR mode, in the range of 650–4000 cm−1. PXRD measurements were performed on a Bruker D2 Phaser X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation (λ = 1.54056 Å) at 30 kV and 10 mA. Simulated PXRD pattern were calculated from single-crystal X-ray diffraction data and processed with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The TG measurements were performed in an N2 atmosphere on a TGA 55 TA Instrument from ambient temperature up to 1223 K with a heating rate of 10 K min−1. The solid-state photoluminescence spectra were measured at room temperature using a Horiba Scientific model FluoroMax-4 spectro­fluoro­meter.

8. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The carbon-bound H atoms were placed in geometrically calculated positions and refined as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Cd2Cl4(C13H12N2)]
Mr 562.85
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.8597 (2), 10.8855 (4), 12.8106 (5)
α, β, γ (°) 107.566 (1), 100.523 (1), 106.799 (1)
V3) 834.02 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.18
Crystal size (mm) 0.18 × 0.14 × 0.14
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.696, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 20153, 3418, 2553
Rint 0.050
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.03
No. of reflections 3418
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.41
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[di-µ3-chlorido-di-µ2-chlorido-[4-methyl-N-(pyridin-2-ylmethylidene)aniline]dicadmium(II)] top
Crystal data top
[Cd2Cl4(C13H12N2)]Z = 2
Mr = 562.85F(000) = 536
Triclinic, P1Dx = 2.241 Mg m3
a = 6.8597 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8855 (4) ÅCell parameters from 1412 reflections
c = 12.8106 (5) Åθ = 3.2–25.2°
α = 107.566 (1)°µ = 3.18 mm1
β = 100.523 (1)°T = 296 K
γ = 106.799 (1)°Block, yellow
V = 834.02 (5) Å30.18 × 0.14 × 0.14 mm
Data collection top
Bruker D8 QUEST CMOS PHOTON II
diffractometer
3418 independent reflections
Radiation source: sealed x-ray tube, Mo2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 7.39 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.696, Tmax = 0.745l = 1515
20153 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.7296P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3418 reflectionsΔρmax = 0.73 e Å3
191 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.43896 (5)0.25775 (3)0.19523 (2)0.03039 (10)
Cd20.17441 (5)0.09278 (3)0.07673 (2)0.03114 (10)
Cl10.11124 (16)0.18034 (11)0.27038 (9)0.0364 (3)
Cl30.46812 (15)0.00951 (10)0.13602 (8)0.0274 (2)
Cl40.76831 (17)0.31838 (11)0.11374 (9)0.0369 (3)
Cl20.15327 (15)0.15624 (10)0.01197 (8)0.0294 (2)
N10.4732 (6)0.4839 (3)0.2237 (3)0.0345 (8)
N20.6415 (5)0.3967 (3)0.3893 (3)0.0298 (8)
C10.4082 (8)0.5310 (5)0.1449 (4)0.0456 (12)
H10.3221840.4670690.0725990.055*
C20.4618 (8)0.6699 (5)0.1650 (4)0.0522 (13)
H20.4155900.6988930.1070780.063*
C30.5849 (8)0.7646 (5)0.2725 (5)0.0525 (13)
H30.6224000.8590250.2886060.063*
C40.6520 (7)0.7183 (5)0.3561 (4)0.0424 (11)
H40.7334590.7807760.4297180.051*
C50.5963 (6)0.5771 (4)0.3286 (3)0.0322 (10)
C60.6732 (6)0.5254 (4)0.4146 (4)0.0334 (10)
H60.7468760.5875350.4893730.040*
C70.7158 (6)0.3456 (4)0.4728 (3)0.0303 (9)
C80.8273 (7)0.4274 (5)0.5868 (4)0.0365 (10)
H80.8634550.5228990.6131470.044*
C90.8839 (7)0.3655 (5)0.6609 (4)0.0416 (11)
H90.9594730.4213580.7369980.050*
C100.8331 (7)0.2238 (5)0.6266 (4)0.0427 (11)
C110.7295 (9)0.1463 (5)0.5128 (4)0.0563 (14)
H110.7000610.0514840.4855760.068*
C120.6677 (8)0.2051 (5)0.4378 (4)0.0512 (14)
H120.5918890.1486180.3617890.061*
C130.8854 (9)0.1584 (6)0.7100 (5)0.0617 (15)
H13A0.9898130.2281470.7791110.093*
H13B0.9413300.0895980.6769530.093*
H13C0.7586290.1156380.7273150.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03240 (18)0.02790 (18)0.02645 (17)0.01212 (14)0.00518 (13)0.00540 (13)
Cd20.02639 (17)0.03096 (18)0.03128 (19)0.01317 (14)0.00606 (14)0.00424 (14)
Cl10.0329 (6)0.0427 (6)0.0300 (5)0.0128 (5)0.0076 (4)0.0107 (5)
Cl30.0302 (5)0.0259 (5)0.0252 (5)0.0115 (4)0.0081 (4)0.0075 (4)
Cl40.0367 (6)0.0292 (6)0.0432 (6)0.0126 (5)0.0138 (5)0.0096 (5)
Cl20.0305 (5)0.0300 (5)0.0262 (5)0.0126 (4)0.0056 (4)0.0087 (4)
N10.039 (2)0.031 (2)0.036 (2)0.0180 (17)0.0102 (17)0.0116 (17)
N20.0279 (18)0.031 (2)0.0265 (18)0.0080 (16)0.0069 (15)0.0093 (15)
C10.060 (3)0.046 (3)0.039 (3)0.030 (3)0.013 (2)0.018 (2)
C20.067 (4)0.057 (3)0.053 (3)0.034 (3)0.022 (3)0.036 (3)
C30.060 (3)0.038 (3)0.069 (4)0.021 (3)0.023 (3)0.027 (3)
C40.044 (3)0.033 (3)0.049 (3)0.015 (2)0.014 (2)0.014 (2)
C50.032 (2)0.032 (2)0.032 (2)0.0137 (19)0.0112 (19)0.0095 (19)
C60.031 (2)0.033 (3)0.030 (2)0.009 (2)0.0087 (18)0.0076 (19)
C70.030 (2)0.032 (2)0.028 (2)0.0112 (19)0.0059 (18)0.0099 (18)
C80.034 (2)0.034 (2)0.033 (2)0.006 (2)0.0050 (19)0.011 (2)
C90.035 (2)0.050 (3)0.030 (2)0.007 (2)0.003 (2)0.014 (2)
C100.037 (3)0.052 (3)0.040 (3)0.017 (2)0.011 (2)0.018 (2)
C110.087 (4)0.038 (3)0.044 (3)0.029 (3)0.010 (3)0.015 (2)
C120.079 (4)0.034 (3)0.029 (2)0.021 (3)0.002 (2)0.004 (2)
C130.059 (3)0.075 (4)0.065 (4)0.022 (3)0.016 (3)0.047 (3)
Geometric parameters (Å, º) top
Cd1—Cl12.6221 (11)C3—H30.9300
Cd1—Cl32.6548 (10)C3—C41.375 (7)
Cd1—Cl42.6543 (11)C4—H40.9300
Cd1—Cl22.6805 (10)C4—C51.385 (6)
Cd1—N12.311 (3)C5—C61.463 (6)
Cd1—N22.378 (3)C6—H60.9300
Cd2—Cl12.5729 (10)C7—C81.388 (6)
Cd2—Cl3i2.7555 (10)C7—C121.375 (6)
Cd2—Cl3ii2.6874 (10)C8—H80.9300
Cd2—Cl4ii2.5165 (11)C8—C91.381 (6)
Cd2—Cl22.7074 (11)C9—H90.9300
Cd2—Cl2i2.6404 (10)C9—C101.385 (6)
N1—C11.327 (5)C10—C111.369 (6)
N1—C51.348 (5)C10—C131.497 (6)
N2—C61.281 (5)C11—H110.9300
N2—C71.426 (5)C11—C121.376 (6)
C1—H10.9300C12—H120.9300
C1—C21.377 (6)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C2—C31.374 (7)C13—H13C0.9600
Cl1—Cd1—Cl393.00 (3)C7—N2—Cd1125.1 (2)
Cl1—Cd1—Cl4176.14 (3)N1—C1—H1118.4
Cl1—Cd1—Cl286.03 (3)N1—C1—C2123.2 (4)
Cl3—Cd1—Cl285.58 (3)C2—C1—H1118.4
Cl4—Cd1—Cl383.17 (3)C1—C2—H2120.7
Cl4—Cd1—Cl293.13 (3)C3—C2—C1118.6 (5)
N1—Cd1—Cl1100.54 (9)C3—C2—H2120.7
N1—Cd1—Cl3166.29 (9)C2—C3—H3120.4
N1—Cd1—Cl483.26 (9)C2—C3—C4119.3 (5)
N1—Cd1—Cl293.16 (9)C4—C3—H3120.4
N1—Cd1—N272.51 (12)C3—C4—H4120.6
N2—Cd1—Cl187.37 (8)C3—C4—C5118.8 (4)
N2—Cd1—Cl3110.60 (9)C5—C4—H4120.6
N2—Cd1—Cl494.46 (8)N1—C5—C4122.0 (4)
N2—Cd1—Cl2162.83 (8)N1—C5—C6118.1 (4)
Cl1—Cd2—Cl3ii100.81 (3)C4—C5—C6119.9 (4)
Cl1—Cd2—Cl3i176.84 (3)N2—C6—C5121.6 (4)
Cl1—Cd2—Cl2i93.06 (3)N2—C6—H6119.2
Cl1—Cd2—Cl286.45 (3)C5—C6—H6119.2
Cl3ii—Cd2—Cl3i81.21 (3)C8—C7—N2124.5 (4)
Cl3ii—Cd2—Cl2172.42 (3)C12—C7—N2117.3 (4)
Cl4ii—Cd2—Cl194.45 (4)C12—C7—C8118.2 (4)
Cl4ii—Cd2—Cl3ii85.18 (3)C7—C8—H8120.3
Cl4ii—Cd2—Cl3i88.13 (3)C9—C8—C7119.3 (4)
Cl4ii—Cd2—Cl2i172.49 (3)C9—C8—H8120.3
Cl4ii—Cd2—Cl296.53 (3)C8—C9—H9118.6
Cl2i—Cd2—Cl3i84.37 (3)C8—C9—C10122.8 (4)
Cl2i—Cd2—Cl3ii93.30 (3)C10—C9—H9118.6
Cl2—Cd2—Cl3i91.45 (3)C9—C10—C13121.8 (4)
Cl2i—Cd2—Cl284.04 (3)C11—C10—C9116.5 (4)
Cd2—Cl1—Cd195.92 (4)C11—C10—C13121.7 (5)
Cd1—Cl3—Cd2iii93.50 (3)C10—C11—H11119.1
Cd1—Cl3—Cd2i93.98 (3)C10—C11—C12121.7 (5)
Cd2iii—Cl3—Cd2i98.79 (3)C12—C11—H11119.1
Cd2iii—Cl4—Cd197.59 (4)C7—C12—C11121.3 (4)
Cd1—Cl2—Cd291.47 (3)C7—C12—H12119.3
Cd2i—Cl2—Cd196.07 (3)C11—C12—H12119.3
Cd2i—Cl2—Cd295.96 (3)C10—C13—H13A109.5
C1—N1—Cd1126.8 (3)C10—C13—H13B109.5
C1—N1—C5118.1 (4)C10—C13—H13C109.5
C5—N1—Cd1114.5 (3)H13A—C13—H13B109.5
C6—N2—Cd1113.0 (3)H13A—C13—H13C109.5
C6—N2—C7121.8 (3)H13B—C13—H13C109.5
Cd1—N1—C1—C2170.1 (4)C3—C4—C5—C6177.4 (4)
Cd1—N1—C5—C4173.0 (3)C4—C5—C6—N2173.4 (4)
Cd1—N1—C5—C66.4 (5)C5—N1—C1—C20.6 (7)
Cd1—N2—C6—C52.2 (5)C6—N2—C7—C80.1 (6)
Cd1—N2—C7—C8177.5 (3)C6—N2—C7—C12178.0 (4)
Cd1—N2—C7—C120.5 (5)C7—N2—C6—C5179.9 (4)
N1—C1—C2—C31.4 (8)C7—C8—C9—C100.4 (7)
N1—C5—C6—N26.0 (6)C8—C7—C12—C110.6 (8)
N2—C7—C8—C9177.5 (4)C8—C9—C10—C112.6 (7)
N2—C7—C12—C11178.8 (5)C8—C9—C10—C13176.4 (4)
C1—N1—C5—C41.2 (6)C9—C10—C11—C123.8 (8)
C1—N1—C5—C6178.3 (4)C10—C11—C12—C72.9 (9)
C1—C2—C3—C40.5 (8)C12—C7—C8—C90.6 (7)
C2—C3—C4—C51.1 (7)C13—C10—C11—C12175.2 (5)
C3—C4—C5—N12.0 (7)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

We are grateful for the kind support provided by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa) and the Thailand Institute of Nuclear Technology (Public Organisation) through their TINT to University programme.

Funding information

Funding for this research was provided by: Faculty of Science and Technology, Thammasat University (contract No. SciGR6/2565).

References

First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2008). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationBiet, T. & Avarvari, N. (2014). CrystEngComm, 16, 6612–6620.  CSD CrossRef CAS Google Scholar
First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, C.-L. & Beatty, A. M. (2007). Chem. Commun. pp. 76–78.  Web of Science CSD CrossRef Google Scholar
First citationChen, K.-J., Perry Iv, J. J., Scott, H. S., Yang, Q.-Y. & Zaworotko, M. J. (2015). Chem. Sci. 6, 4784–4789.  CSD CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreudenmann, D. & Feldmann, C. (2014). Dalton Trans. 43, 14109–14113.  CSD CrossRef CAS PubMed Google Scholar
First citationGridley, B. M., Blundell, T. J., Moxey, J. G., Lewis, W., Blake, A. J. & Kays, D. L. (2013). Chem. Commun. 49, 9752–9754.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2021). Arab. J. Chem. 14, 103117.  CSD CrossRef Google Scholar
First citationJiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420–7435.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, A., Chamoreau, L.-M., Baptiste, B., Delbes, L., Li, Y., Lloret, F., Journaux, Y. & Lisnard, L. (2022). Cryst. Growth Des. 22, 7518–7526.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMobin, M., Mishra, V., Chaudhary, A., Rai, D. K., Golov, A. A. & Mathur, P. (2014). Cryst. Growth Des. 14, 4124–4137.  CSD CrossRef CAS Google Scholar
First citationRen, H.-Y., Han, C.-Y., Qu, M. & Zhang, X.-M. (2014). RSC Adv. 4, 49090–49097.  CSD CrossRef CAS Google Scholar
First citationShang, W., Zhu, X., Liang, T., Du, C., Hu, L., Li, T. & Liu, M. (2020). Angew. Chem. Int. Ed. 59, 12811–12816.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, R.-Y., Huo, Q.-S., Yu, J.-H. & Xu, J.-Q. (2017). Polyhedron, 128, 160–168.  CSD CrossRef CAS Google Scholar
First citationZhai, Q.-G., Gao, X., Li, S.-N., Jiang, Y.-C. & Hu, M.-C. (2011). CrystEngComm, 13, 1602–1616.  CSD CrossRef CAS Google Scholar
First citationZhang, X., Yang, Q., Yun, M., Si, C., An, N., Jia, M., Liu, J. & Dong, X. (2020). Acta Cryst. B76, 1001–1017.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H.-Y., Yang, F.-L., Li, N. & Wang, X.-J. (2017). J. Mol. Struct. 1148, 62–72.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds