research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mixed occupancy: the crystal structure of scheelite-type LiLu[MoO4]2

crossmark logo

aUniversity of Stuttgart, Institute of Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bGymnasium in der Glemsaue, Gröninger Str. 29, 71254 Ditzingen, Germany
*Correspondence e-mail: ingo.hartenbach@iac.uni-stuttgart.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 May 2024; accepted 10 May 2024; online 17 May 2024)

Coarse colorless single crystals of lithium lutetium bis­[orthomolybdate(VI)], LiLu[MoO4]2, were obtained as a by-product from a reaction aimed at lithium derivatives of lutetium molybdate. The title compound crystallizes in the scheelite structure type (tetra­gonal, space group I41/a) with two formula units per unit cell. The Wyckoff position 4b (site symmetry [\overline{4}]) comprises a mixed occupancy of Li+ and Lu3+ cations in a 1:1 ratio. In comparison with a previous powder X-ray study [Cheng et al. (2015[Cheng, F., Xia, Z., Molokeev, M. S. & Jing, X. (2015). Dalton Trans. 44, 18078-18089.]). Dalton Trans. 44, 18078–18089.] all atoms were refined with anisotropic displacement parameters.

1. Chemical context

The mineral powellite (CaMoO4) is one of the main sources for molybdenum on this planet. Its tetra­gonal crystal structure can be described as isotypical with that of the mineral scheelite (CaWO4) in space group type I41/a with the c axis roughly twice as long as the respective a axis (Dickinson, 1920[Dickinson, R. G. (1920). J. Am. Chem. Soc. 42, 85-93.]). The predomination of divalent cations, such as alkaline earth metals, can be changed by introducing a mixed occupancy of monovalent (i.e. alkali metals) and trivalent cations (i.e. rare-earth metals) at the respective Wyckoff position. Since the coordination number of eight around the alkaline earth metal cations in the scheelite structure usually requires larger cations, it is remarkable that the title compound also adopts the scheelite structure type although it comprises the smallest cations of both the alkali metals and the lanthanides.

2. Structural commentary

In the crystal structure of LiLu[MoO4]2 (Fig. 1[link]) the Li+ and Lu3+ cations reside at Wyckoff position 4b (site symmetry [\overline{4}]) exhibiting a 1:1 mixed occupancy. The coordination environment around this position is built up by eight oxide anions [dLi/Lu—O = 4 × 2.369 (3) and 4 × 2.371 (3) Å] in the shape of a trigonal dodeca­hedron (Fig. 2[link]). The Mo6+ cations are situated in the centers of oxygen tetra­hedra at Wyckoff position 4a (site symmetry [\overline{4}]) with distances of 4 × 1.774 (3) Å. The existence of LiLu[MoO4]2 was first mentioned by Cheng et al. (2015[Cheng, F., Xia, Z., Molokeev, M. S. & Jing, X. (2015). Dalton Trans. 44, 18078-18089.]), with the crystal structure being refined by the Rietveld method on basis of X-ray data from microcrystalline powder. While their refinement of the lattice parameters [a = 5.10332 (11), c = 11.0829 (3) Å] resulted in similar values as for the current single-crystal study (see Table 1[link]), no anisotropic displacement parameters of the refined atoms were given in the previous powder study. Furthermore, the structure refinement on basis of single-crystal data not only allows for a more accurate determination of the oxygen site, but also for a rather precise determination of the Li:Lu ratio found at Wyckoff position 4b (occupancy ratio 0.483 Li:0.517 Lu when refined freely). For electroneutrality, the site occupancies were fixed to ideal values (0.5:0.5) in the final refinement step.

Table 1
Experimental details

Crystal data
Chemical formula LiLu[MoO4]2
Mr 501.79
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 5.1052 (3), 11.0800 (7)
V3) 288.78 (4)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 25.07
Crystal size (mm) 0.14 × 0.09 × 0.08
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan [X-RED32 (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) using Gaussian integration, analogous to Coppens (1970[Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing, edited by F. R. Ahmed, pp. 255-270. Copenhagen: Munksgaard.]). Afterwards scaling of reflection intensities was performed within LANA (Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slovaca, 9, 136-140.])]
Tmin, Tmax 0.031, 0.155
No. of measured, independent and observed [I > 2σ(I)] reflections 4315, 352, 162
Rint 0.037
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 0.96
No. of reflections 352
No. of parameters 15
Δρmax, Δρmin (e Å−3) 1.14, −1.22
Computer programs: X-AREA (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]), LANA (Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slovaca, 9, 136-140.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2023[Brandenburg, K. & Putz, H. (2023). DIAMOND5. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The augmented unit cell of LiLu[MoO4]2 in a view approximately along [010], with the [MoO4]2– anions in polyhedral representation and displacement ellipsoids drawn at the 95% probability level. Atomic positions marked with the subscript "a" build up the asymmetric unit.
[Figure 2]
Figure 2
Oxidic coordination environment around the mixed cationic Li+/Lu3+ position in the shape of a trigonal dodeca­hedron; displacement ellipsoids are drawn at the 95% probability level [Symmetry codes: (i) y − [{1\over 4}], −x + [{3\over 4}], z + [{3\over 4}]; (ii) x − [{1\over 2}], y, −z + [{1\over 2}]; (iii) −x + [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]; (iv) −y + [{1\over 4}], x − [{1\over 4}], z + [{3\over 4}]; (v) x − [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}]; (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (vii) −y + [{3\over 4}], x − [{1\over 4}], −z + [{3\over 4}]; (viii) y − [{3\over 4}], −x + [{3\over 4}], −z + [{3\over 4}]].

Since Na+ and K+ cations are larger than Li+ cations and thus closer to the size of Ln3+ cations, it is not astonishing that the crystal volumes of NaLn[MoO4]2 and KLn[MoO4]2 compounds are considerably larger than those of the respective LiLn[MoO4]2 series. In case of the larger lanthanoids, lithium-containing scheelite-type structures according to the formula LiLn[MoO4]2 with Ln = Ce3+ (Egorova et al., 1982[Egorova, A. N., Maier, A. A., Nevskii, N. N. & Provotorov, M. V. (1982). Neorg. Mater. 18, 2036-2038.]) and Nd3+ (Kolitsch, 2001[Kolitsch, U. (2001). Z. Kristallogr. Cryst. Mater. 216, 449-454.]) are known so far, while for Yb3+ as a representative of the smaller lanthanides, the crystal structure shows deviations from the Laue group 4/m, crystallizing in space group I[\overline{4}] (Volkov et al., 2005[Volkov, V., Cascales, C., Kling, A. & Zaldo, C. (2005). Chem. Mater. 17, 291-300.]; Armand et al., 2021[Armand, P., Granier, D., Reibel, C., Daenens, L. & Tillard, M. (2021). J. Alloys Compd. 884, 161074.]). In all the aforementioned compounds, the rather small Li+ cations assume a mixed occupancy with the respective lanthanoid, which is also found in the crystal structures of e.g. LiLn5[W8O32] for Ln = Y (Dorn et al., 2017[Dorn, K. V., Schustereit, T., Strobel, S. & Hartenbach, I. (2017). Z. Anorg. Allg. Chem. 643, 2050-2056.]) and Dy–Lu (Dorn et al., 2021[Dorn, K. V., Blaschkowski, B., Bamberger, H., van Slageren, J., Widenmeyer, M., Weidenkaff, A., Suard, E. & Hartenbach, I. (2021). J. Alloys Compd. 868, 159147.]). However, in these structures the Li+ cations show a sixfold coordination in contrast to the scheelite-type title compound with a coordination number of eight.

3. Synthesis and crystallization

Colorless single crystals of LiLu[MoO4]2, which remain stable towards atmospheric influences, were obtained as a by-product of synthesis attempts for LiLu5[Mo8O32]. Lithium chloride, lutetium sesquioxide and molybdenum trioxide in molar ratios of 3:8:24 were fused together in evacuated silica ampoules and treated with a stepwise temperature program with a peak value of 1123 K for four days. After a slow cooling ramp of another four days, the desired compound was obtained as a microcrystalline powder with single crystals of the title compound found in the bulk.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The 1:1 ratio of Li+ and Lu3+ was reached by fixed occupation factors (0.5:0.5) of the respective atoms at Wyckoff position 4b.

Supporting information


Computing details top

Lithium lutetium bis[orthomolybdate(VI)] top
Crystal data top
LiLu[MoO4]2Dx = 5.771 Mg m3
Mr = 501.79Ag Kα radiation, λ = 0.56083 Å
Tetragonal, I41/aCell parameters from 2522 reflections
a = 5.1052 (3) Åθ = 3.5–31.7°
c = 11.0800 (7) ŵ = 25.07 mm1
V = 288.78 (4) Å3T = 293 K
Z = 2Coarse, colorless
F(000) = 4440.14 × 0.09 × 0.08 mm
Data collection top
Stoe Stadivari
diffractometer
352 independent reflections
Radiation source: Axo Ag162 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.037
Detector resolution: 5.81 pixels mm-1θmax = 27.9°, θmin = 3.5°
rotation method, ω scansh = 88
Absorption correction: multi-scan
[X-Red32 (Stoe & Cie, 2019) using Gaussian integration, analogous to Coppens (1970). Afterwards scaling of reflection intensities was performed within LANA (Koziskova et al., 2016)]
k = 88
Tmin = 0.031, Tmax = 0.155l = 1518
4315 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0206P)2 + 1.1482P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.048Δρmax = 1.14 e Å3
S = 0.96Δρmin = 1.22 e Å3
352 reflectionsExtinction correction: SHELXL (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 parametersExtinction coefficient: 0.044 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li0.0000000.2500000.6250000.00754 (18)0.5
Lu0.0000000.2500000.6250000.00754 (18)0.5
Mo0.0000000.2500000.1250000.01028 (19)
O0.2480 (4)0.4067 (5)0.0394 (2)0.0175 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.0075 (2)0.0075 (2)0.0075 (3)0.0000.0000.000
Lu0.0075 (2)0.0075 (2)0.0075 (3)0.0000.0000.000
Mo0.0097 (2)0.0097 (2)0.0114 (3)0.0000.0000.000
O0.0203 (15)0.0157 (14)0.0177 (13)0.0012 (12)0.0049 (11)0.0027 (14)
Geometric parameters (Å, º) top
Li—Oi2.369 (3)Lu—Ov2.371 (3)
Li—Oii2.369 (3)Lu—Ovi2.371 (3)
Li—Oiii2.369 (3)Lu—Ovii2.371 (3)
Li—Oiv2.369 (3)Lu—Oviii2.371 (3)
Li—Ov2.371 (3)Lu—Luix3.7668 (2)
Li—Ovi2.371 (3)Lu—Lux3.7668 (2)
Li—Ovii2.371 (3)Lu—Luxi3.7668 (2)
Li—Oviii2.371 (3)Lu—Luxii3.7668 (2)
Lu—Oi2.369 (3)Mo—Oxiii1.774 (3)
Lu—Oii2.369 (3)Mo—Oxiv1.774 (3)
Lu—Oiii2.369 (3)Mo—Oxv1.774 (3)
Lu—Oiv2.369 (3)Mo—O1.774 (3)
Oi—Li—Oii126.20 (9)Oiv—Lu—Oviii74.75 (12)
Oi—Li—Oiii126.20 (9)Ov—Lu—Oviii99.23 (6)
Oii—Li—Oiii79.57 (15)Ovi—Lu—Oviii99.23 (6)
Oi—Li—Oiv79.57 (15)Ovii—Lu—Oviii132.78 (15)
Oii—Li—Oiv126.20 (9)Oi—Lu—Luix158.93 (7)
Oiii—Li—Oiv126.20 (9)Oii—Lu—Luix70.38 (7)
Oi—Li—Ov153.18 (13)Oiii—Lu—Luix37.40 (7)
Oii—Li—Ov69.36 (7)Oiv—Lu—Luix101.37 (7)
Oiii—Li—Ov74.75 (12)Ov—Lu—Luix37.35 (7)
Oiv—Li—Ov73.93 (6)Ovi—Lu—Luix101.88 (8)
Oi—Li—Ovi73.93 (6)Ovii—Lu—Luix85.81 (7)
Oii—Li—Ovi74.75 (12)Oviii—Lu—Luix131.46 (8)
Oiii—Li—Ovi69.36 (7)Oi—Lu—Lux37.40 (7)
Oiv—Li—Ovi153.18 (13)Oii—Lu—Lux158.93 (7)
Ov—Li—Ovi132.78 (15)Oiii—Lu—Lux101.37 (7)
Oi—Li—Ovii74.75 (12)Oiv—Lu—Lux70.38 (8)
Oii—Li—Ovii153.18 (13)Ov—Lu—Lux131.46 (7)
Oiii—Li—Ovii73.93 (6)Ovi—Lu—Lux85.81 (7)
Oiv—Li—Ovii69.36 (7)Ovii—Lu—Lux37.35 (7)
Ov—Li—Ovii99.23 (6)Oviii—Lu—Lux101.88 (8)
Ovi—Li—Ovii99.23 (6)Luix—Lu—Lux122.737 (3)
Oi—Li—Oviii69.36 (7)Oi—Lu—Luxi70.38 (8)
Oii—Li—Oviii73.93 (6)Oii—Lu—Luxi101.37 (7)
Oiii—Li—Oviii153.18 (13)Oiii—Lu—Luxi158.93 (7)
Oiv—Li—Oviii74.75 (12)Oiv—Lu—Luxi37.40 (7)
Ov—Li—Oviii99.23 (6)Ov—Lu—Luxi85.81 (7)
Ovi—Li—Oviii99.23 (6)Ovi—Lu—Luxi131.46 (7)
Ovii—Li—Oviii132.78 (15)Ovii—Lu—Luxi101.88 (8)
Oi—Lu—Oii126.20 (9)Oviii—Lu—Luxi37.35 (7)
Oi—Lu—Oiii126.20 (9)Luix—Lu—Luxi122.737 (3)
Oii—Lu—Oiii79.57 (15)Lux—Lu—Luxi85.322 (6)
Oi—Lu—Oiv79.57 (15)Oi—Lu—Luxii101.37 (7)
Oii—Lu—Oiv126.20 (9)Oii—Lu—Luxii37.40 (7)
Oiii—Lu—Oiv126.20 (9)Oiii—Lu—Luxii70.38 (7)
Oi—Lu—Ov153.18 (13)Oiv—Lu—Luxii158.93 (7)
Oii—Lu—Ov69.36 (7)Ov—Lu—Luxii101.88 (8)
Oiii—Lu—Ov74.75 (12)Ovi—Lu—Luxii37.35 (7)
Oiv—Lu—Ov73.93 (6)Ovii—Lu—Luxii131.46 (7)
Oi—Lu—Ovi73.93 (6)Oviii—Lu—Luxii85.81 (7)
Oii—Lu—Ovi74.75 (12)Luix—Lu—Luxii85.322 (5)
Oiii—Lu—Ovi69.36 (7)Lux—Lu—Luxii122.737 (3)
Oiv—Lu—Ovi153.18 (13)Luxi—Lu—Luxii122.737 (3)
Ov—Lu—Ovi132.78 (15)Oxiii—Mo—Oxiv106.65 (10)
Oi—Lu—Ovii74.75 (12)Oxiii—Mo—Oxv106.65 (10)
Oii—Lu—Ovii153.18 (13)Oxiv—Mo—Oxv115.3 (2)
Oiii—Lu—Ovii73.93 (6)Oxiii—Mo—O115.3 (2)
Oiv—Lu—Ovii69.36 (7)Oxiv—Mo—O106.65 (10)
Ov—Lu—Ovii99.23 (6)Oxv—Mo—O106.65 (10)
Ovi—Lu—Ovii99.23 (6)Mo—O—Liiii130.25 (16)
Oi—Lu—Oviii69.36 (7)Mo—O—Lixvi120.42 (15)
Oii—Lu—Oviii73.93 (6)Liiii—O—Lixvi105.25 (12)
Oiii—Lu—Oviii153.18 (13)
Symmetry codes: (i) y1/4, x+3/4, z+3/4; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) y+1/4, x1/4, z+3/4; (v) x1/2, y1/2, z+1/2; (vi) x+1/2, y+1, z+1/2; (vii) y+3/4, x1/4, z+3/4; (viii) y3/4, x+3/4, z+3/4; (ix) x, y, z+1; (x) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z+3/2; (xii) x, y+1, z+1; (xiii) x, y+1/2, z; (xiv) y+1/4, x+1/4, z+1/4; (xv) y1/4, x+1/4, z+1/4; (xvi) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Falk Lissner for measuring the single-crystal of the title compound.

Funding information

Funding for this research was provided by: German Research Foundation (DFG) grant ‘Open Access Publication Funding/2023–2024/University of Stuttgart’ (512689491).

References

First citationArmand, P., Granier, D., Reibel, C., Daenens, L. & Tillard, M. (2021). J. Alloys Compd. 884, 161074.  Web of Science CrossRef ICSD Google Scholar
First citationBrandenburg, K. & Putz, H. (2023). DIAMOND5. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheng, F., Xia, Z., Molokeev, M. S. & Jing, X. (2015). Dalton Trans. 44, 18078–18089.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCoppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing, edited by F. R. Ahmed, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDickinson, R. G. (1920). J. Am. Chem. Soc. 42, 85–93.  CrossRef ICSD CAS Google Scholar
First citationDorn, K. V., Blaschkowski, B., Bamberger, H., van Slageren, J., Widenmeyer, M., Weidenkaff, A., Suard, E. & Hartenbach, I. (2021). J. Alloys Compd. 868, 159147.  Web of Science CrossRef ICSD Google Scholar
First citationDorn, K. V., Schustereit, T., Strobel, S. & Hartenbach, I. (2017). Z. Anorg. Allg. Chem. 643, 2050–2056.  Web of Science CrossRef ICSD CAS Google Scholar
First citationEgorova, A. N., Maier, A. A., Nevskii, N. N. & Provotorov, M. V. (1982). Neorg. Mater. 18, 2036–2038.  CAS Google Scholar
First citationKolitsch, U. (2001). Z. Kristallogr. Cryst. Mater. 216, 449–454.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slovaca, 9, 136–140.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVolkov, V., Cascales, C., Kling, A. & Zaldo, C. (2005). Chem. Mater. 17, 291–300.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds