research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 1:1 flavone cocrystal with cyclic trimeric perfluoro-o-phenyl­enemercury

crossmark logo

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and bInstitute of Applied Physics, Moldova State University, Academy str., 5 MD2028, Chisinau, Moldova
*Correspondence e-mail: enovikov@live.nmhu.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 18 March 2024; accepted 5 June 2024; online 14 June 2024)

The title compound, systematic name tris­(μ2-perfluoro-o-phenyl­ene)(μ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinic P21/n space group with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenyl­enemercury (TPPM) mol­ecule per asymmetric unit. The FLA mol­ecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stack via two alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are inter­digitated through the shortened F⋯F, CH⋯F and CH⋯π contacts, forming a dense crystal structure.

1. Chemical context

Macrocyclic trimeric perfluoro-o-phenyl­enemercury [TPPM, (o-C6F4Hg)3] Lewis acid containing three Hg atoms in a planar nine-membered cycle has been used successfully in recent decades as a multidentate Lewis acid host. Numerous studies registered an excellent oxo- and thio­philicity of this strong electron acceptor manifested in its reactions with various anions and neutral Lewis bases to give complexes wherein the Lewis bases were easily cooperatively coordin­ated by multiple TPPM binding sites (King et al., 2002a[King, J. B., Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002a). J. Am. Chem. Soc. 124, 9350-9351.],b[King, J. B., Tsunoda, M. & Gabbaï, F. P. (2002b). Organometallics, 21, 4201-4205.]; Tikhonova et al., 2005[Tikhonova, I. A., Dolgushin, F. M., Yakovenko, A. A., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2005). Organometallics, 24, 3395-3400.]; Castañeda et al., 2015[Castañeda, R., Yakovenko, A. A., Draguta, S., Fonari, M. S., Antipin, M. Yu. & Timofeeva, T. V. (2015). Cryst. Growth Des. 15, 1022-1026.], 2016[Castañeda, R., Fonari, M. S., Risko, C., Getmanenko, Y. A. & Timofeeva, T. V. (2016). Cryst. Growth Des. 16, 2190-2200.]; Loveday et al., 2022[Loveday, O., Jover, J. & Echeverría, J. (2022). Inorg. Chem. 61, 12526-12533.]). In particular, the oxophilicity of TPPM is well-documented, and the reported examples revealed variable molar ratios and packing arrangements of the TPPM acceptor and O-containing Lewis bases in the crystals (King et al., 2002a[King, J. B., Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002a). J. Am. Chem. Soc. 124, 9350-9351.],b[King, J. B., Tsunoda, M. & Gabbaï, F. P. (2002b). Organometallics, 21, 4201-4205.]; Tikhonova et al., 2005[Tikhonova, I. A., Dolgushin, F. M., Yakovenko, A. A., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2005). Organometallics, 24, 3395-3400.]; Castañeda et al., 2016[Castañeda, R., Fonari, M. S., Risko, C., Getmanenko, Y. A. & Timofeeva, T. V. (2016). Cryst. Growth Des. 16, 2190-2200.]). The O⋯Hg coordination bonds were the primary inter­actions in those crystals that involved two or three Hg atoms of TPPM and the O-donor mol­ecules situated on one or both faces of the TPPM macrocycle.

Flavonoids are a family of polyphenolic compounds broadly produced in plants and found in the human diet. They are generally recognized as active pharmaceutical ingredients (API) with health-prolonging effects attributed to their anti­bacterial, anti­oxidant, anti­tumor, and anti-inflammatory properties (Cushnie & Lamb, 2005[Cushnie, T. P. T. & Lamb, A. J. (2005). Int. J. Antimicrob. Agent. 26, 343-356.], 2011[Cushnie, T. P. T. & Lamb, A. J. (2011). Int. J. Antimicrob. Agent. 38, 99-107.]). Flavone (FLA), the simplest member of the class of flavones, can be tailored for significant modulation of its pharmacological activity and therefore serves as an effective scaffold in medicinal chemistry (Singh et al., 2014[Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206-239.]). While the crystal chemistry of the TPPM acceptor is rather rich, only single examples have been reported for the crystalline forms of FLA (Waller et al., 2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]; van Tonder et al., 2009a[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.],b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]; Jiang et al., 2014[Jiang, L., Huang, Y., Zhang, Q., He, H., Xu, Y. & Mei, X. (2014). Cryst. Growth Des. 14, 4562-4573.]; Khandavilli et al., 2018[Khandavilli, U. B. R., Skořepová, E., Sinha, A. S., Bhogala, B. R., Maguire, N. M., Maguire, A. R. & Lawrence, S. E. (2018). Cryst. Growth Des. 18, 4571-4577.]; Li et al., 2019[Li, Z., Li, M., Peng, B., Zhu, B., Wang, J.-R. & Mei, X. (2019). Cryst. Growth Des. 19, 1942-1953.]; He et al., 2015[He, H., Jiang, L., Zhang, Q., Huang, Y., Wang, J.-R. & Mei, X. (2015). CrystEngComm, 17, 6566-6574.]). To fill this gap, we decided to cocrystallize FLA with TPPM. From a crystal-engineering perspective, it might be predicted that FLA, containing a benzo-γ-pyrone moiety bearing a phenyl substituent at position 2 and having a carbonyl group, would be predisposed for association with TPPM via oxophilic and stacking inter­actions. The crystal structure of the product of these inter­actions, the cocrystal (FLA)·(TPPM), is reported.

[Scheme 1]

2. Structural commentary

The title compound, (FLA)·(TPPM) in a 1:1 molar ratio, crystallizes in the monoclinic space group P21/n. The asymmetric unit comprises one FLA and one TPPM mol­ecule (Fig. 1[link]). The principal geometric parameters for both components are in good agreement with the literature values (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The components are held together via two Hg—O contacts, Hg1⋯O1 = 2.829 (3) and Hg2⋯O1 = 2.947 (4) Å, that are considerably shorter than the sum of the van der Waals radii of mercury (2.1 Å) and oxygen (1.5 Å) atoms (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]; Yakovenko et al., 2011[Yakovenko, A. A., Gallegos, J. H., Antipin, M. Yu., Masunov, A. & Timofeeva, T. V. (2011). Cryst. Growth Des. 11, 3964-3978.]). The Hg3⋯O1 distance is 3.097 (3) Å. Thus, an asymmetrical coordination of the FLA carbonyl oxygen atom, which is bonded to two Hg centers, is observed. The tilting angle between the virtually planar benzo-γ-pyrone residue (the r.m.s. deviation of the 11 fitted atoms is 0.0243 Å) and the mean plane of TPPM is 49.97 (5)°. The FLA mol­ecule has an angular shape indicated by the twisted angle between the benzo-γ-pyrone moiety and the anchored phenyl ring of 23.3 (2)°, contrary to the practically planar geometry of FLA in its pure form (WADRAV; Waller et al., 2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]) and in (η6-flavone)tri­carbonyl­chromium(0) (FUGBEP; van Tonder et al., 2009b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The complexes pack in zigzag chains along the crystallographic a axis (Fig. 2[link]), where they stack via two alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and the macrocycles related by inversion are in a staggered conformation. The structure contains some inter­metallic Hg⋯Hg distances, shorter than sum of the van der Waals radii (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]; Yakovenko et al., 2011[Yakovenko, A. A., Gallegos, J. H., Antipin, M. Yu., Masunov, A. & Timofeeva, T. V. (2011). Cryst. Growth Des. 11, 3964-3978.]; Echeverría et al., 2017[Echeverría, J., Cirera, J. & Alvarez, S. (2017). Phys. Chem. Chem. Phys. 19, 11645-11654.]). They include: Hg1⋯Hg2(2 − x, 1 − y, 1 − z) = 3.6305 (4) Å; Hg1⋯Hg3(2 − x, 1 − y, 1 − z) = 4.7390 (5) Å; Hg2⋯Hg2(2 − x, 1 − y, 1 − z) = 4.7514 (5) Å; Hg2⋯Hg3(2 − x, 1 − y, 1 − z) = 4.3423 (5) Å. The inter­planar separation between the two consecutive benzo-γ-pyrone moieties of FLA in the stack is equal to 3.328 (2) Å with only the pyrone rings overlapping, Cg(O2/C19–C27)⋯Cg(O2/C19–C27)(1 − x, 1 − y, 1 − z) = 3.996 (3) Å, slippage 2.211 Å. The neighboring stacks are inter­connected in an inter­digitated mode (Fig. 3[link]) through the side F1⋯F11([{3\over 2}] − x, y − [{1\over 2}], [{3\over 2}] − z) 2.875 (5) Å, and CH⋯F shortened contacts, C24—H24⋯F1(x − [{1\over 2}], [{1\over 2}] − y, z − [{1\over 2}]) = 2.68 Å; C31—H31⋯F5(x − [{1\over 2}], [{1\over 2}] − y, [{1\over 2}] + z) = 2.62 Å; C32—H32⋯F5(x − [{1\over 2}], [{1\over 2}] − y, [{1\over 2}] + z) = 2.50 Å; C30—H30⋯F11(x − [{1\over 2}], [{1\over 2}] − y, z − [{1\over 2}]) = 2.57 Å and C—H⋯π weak inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯F4i 0.95 2.54 3.486 (6) 173
C24—H24⋯F1ii 0.95 2.68 3.342 (6) 127
C30—H30⋯F11ii 0.95 2.57 3.473 (7) 160
C31—H31⋯F5iii 0.95 2.62 3.200 (8) 120
C32—H32⋯F5iii 0.95 2.50 3.149 (6) 126
C21—H21⋯C7 0.95 2.78 3.456 (7) 129
C24—H24⋯C16iv 0.95 2.82 3.621 (7) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Supra­molecular chain in the title compound generated through alternation of TPPM–TPPM and FLA–FLA stacking patterns.
[Figure 3]
Figure 3
View of the crystal packing. The central stacking chain is shown in red.

4. Database survey

A search in the Cambridge Structural Database (version 5.45, updated on 01/01/2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave very few hits for FLA crystal forms. The pure form (WADRAV; Waller et al., 2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]) crystallizes in the P212121 space group with two crystallographically unique mol­ecules. In compound [Cr(FLA)(CO)3] (FUGBEP; van Tonder et al., 2009b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]), the CrIII metal center coordinates the phenyl ring of FLA. In both cases, the FLA mol­ecule is significantly planar. In the case of the dapsone drug DAP–FLA 1:1 cocrystal (VOHKEK; Jiang et al., 2014[Jiang, L., Huang, Y., Zhang, Q., He, H., Xu, Y. & Mei, X. (2014). Cryst. Growth Des. 14, 4562-4573.], P21/n space group), the carbonyl group of FLA forms hydrogen-bonding inter­actions with the amino groups of DAP to form a tetra­meric aggregation. Furthermore, DAP–FLA was documented as another polymorph (Form B, VOHKEK01, Fdd2 space group) and another crystal form (RUHDOP, P[\overline{1}] space group, He et al., 2015[He, H., Jiang, L., Zhang, Q., Huang, Y., Wang, J.-R. & Mei, X. (2015). CrystEngComm, 17, 6566-6574.]) with a 1:2 ratio of component mol­ecules. In the drug cocrystal Naringenin–FLA (JILSIJ, 1:1 molar ratio; Khandavilli et al., 2018[Khandavilli, U. B. R., Skořepová, E., Sinha, A. S., Bhogala, B. R., Maguire, N. M., Maguire, A. R. & Lawrence, S. E. (2018). Cryst. Growth Des. 18, 4571-4577.]) FLA mol­ecules are bridging between naringenin dimers via O—H⋯O inter­actions. The polymorphic diversity was also registered for the di­ethyl­stilbestrol–bis­(FLA) cocrystal (NOCTIL, P[\overline{1}] and NOCTIL01, C2/c; Li et al., 2019[Li, Z., Li, M., Peng, B., Zhu, B., Wang, J.-R. & Mei, X. (2019). Cryst. Growth Des. 19, 1942-1953.]). The high propensity of TPPM for carbonyl-containing compounds was demonstrated for: ethyl­acetate (CAMFIG; Tikhonova et al., 2002[Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123-131.]; 3:1 donor–acceptor molar ratio), ethyl 3-oxo­butano­ate (KIRDIA; Tikhonova et al., 2013[Tikhonova, I. A., Yakovenko, A. A., Tugashov, K. I., Dolgushin, F. M., Petrovskii, P. V., Minacheva, M. Kh., Strunin, B. N. & Shur, V. B. (2013). Russ. Chem. Bull. 62, 710-715.]), 4-(di­methyl­amino)­phen­yl­methanone (OGANIV; Fisher & Reinheimer, 2013[Fisher, S. P. & Reinheimer, E. W. (2013). J. Chem. Crystallogr. 43, 478-483.]; 1:1 molar ratio), acetone (PABLUA; King et al., 2002a[King, J. B., Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002a). J. Am. Chem. Soc. 124, 9350-9351.],b[King, J. B., Tsunoda, M. & Gabbaï, F. P. (2002b). Organometallics, 21, 4201-4205.]; 1:1 molar ratio), N,N-di­methyl­acetamide (XINMAI; Tikhonova et al., 2001[Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Furin, G. G., Petrovskii, P. V. & Shur, V. B. (2001). Russ. Chem. Bull. 50, 1673-1678.]; 2:1 molar ratio), dimethyl formamide (XOJFEH; Baldamus et al., 2002[Baldamus, J., Deacon, G. B., Hey-Hawkins, E., Junk, P. C. & Martin, C. (2002). Aust. J. Chem. 55, 195-198.] and XOJFEH01; Tikhonova et al., 2002[Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123-131.]; 2:1 molar ratio).

5. Synthesis and crystallization

FLA (11.212 mg, 0.05 mmol) was dissolved in 5 mL of DCM and TPPM (52.290 mg, 0.05 mmol) was added to the solution. The mixture was sonicated for 10 min at ambient conditions (room temperature), and after that the solution was transferred to a 15 mL test tube and covered with a cotton cap. In 10 days transparent colorless crystals (mass of crystals collected 54.205 mg, 0.0427 mmol, 85.35%) were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined in anisotropic approximation. The H atoms were refined as riding in idealized positions, with Uiso(H) = 1.2Ueq of the bearing C atom.

Table 2
Experimental details

Crystal data
Chemical formula [Hg3(C6F4)3(C15H10O2)]
Mr 1268.18
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.4181 (8), 13.8092 (8), 17.6498 (11)
β (°) 93.360 (2)
V3) 3021.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 15.31
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.372, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 38196, 5894, 5069
Rint 0.039
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.05
No. of reflections 5894
No. of parameters 451
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −1.19
Computer programs: APEX2 (Bruker, 2019[Bruker (2019). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2020[Bruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Tris(µ2-perfluoro-o-phenylene)(µ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury top
Crystal data top
[Hg3(C6F4)3(C15H10O2)]F(000) = 2288
Mr = 1268.18Dx = 2.788 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4181 (8) ÅCell parameters from 9132 reflections
b = 13.8092 (8) Åθ = 2.2–26.7°
c = 17.6498 (11) ŵ = 15.31 mm1
β = 93.360 (2)°T = 100 K
V = 3021.5 (3) Å3Plate, clear colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEXII
diffractometer
5894 independent reflections
Radiation source: sealed X-ray tube, EIGENMANN GmbH5069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.9 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1517
Tmin = 0.372, Tmax = 0.746l = 2116
38196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.6597P]
where P = (Fo2 + 2Fc2)/3
5894 reflections(Δ/σ)max = 0.003
451 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 1.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.85812 (2)0.44283 (2)0.60352 (2)0.03572 (6)
Hg20.86702 (2)0.46865 (2)0.40075 (2)0.03547 (6)
Hg30.84037 (2)0.68004 (2)0.51822 (2)0.03658 (6)
F10.8927 (3)0.2205 (2)0.63984 (17)0.0536 (8)
F20.9080 (3)0.0628 (2)0.5516 (2)0.0729 (11)
F30.9084 (3)0.0823 (2)0.3984 (2)0.0777 (12)
F40.8941 (3)0.2590 (2)0.33427 (17)0.0561 (9)
F50.8718 (3)0.5418 (2)0.23224 (18)0.0688 (10)
F60.8452 (3)0.7185 (3)0.16752 (18)0.0751 (11)
F70.8183 (3)0.8760 (2)0.2553 (2)0.0702 (10)
F80.8354 (3)0.8603 (2)0.4079 (2)0.0646 (10)
F90.8232 (3)0.8296 (2)0.65175 (18)0.0565 (9)
F100.8092 (3)0.8092 (2)0.80319 (17)0.0571 (9)
F110.8165 (3)0.6306 (2)0.86695 (16)0.0552 (8)
F120.8461 (3)0.4725 (2)0.78054 (18)0.0583 (9)
O10.6883 (3)0.5027 (2)0.50025 (18)0.0383 (8)
O20.4563 (3)0.3256 (2)0.40217 (19)0.0379 (8)
C10.8790 (4)0.3342 (3)0.4535 (3)0.0365 (12)
C20.8910 (4)0.2518 (4)0.4107 (3)0.0404 (12)
C30.8998 (5)0.1606 (4)0.4419 (3)0.0470 (14)
C40.8998 (5)0.1504 (4)0.5191 (3)0.0491 (14)
C50.8890 (4)0.2323 (4)0.5636 (3)0.0395 (12)
C60.8776 (4)0.3242 (3)0.5331 (3)0.0345 (11)
C70.8593 (4)0.6074 (3)0.3557 (3)0.0352 (11)
C80.8596 (4)0.6197 (4)0.2781 (3)0.0438 (13)
C90.8465 (4)0.7088 (4)0.2435 (3)0.0469 (14)
C100.8346 (4)0.7894 (4)0.2882 (3)0.0451 (14)
C110.8394 (4)0.7791 (4)0.3655 (3)0.0443 (13)
C120.8482 (4)0.6903 (4)0.4009 (3)0.0348 (11)
C130.8368 (4)0.6593 (4)0.6347 (3)0.0359 (11)
C140.8278 (4)0.7389 (4)0.6815 (3)0.0398 (12)
C150.8211 (4)0.7302 (4)0.7593 (3)0.0411 (13)
C160.8264 (4)0.6408 (4)0.7915 (3)0.0422 (13)
C170.8405 (4)0.5607 (4)0.7459 (3)0.0406 (12)
C180.8448 (4)0.5670 (4)0.6683 (3)0.0391 (12)
C190.6156 (4)0.4494 (3)0.4705 (3)0.0304 (10)
C200.5632 (4)0.4696 (3)0.3954 (3)0.0307 (10)
C210.5875 (4)0.5526 (3)0.3525 (3)0.0361 (12)
H210.63850.59850.37270.043*
C220.5381 (4)0.5673 (4)0.2823 (3)0.0463 (14)
H220.55440.62340.25410.056*
C230.4647 (5)0.5010 (4)0.2524 (3)0.0479 (14)
H230.43180.51140.20310.058*
C240.4380 (4)0.4199 (4)0.2926 (3)0.0431 (13)
H240.38700.37440.27190.052*
C250.4880 (4)0.4066 (3)0.3643 (3)0.0328 (11)
C260.5780 (4)0.3633 (3)0.5056 (3)0.0335 (11)
H260.60810.34600.55450.040*
C270.5022 (4)0.3063 (3)0.4723 (3)0.0346 (11)
C280.4558 (4)0.2176 (3)0.5049 (3)0.0378 (12)
C290.4084 (5)0.1470 (4)0.4570 (3)0.0544 (15)
H290.40400.15600.40360.065*
C300.3682 (6)0.0639 (4)0.4884 (4)0.0685 (19)
H300.33530.01610.45600.082*
C310.3747 (5)0.0488 (4)0.5655 (4)0.0621 (17)
H310.34850.00960.58610.075*
C320.4189 (5)0.1186 (4)0.6118 (3)0.0548 (15)
H320.42140.10970.66530.066*
C330.4605 (4)0.2024 (4)0.5820 (3)0.0451 (13)
H330.49260.24990.61510.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03653 (11)0.03970 (11)0.03063 (12)0.00036 (8)0.00069 (9)0.00388 (8)
Hg20.03836 (12)0.03602 (11)0.03231 (12)0.00085 (8)0.00439 (9)0.00019 (8)
Hg30.03959 (12)0.04065 (11)0.02955 (12)0.00449 (8)0.00228 (9)0.00388 (8)
F10.064 (2)0.0567 (19)0.0405 (19)0.0088 (16)0.0019 (16)0.0120 (15)
F20.102 (3)0.0436 (19)0.074 (3)0.0153 (18)0.010 (2)0.0131 (17)
F30.122 (3)0.0389 (18)0.074 (3)0.012 (2)0.017 (2)0.0130 (17)
F40.077 (2)0.0521 (19)0.0403 (19)0.0064 (17)0.0113 (17)0.0080 (14)
F50.106 (3)0.064 (2)0.038 (2)0.003 (2)0.015 (2)0.0125 (16)
F60.096 (3)0.094 (3)0.036 (2)0.001 (2)0.0106 (19)0.0207 (18)
F70.079 (3)0.054 (2)0.079 (3)0.0043 (18)0.017 (2)0.0299 (18)
F80.080 (2)0.0400 (18)0.075 (2)0.0009 (17)0.015 (2)0.0028 (16)
F90.081 (2)0.0413 (18)0.047 (2)0.0048 (16)0.0001 (18)0.0047 (14)
F100.072 (2)0.057 (2)0.0425 (19)0.0012 (16)0.0048 (17)0.0203 (15)
F110.061 (2)0.076 (2)0.0272 (17)0.0027 (17)0.0009 (15)0.0049 (15)
F120.080 (2)0.0523 (19)0.0422 (19)0.0006 (17)0.0017 (18)0.0052 (15)
O10.0331 (19)0.043 (2)0.038 (2)0.0075 (16)0.0073 (16)0.0013 (16)
O20.041 (2)0.0398 (19)0.032 (2)0.0084 (15)0.0041 (16)0.0024 (14)
C10.031 (3)0.034 (3)0.045 (3)0.003 (2)0.002 (2)0.001 (2)
C20.046 (3)0.044 (3)0.032 (3)0.004 (2)0.005 (2)0.004 (2)
C30.061 (4)0.033 (3)0.047 (4)0.003 (3)0.006 (3)0.010 (2)
C40.052 (3)0.033 (3)0.062 (4)0.008 (3)0.001 (3)0.005 (3)
C50.035 (3)0.051 (3)0.032 (3)0.000 (2)0.003 (2)0.003 (2)
C60.031 (3)0.038 (3)0.035 (3)0.001 (2)0.000 (2)0.003 (2)
C70.032 (3)0.042 (3)0.032 (3)0.002 (2)0.004 (2)0.001 (2)
C80.050 (3)0.047 (3)0.035 (3)0.003 (2)0.014 (3)0.003 (2)
C90.042 (3)0.067 (4)0.033 (3)0.001 (3)0.003 (3)0.011 (3)
C100.040 (3)0.042 (3)0.053 (4)0.001 (2)0.007 (3)0.021 (3)
C110.043 (3)0.035 (3)0.056 (4)0.006 (2)0.011 (3)0.002 (3)
C120.025 (2)0.046 (3)0.034 (3)0.003 (2)0.001 (2)0.003 (2)
C130.032 (3)0.047 (3)0.029 (3)0.006 (2)0.002 (2)0.006 (2)
C140.038 (3)0.044 (3)0.037 (3)0.007 (2)0.001 (2)0.003 (2)
C150.038 (3)0.047 (3)0.038 (3)0.003 (2)0.001 (2)0.017 (2)
C160.040 (3)0.060 (3)0.026 (3)0.004 (3)0.002 (2)0.010 (2)
C170.038 (3)0.045 (3)0.038 (3)0.002 (2)0.005 (2)0.000 (2)
C180.036 (3)0.052 (3)0.029 (3)0.004 (2)0.001 (2)0.008 (2)
C190.026 (2)0.039 (3)0.026 (3)0.004 (2)0.001 (2)0.003 (2)
C200.023 (2)0.040 (3)0.029 (3)0.001 (2)0.000 (2)0.000 (2)
C210.031 (3)0.037 (3)0.040 (3)0.000 (2)0.005 (2)0.003 (2)
C220.051 (3)0.046 (3)0.042 (3)0.006 (3)0.006 (3)0.013 (2)
C230.052 (4)0.058 (4)0.032 (3)0.001 (3)0.007 (3)0.006 (3)
C240.040 (3)0.054 (3)0.034 (3)0.006 (2)0.008 (2)0.000 (2)
C250.024 (2)0.042 (3)0.033 (3)0.000 (2)0.004 (2)0.003 (2)
C260.035 (3)0.042 (3)0.024 (3)0.001 (2)0.001 (2)0.003 (2)
C270.036 (3)0.043 (3)0.024 (3)0.002 (2)0.004 (2)0.003 (2)
C280.036 (3)0.035 (3)0.043 (3)0.001 (2)0.001 (2)0.002 (2)
C290.065 (4)0.050 (3)0.049 (4)0.016 (3)0.001 (3)0.001 (3)
C300.084 (5)0.053 (4)0.069 (5)0.024 (3)0.005 (4)0.008 (3)
C310.068 (4)0.049 (4)0.071 (5)0.013 (3)0.007 (4)0.015 (3)
C320.060 (4)0.055 (4)0.049 (4)0.004 (3)0.007 (3)0.018 (3)
C330.042 (3)0.045 (3)0.048 (4)0.001 (2)0.003 (3)0.006 (2)
Geometric parameters (Å, º) top
Hg1—C182.072 (5)C13—C141.383 (7)
Hg1—C62.079 (5)C13—C181.407 (7)
Hg2—C72.074 (5)C14—C151.387 (7)
Hg2—C12.079 (5)C15—C161.358 (7)
Hg3—C132.079 (5)C16—C171.385 (7)
Hg3—C122.084 (5)C17—C181.377 (7)
F1—C51.355 (6)C19—C261.432 (6)
F2—C41.338 (6)C19—C201.468 (6)
F3—C31.335 (6)C20—C251.368 (6)
F4—C21.356 (6)C20—C211.416 (6)
F5—C81.359 (6)C21—C221.364 (7)
F6—C91.347 (6)C21—H210.9500
F7—C101.339 (6)C22—C231.374 (8)
F8—C111.351 (6)C22—H220.9500
F9—C141.358 (6)C23—C241.377 (7)
F10—C151.352 (5)C23—H230.9500
F11—C161.352 (6)C24—C251.388 (7)
F12—C171.363 (6)C24—H240.9500
O1—C191.256 (5)C26—C271.337 (7)
O2—C271.358 (6)C26—H260.9500
O2—C251.373 (5)C27—C281.484 (6)
C1—C21.378 (6)C28—C331.374 (7)
C1—C61.413 (7)C28—C291.397 (7)
C2—C31.376 (7)C29—C301.380 (8)
C3—C41.371 (8)C29—H290.9500
C4—C51.388 (7)C30—C311.374 (9)
C5—C61.382 (7)C30—H300.9500
C7—C81.381 (7)C31—C321.358 (8)
C7—C121.406 (7)C31—H310.9500
C8—C91.379 (7)C32—C331.385 (7)
C9—C101.376 (8)C32—H320.9500
C10—C111.370 (8)C33—H330.9500
C11—C121.377 (7)
C18—Hg1—C6175.85 (19)F12—C17—C18119.9 (4)
C7—Hg2—C1175.8 (2)F12—C17—C16117.3 (5)
C13—Hg3—C12175.7 (2)C18—C17—C16122.8 (5)
C27—O2—C25119.1 (4)C17—C18—C13118.0 (4)
C2—C1—C6118.2 (4)C17—C18—Hg1120.4 (4)
C2—C1—Hg2120.0 (4)C13—C18—Hg1121.5 (4)
C6—C1—Hg2121.8 (3)O1—C19—C26123.4 (4)
F4—C2—C3117.3 (4)O1—C19—C20122.4 (4)
F4—C2—C1119.6 (4)C26—C19—C20114.2 (4)
C3—C2—C1123.1 (5)C25—C20—C21117.5 (4)
F3—C3—C4119.6 (5)C25—C20—C19119.8 (4)
F3—C3—C2121.3 (5)C21—C20—C19122.7 (4)
C4—C3—C2119.2 (5)C22—C21—C20120.4 (5)
F2—C4—C3120.9 (5)C22—C21—H21119.8
F2—C4—C5120.2 (5)C20—C21—H21119.8
C3—C4—C5118.9 (5)C21—C22—C23120.2 (5)
F1—C5—C6119.7 (4)C21—C22—H22119.9
F1—C5—C4117.6 (5)C23—C22—H22119.9
C6—C5—C4122.7 (5)C22—C23—C24121.2 (5)
C5—C6—C1118.0 (4)C22—C23—H23119.4
C5—C6—Hg1120.2 (4)C24—C23—H23119.4
C1—C6—Hg1121.8 (3)C23—C24—C25117.9 (5)
C8—C7—C12117.9 (4)C23—C24—H24121.0
C8—C7—Hg2119.4 (4)C25—C24—H24121.0
C12—C7—Hg2122.6 (3)C20—C25—O2122.1 (4)
F5—C8—C9117.2 (5)C20—C25—C24122.7 (4)
F5—C8—C7120.0 (5)O2—C25—C24115.2 (4)
C9—C8—C7122.8 (5)C27—C26—C19122.5 (5)
F6—C9—C10119.6 (5)C27—C26—H26118.7
F6—C9—C8121.5 (5)C19—C26—H26118.7
C10—C9—C8118.8 (5)C26—C27—O2122.2 (4)
F7—C10—C11121.4 (5)C26—C27—C28126.5 (5)
F7—C10—C9119.5 (5)O2—C27—C28111.3 (4)
C11—C10—C9119.1 (5)C33—C28—C29118.9 (5)
F8—C11—C10117.7 (5)C33—C28—C27120.9 (5)
F8—C11—C12119.5 (5)C29—C28—C27120.1 (5)
C10—C11—C12122.8 (5)C30—C29—C28119.2 (6)
C11—C12—C7118.4 (5)C30—C29—H29120.4
C11—C12—Hg3120.2 (4)C28—C29—H29120.4
C7—C12—Hg3121.3 (3)C31—C30—C29121.5 (6)
C14—C13—C18118.3 (4)C31—C30—H30119.3
C14—C13—Hg3119.2 (4)C29—C30—H30119.3
C18—C13—Hg3122.5 (3)C32—C31—C30119.1 (5)
F9—C14—C13120.4 (4)C32—C31—H31120.4
F9—C14—C15117.3 (4)C30—C31—H31120.4
C13—C14—C15122.3 (5)C31—C32—C33120.7 (6)
F10—C15—C16119.9 (5)C31—C32—H32119.6
F10—C15—C14120.8 (5)C33—C32—H32119.6
C16—C15—C14119.2 (4)C28—C33—C32120.6 (5)
F11—C16—C15120.1 (4)C28—C33—H33119.7
F11—C16—C17120.7 (5)C32—C33—H33119.7
C15—C16—C17119.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···F4i0.952.543.486 (6)173
C24—H24···F1ii0.952.683.342 (6)127
C30—H30···F11ii0.952.573.473 (7)160
C31—H31···F5iii0.952.623.200 (8)120
C32—H32···F5iii0.952.503.149 (6)126
C21—H21···C70.952.783.456 (7)129
C24—H24···C16iv0.952.823.621 (7)142
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr A. Yakovenko for fruitful discussions.

Funding information

Funding for this research was provided by: NSF PREM (grant No. DMR-2122108).

References

First citationBaldamus, J., Deacon, G. B., Hey-Hawkins, E., Junk, P. C. & Martin, C. (2002). Aust. J. Chem. 55, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2019). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastañeda, R., Fonari, M. S., Risko, C., Getmanenko, Y. A. & Timofeeva, T. V. (2016). Cryst. Growth Des. 16, 2190–2200.  Google Scholar
First citationCastañeda, R., Yakovenko, A. A., Draguta, S., Fonari, M. S., Antipin, M. Yu. & Timofeeva, T. V. (2015). Cryst. Growth Des. 15, 1022–1026.  Google Scholar
First citationCushnie, T. P. T. & Lamb, A. J. (2005). Int. J. Antimicrob. Agent. 26, 343–356.  Web of Science CrossRef CAS Google Scholar
First citationCushnie, T. P. T. & Lamb, A. J. (2011). Int. J. Antimicrob. Agent. 38, 99–107.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEcheverría, J., Cirera, J. & Alvarez, S. (2017). Phys. Chem. Chem. Phys. 19, 11645–11654.  Web of Science PubMed Google Scholar
First citationFisher, S. P. & Reinheimer, E. W. (2013). J. Chem. Crystallogr. 43, 478–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, H., Jiang, L., Zhang, Q., Huang, Y., Wang, J.-R. & Mei, X. (2015). CrystEngComm, 17, 6566–6574.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, L., Huang, Y., Zhang, Q., He, H., Xu, Y. & Mei, X. (2014). Cryst. Growth Des. 14, 4562–4573.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhandavilli, U. B. R., Skořepová, E., Sinha, A. S., Bhogala, B. R., Maguire, N. M., Maguire, A. R. & Lawrence, S. E. (2018). Cryst. Growth Des. 18, 4571–4577.  Web of Science CSD CrossRef CAS Google Scholar
First citationKing, J. B., Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002a). J. Am. Chem. Soc. 124, 9350–9351.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKing, J. B., Tsunoda, M. & Gabbaï, F. P. (2002b). Organometallics, 21, 4201–4205.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Z., Li, M., Peng, B., Zhu, B., Wang, J.-R. & Mei, X. (2019). Cryst. Growth Des. 19, 1942–1953.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoveday, O., Jover, J. & Echeverría, J. (2022). Inorg. Chem. 61, 12526–12533.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Furin, G. G., Petrovskii, P. V. & Shur, V. B. (2001). Russ. Chem. Bull. 50, 1673–1678.  Web of Science CrossRef CAS Google Scholar
First citationTikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationTikhonova, I. A., Dolgushin, F. M., Yakovenko, A. A., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2005). Organometallics, 24, 3395–3400.  Web of Science CSD CrossRef CAS Google Scholar
First citationTikhonova, I. A., Yakovenko, A. A., Tugashov, K. I., Dolgushin, F. M., Petrovskii, P. V., Minacheva, M. Kh., Strunin, B. N. & Shur, V. B. (2013). Russ. Chem. Bull. 62, 710–715.  Web of Science CrossRef CAS Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYakovenko, A. A., Gallegos, J. H., Antipin, M. Yu., Masunov, A. & Timofeeva, T. V. (2011). Cryst. Growth Des. 11, 3964–3978.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds