research communications
A 1:1 flavone cocrystal with cyclic trimeric perfluoro-o-phenylenemercury
aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and bInstitute of Applied Physics, Moldova State University, Academy str., 5 MD2028, Chisinau, Moldova
*Correspondence e-mail: enovikov@live.nmhu.edu
The title compound, μ2-perfluoro-o-phenylene)(μ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinic P21/n with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenylenemercury (TPPM) molecule per The FLA molecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stack via two alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are interdigitated through the shortened F⋯F, CH⋯F and CH⋯π contacts, forming a dense crystal structure.
tris(Keywords: cocrystal; flavone; cyclic trimeric perfluoro-o-phenylenemercury; crystal structure; weak interactions.
CCDC reference: 2360864
1. Chemical context
Macrocyclic trimeric perfluoro-o-phenylenemercury [TPPM, (o-C6F4Hg)3] containing three Hg atoms in a planar nine-membered cycle has been used successfully in recent decades as a multidentate host. Numerous studies registered an excellent oxo- and thiophilicity of this strong manifested in its reactions with various anions and neutral Lewis bases to give complexes wherein the Lewis bases were easily cooperatively coordinated by multiple TPPM binding sites (King et al., 2002a,b; Tikhonova et al., 2005; Castañeda et al., 2015, 2016; Loveday et al., 2022). In particular, the oxophilicity of TPPM is well-documented, and the reported examples revealed variable molar ratios and packing arrangements of the TPPM acceptor and O-containing Lewis bases in the crystals (King et al., 2002a,b; Tikhonova et al., 2005; Castañeda et al., 2016). The O⋯Hg coordination bonds were the primary interactions in those crystals that involved two or three Hg atoms of TPPM and the O-donor molecules situated on one or both faces of the TPPM macrocycle.
Flavonoids are a family of polyphenolic compounds broadly produced in plants and found in the human diet. They are generally recognized as active pharmaceutical ingredients (API) with health-prolonging effects attributed to their antibacterial, antioxidant, antitumor, and anti-inflammatory properties (Cushnie & Lamb, 2005, 2011). Flavone (FLA), the simplest member of the class of flavones, can be tailored for significant modulation of its pharmacological activity and therefore serves as an effective scaffold in medicinal chemistry (Singh et al., 2014). While the crystal chemistry of the TPPM acceptor is rather rich, only single examples have been reported for the crystalline forms of FLA (Waller et al., 2003; van Tonder et al., 2009a,b; Jiang et al., 2014; Khandavilli et al., 2018; Li et al., 2019; He et al., 2015). To fill this gap, we decided to cocrystallize FLA with TPPM. From a crystal-engineering perspective, it might be predicted that FLA, containing a benzo-γ-pyrone moiety bearing a phenyl substituent at position 2 and having a carbonyl group, would be predisposed for association with TPPM via oxophilic and stacking interactions. The of the product of these interactions, the cocrystal (FLA)·(TPPM), is reported.
2. Structural commentary
The title compound, (FLA)·(TPPM) in a 1:1 molar ratio, crystallizes in the monoclinic P21/n. The comprises one FLA and one TPPM molecule (Fig. 1). The principal geometric parameters for both components are in good agreement with the literature values (Groom et al., 2016). The components are held together via two Hg—O contacts, Hg1⋯O1 = 2.829 (3) and Hg2⋯O1 = 2.947 (4) Å, that are considerably shorter than the sum of the van der Waals radii of mercury (2.1 Å) and oxygen (1.5 Å) atoms (Batsanov, 2001; Yakovenko et al., 2011). The Hg3⋯O1 distance is 3.097 (3) Å. Thus, an asymmetrical coordination of the FLA carbonyl oxygen atom, which is bonded to two Hg centers, is observed. The tilting angle between the virtually planar benzo-γ-pyrone residue (the r.m.s. deviation of the 11 fitted atoms is 0.0243 Å) and the mean plane of TPPM is 49.97 (5)°. The FLA molecule has an angular shape indicated by the twisted angle between the benzo-γ-pyrone moiety and the anchored phenyl ring of 23.3 (2)°, contrary to the practically planar geometry of FLA in its pure form (WADRAV; Waller et al., 2003) and in (η6-flavone)tricarbonylchromium(0) (FUGBEP; van Tonder et al., 2009b).
3. Supramolecular features
The complexes pack in zigzag chains along the crystallographic a axis (Fig. 2), where they stack via two alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and the macrocycles related by inversion are in a The structure contains some intermetallic Hg⋯Hg distances, shorter than sum of the van der Waals radii (Batsanov, 2001; Yakovenko et al., 2011; Echeverría et al., 2017). They include: Hg1⋯Hg2(2 − x, 1 − y, 1 − z) = 3.6305 (4) Å; Hg1⋯Hg3(2 − x, 1 − y, 1 − z) = 4.7390 (5) Å; Hg2⋯Hg2(2 − x, 1 − y, 1 − z) = 4.7514 (5) Å; Hg2⋯Hg3(2 − x, 1 − y, 1 − z) = 4.3423 (5) Å. The interplanar separation between the two consecutive benzo-γ-pyrone moieties of FLA in the stack is equal to 3.328 (2) Å with only the pyrone rings overlapping, Cg(O2/C19–C27)⋯Cg(O2/C19–C27)(1 − x, 1 − y, 1 − z) = 3.996 (3) Å, slippage 2.211 Å. The neighboring stacks are interconnected in an interdigitated mode (Fig. 3) through the side F1⋯F11( − x, y − , − z) 2.875 (5) Å, and CH⋯F shortened contacts, C24—H24⋯F1(x − , − y, z − ) = 2.68 Å; C31—H31⋯F5(x − , − y, + z) = 2.62 Å; C32—H32⋯F5(x − , − y, + z) = 2.50 Å; C30—H30⋯F11(x − , − y, z − ) = 2.57 Å and C—H⋯π weak interactions (Table 1).
4. Database survey
A search in the Cambridge Structural Database (version 5.45, updated on 01/01/2024; Groom et al., 2016) gave very few hits for FLA crystal forms. The pure form (WADRAV; Waller et al., 2003) crystallizes in the P212121 with two crystallographically unique molecules. In compound [Cr(FLA)(CO)3] (FUGBEP; van Tonder et al., 2009b), the CrIII metal center coordinates the phenyl ring of FLA. In both cases, the FLA molecule is significantly planar. In the case of the dapsone drug DAP–FLA 1:1 cocrystal (VOHKEK; Jiang et al., 2014, P21/n space group), the carbonyl group of FLA forms hydrogen-bonding interactions with the amino groups of DAP to form a tetrameric aggregation. Furthermore, DAP–FLA was documented as another polymorph (Form B, VOHKEK01, Fdd2 space group) and another crystal form (RUHDOP, P He et al., 2015) with a 1:2 ratio of component molecules. In the drug cocrystal Naringenin–FLA (JILSIJ, 1:1 molar ratio; Khandavilli et al., 2018) FLA molecules are bridging between naringenin dimers via O—H⋯O interactions. The polymorphic diversity was also registered for the diethylstilbestrol–bis(FLA) cocrystal (NOCTIL, P and NOCTIL01, C2/c; Li et al., 2019). The high propensity of TPPM for carbonyl-containing compounds was demonstrated for: ethylacetate (CAMFIG; Tikhonova et al., 2002; 3:1 donor–acceptor molar ratio), ethyl 3-oxobutanoate (KIRDIA; Tikhonova et al., 2013), 4-(dimethylamino)phenylmethanone (OGANIV; Fisher & Reinheimer, 2013; 1:1 molar ratio), acetone (PABLUA; King et al., 2002a,b; 1:1 molar ratio), N,N-dimethylacetamide (XINMAI; Tikhonova et al., 2001; 2:1 molar ratio), dimethyl formamide (XOJFEH; Baldamus et al., 2002 and XOJFEH01; Tikhonova et al., 2002; 2:1 molar ratio).
5. Synthesis and crystallization
FLA (11.212 mg, 0.05 mmol) was dissolved in 5 mL of DCM and TPPM (52.290 mg, 0.05 mmol) was added to the solution. The mixture was sonicated for 10 min at ambient conditions (room temperature), and after that the solution was transferred to a 15 mL test tube and covered with a cotton cap. In 10 days transparent colorless crystals (mass of crystals collected 54.205 mg, 0.0427 mmol, 85.35%) were obtained.
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined in anisotropic approximation. The H atoms were refined as riding in idealized positions, with Uiso(H) = 1.2Ueq of the bearing C atom.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2360864
https://doi.org/10.1107/S2056989024005346/dj2077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005346/dj2077Isup2.hkl
[Hg3(C6F4)3(C15H10O2)] | F(000) = 2288 |
Mr = 1268.18 | Dx = 2.788 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.4181 (8) Å | Cell parameters from 9132 reflections |
b = 13.8092 (8) Å | θ = 2.2–26.7° |
c = 17.6498 (11) Å | µ = 15.31 mm−1 |
β = 93.360 (2)° | T = 100 K |
V = 3021.5 (3) Å3 | Plate, clear colourless |
Z = 4 | 0.20 × 0.20 × 0.10 mm |
Bruker SMART APEXII diffractometer | 5894 independent reflections |
Radiation source: sealed X-ray tube, EIGENMANN GmbH | 5069 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.0°, θmin = 1.9° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→17 |
Tmin = 0.372, Tmax = 0.746 | l = −21→16 |
38196 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0252P)2 + 1.6597P] where P = (Fo2 + 2Fc2)/3 |
5894 reflections | (Δ/σ)max = 0.003 |
451 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −1.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.85812 (2) | 0.44283 (2) | 0.60352 (2) | 0.03572 (6) | |
Hg2 | 0.86702 (2) | 0.46865 (2) | 0.40075 (2) | 0.03547 (6) | |
Hg3 | 0.84037 (2) | 0.68004 (2) | 0.51822 (2) | 0.03658 (6) | |
F1 | 0.8927 (3) | 0.2205 (2) | 0.63984 (17) | 0.0536 (8) | |
F2 | 0.9080 (3) | 0.0628 (2) | 0.5516 (2) | 0.0729 (11) | |
F3 | 0.9084 (3) | 0.0823 (2) | 0.3984 (2) | 0.0777 (12) | |
F4 | 0.8941 (3) | 0.2590 (2) | 0.33427 (17) | 0.0561 (9) | |
F5 | 0.8718 (3) | 0.5418 (2) | 0.23224 (18) | 0.0688 (10) | |
F6 | 0.8452 (3) | 0.7185 (3) | 0.16752 (18) | 0.0751 (11) | |
F7 | 0.8183 (3) | 0.8760 (2) | 0.2553 (2) | 0.0702 (10) | |
F8 | 0.8354 (3) | 0.8603 (2) | 0.4079 (2) | 0.0646 (10) | |
F9 | 0.8232 (3) | 0.8296 (2) | 0.65175 (18) | 0.0565 (9) | |
F10 | 0.8092 (3) | 0.8092 (2) | 0.80319 (17) | 0.0571 (9) | |
F11 | 0.8165 (3) | 0.6306 (2) | 0.86695 (16) | 0.0552 (8) | |
F12 | 0.8461 (3) | 0.4725 (2) | 0.78054 (18) | 0.0583 (9) | |
O1 | 0.6883 (3) | 0.5027 (2) | 0.50025 (18) | 0.0383 (8) | |
O2 | 0.4563 (3) | 0.3256 (2) | 0.40217 (19) | 0.0379 (8) | |
C1 | 0.8790 (4) | 0.3342 (3) | 0.4535 (3) | 0.0365 (12) | |
C2 | 0.8910 (4) | 0.2518 (4) | 0.4107 (3) | 0.0404 (12) | |
C3 | 0.8998 (5) | 0.1606 (4) | 0.4419 (3) | 0.0470 (14) | |
C4 | 0.8998 (5) | 0.1504 (4) | 0.5191 (3) | 0.0491 (14) | |
C5 | 0.8890 (4) | 0.2323 (4) | 0.5636 (3) | 0.0395 (12) | |
C6 | 0.8776 (4) | 0.3242 (3) | 0.5331 (3) | 0.0345 (11) | |
C7 | 0.8593 (4) | 0.6074 (3) | 0.3557 (3) | 0.0352 (11) | |
C8 | 0.8596 (4) | 0.6197 (4) | 0.2781 (3) | 0.0438 (13) | |
C9 | 0.8465 (4) | 0.7088 (4) | 0.2435 (3) | 0.0469 (14) | |
C10 | 0.8346 (4) | 0.7894 (4) | 0.2882 (3) | 0.0451 (14) | |
C11 | 0.8394 (4) | 0.7791 (4) | 0.3655 (3) | 0.0443 (13) | |
C12 | 0.8482 (4) | 0.6903 (4) | 0.4009 (3) | 0.0348 (11) | |
C13 | 0.8368 (4) | 0.6593 (4) | 0.6347 (3) | 0.0359 (11) | |
C14 | 0.8278 (4) | 0.7389 (4) | 0.6815 (3) | 0.0398 (12) | |
C15 | 0.8211 (4) | 0.7302 (4) | 0.7593 (3) | 0.0411 (13) | |
C16 | 0.8264 (4) | 0.6408 (4) | 0.7915 (3) | 0.0422 (13) | |
C17 | 0.8405 (4) | 0.5607 (4) | 0.7459 (3) | 0.0406 (12) | |
C18 | 0.8448 (4) | 0.5670 (4) | 0.6683 (3) | 0.0391 (12) | |
C19 | 0.6156 (4) | 0.4494 (3) | 0.4705 (3) | 0.0304 (10) | |
C20 | 0.5632 (4) | 0.4696 (3) | 0.3954 (3) | 0.0307 (10) | |
C21 | 0.5875 (4) | 0.5526 (3) | 0.3525 (3) | 0.0361 (12) | |
H21 | 0.6385 | 0.5985 | 0.3727 | 0.043* | |
C22 | 0.5381 (4) | 0.5673 (4) | 0.2823 (3) | 0.0463 (14) | |
H22 | 0.5544 | 0.6234 | 0.2541 | 0.056* | |
C23 | 0.4647 (5) | 0.5010 (4) | 0.2524 (3) | 0.0479 (14) | |
H23 | 0.4318 | 0.5114 | 0.2031 | 0.058* | |
C24 | 0.4380 (4) | 0.4199 (4) | 0.2926 (3) | 0.0431 (13) | |
H24 | 0.3870 | 0.3744 | 0.2719 | 0.052* | |
C25 | 0.4880 (4) | 0.4066 (3) | 0.3643 (3) | 0.0328 (11) | |
C26 | 0.5780 (4) | 0.3633 (3) | 0.5056 (3) | 0.0335 (11) | |
H26 | 0.6081 | 0.3460 | 0.5545 | 0.040* | |
C27 | 0.5022 (4) | 0.3063 (3) | 0.4723 (3) | 0.0346 (11) | |
C28 | 0.4558 (4) | 0.2176 (3) | 0.5049 (3) | 0.0378 (12) | |
C29 | 0.4084 (5) | 0.1470 (4) | 0.4570 (3) | 0.0544 (15) | |
H29 | 0.4040 | 0.1560 | 0.4036 | 0.065* | |
C30 | 0.3682 (6) | 0.0639 (4) | 0.4884 (4) | 0.0685 (19) | |
H30 | 0.3353 | 0.0161 | 0.4560 | 0.082* | |
C31 | 0.3747 (5) | 0.0488 (4) | 0.5655 (4) | 0.0621 (17) | |
H31 | 0.3485 | −0.0096 | 0.5861 | 0.075* | |
C32 | 0.4189 (5) | 0.1186 (4) | 0.6118 (3) | 0.0548 (15) | |
H32 | 0.4214 | 0.1097 | 0.6653 | 0.066* | |
C33 | 0.4605 (4) | 0.2024 (4) | 0.5820 (3) | 0.0451 (13) | |
H33 | 0.4926 | 0.2499 | 0.6151 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.03653 (11) | 0.03970 (11) | 0.03063 (12) | −0.00036 (8) | −0.00069 (9) | −0.00388 (8) |
Hg2 | 0.03836 (12) | 0.03602 (11) | 0.03231 (12) | 0.00085 (8) | 0.00439 (9) | −0.00019 (8) |
Hg3 | 0.03959 (12) | 0.04065 (11) | 0.02955 (12) | −0.00449 (8) | 0.00228 (9) | −0.00388 (8) |
F1 | 0.064 (2) | 0.0567 (19) | 0.0405 (19) | 0.0088 (16) | 0.0019 (16) | 0.0120 (15) |
F2 | 0.102 (3) | 0.0436 (19) | 0.074 (3) | 0.0153 (18) | 0.010 (2) | 0.0131 (17) |
F3 | 0.122 (3) | 0.0389 (18) | 0.074 (3) | 0.012 (2) | 0.017 (2) | −0.0130 (17) |
F4 | 0.077 (2) | 0.0521 (19) | 0.0403 (19) | 0.0064 (17) | 0.0113 (17) | −0.0080 (14) |
F5 | 0.106 (3) | 0.064 (2) | 0.038 (2) | 0.003 (2) | 0.015 (2) | −0.0125 (16) |
F6 | 0.096 (3) | 0.094 (3) | 0.036 (2) | 0.001 (2) | 0.0106 (19) | 0.0207 (18) |
F7 | 0.079 (3) | 0.054 (2) | 0.079 (3) | 0.0043 (18) | 0.017 (2) | 0.0299 (18) |
F8 | 0.080 (2) | 0.0400 (18) | 0.075 (2) | −0.0009 (17) | 0.015 (2) | −0.0028 (16) |
F9 | 0.081 (2) | 0.0413 (18) | 0.047 (2) | −0.0048 (16) | −0.0001 (18) | −0.0047 (14) |
F10 | 0.072 (2) | 0.057 (2) | 0.0425 (19) | −0.0012 (16) | 0.0048 (17) | −0.0203 (15) |
F11 | 0.061 (2) | 0.076 (2) | 0.0272 (17) | 0.0027 (17) | −0.0009 (15) | −0.0049 (15) |
F12 | 0.080 (2) | 0.0523 (19) | 0.0422 (19) | 0.0006 (17) | −0.0017 (18) | 0.0052 (15) |
O1 | 0.0331 (19) | 0.043 (2) | 0.038 (2) | −0.0075 (16) | −0.0073 (16) | −0.0013 (16) |
O2 | 0.041 (2) | 0.0398 (19) | 0.032 (2) | −0.0084 (15) | −0.0041 (16) | 0.0024 (14) |
C1 | 0.031 (3) | 0.034 (3) | 0.045 (3) | 0.003 (2) | 0.002 (2) | 0.001 (2) |
C2 | 0.046 (3) | 0.044 (3) | 0.032 (3) | 0.004 (2) | 0.005 (2) | −0.004 (2) |
C3 | 0.061 (4) | 0.033 (3) | 0.047 (4) | 0.003 (3) | 0.006 (3) | −0.010 (2) |
C4 | 0.052 (3) | 0.033 (3) | 0.062 (4) | 0.008 (3) | 0.001 (3) | 0.005 (3) |
C5 | 0.035 (3) | 0.051 (3) | 0.032 (3) | 0.000 (2) | −0.003 (2) | 0.003 (2) |
C6 | 0.031 (3) | 0.038 (3) | 0.035 (3) | 0.001 (2) | 0.000 (2) | −0.003 (2) |
C7 | 0.032 (3) | 0.042 (3) | 0.032 (3) | −0.002 (2) | 0.004 (2) | 0.001 (2) |
C8 | 0.050 (3) | 0.047 (3) | 0.035 (3) | −0.003 (2) | 0.014 (3) | −0.003 (2) |
C9 | 0.042 (3) | 0.067 (4) | 0.033 (3) | −0.001 (3) | 0.003 (3) | 0.011 (3) |
C10 | 0.040 (3) | 0.042 (3) | 0.053 (4) | −0.001 (2) | 0.007 (3) | 0.021 (3) |
C11 | 0.043 (3) | 0.035 (3) | 0.056 (4) | −0.006 (2) | 0.011 (3) | −0.002 (3) |
C12 | 0.025 (2) | 0.046 (3) | 0.034 (3) | −0.003 (2) | 0.001 (2) | 0.003 (2) |
C13 | 0.032 (3) | 0.047 (3) | 0.029 (3) | −0.006 (2) | 0.002 (2) | −0.006 (2) |
C14 | 0.038 (3) | 0.044 (3) | 0.037 (3) | −0.007 (2) | 0.001 (2) | −0.003 (2) |
C15 | 0.038 (3) | 0.047 (3) | 0.038 (3) | −0.003 (2) | 0.001 (2) | −0.017 (2) |
C16 | 0.040 (3) | 0.060 (3) | 0.026 (3) | −0.004 (3) | −0.002 (2) | −0.010 (2) |
C17 | 0.038 (3) | 0.045 (3) | 0.038 (3) | −0.002 (2) | −0.005 (2) | 0.000 (2) |
C18 | 0.036 (3) | 0.052 (3) | 0.029 (3) | −0.004 (2) | −0.001 (2) | −0.008 (2) |
C19 | 0.026 (2) | 0.039 (3) | 0.026 (3) | 0.004 (2) | −0.001 (2) | −0.003 (2) |
C20 | 0.023 (2) | 0.040 (3) | 0.029 (3) | 0.001 (2) | 0.000 (2) | 0.000 (2) |
C21 | 0.031 (3) | 0.037 (3) | 0.040 (3) | 0.000 (2) | 0.005 (2) | 0.003 (2) |
C22 | 0.051 (3) | 0.046 (3) | 0.042 (3) | 0.006 (3) | 0.006 (3) | 0.013 (2) |
C23 | 0.052 (4) | 0.058 (4) | 0.032 (3) | 0.001 (3) | −0.007 (3) | 0.006 (3) |
C24 | 0.040 (3) | 0.054 (3) | 0.034 (3) | −0.006 (2) | −0.008 (2) | 0.000 (2) |
C25 | 0.024 (2) | 0.042 (3) | 0.033 (3) | 0.000 (2) | 0.004 (2) | 0.003 (2) |
C26 | 0.035 (3) | 0.042 (3) | 0.024 (3) | −0.001 (2) | −0.001 (2) | 0.003 (2) |
C27 | 0.036 (3) | 0.043 (3) | 0.024 (3) | 0.002 (2) | −0.004 (2) | 0.003 (2) |
C28 | 0.036 (3) | 0.035 (3) | 0.043 (3) | −0.001 (2) | 0.001 (2) | 0.002 (2) |
C29 | 0.065 (4) | 0.050 (3) | 0.049 (4) | −0.016 (3) | 0.001 (3) | 0.001 (3) |
C30 | 0.084 (5) | 0.053 (4) | 0.069 (5) | −0.024 (3) | 0.005 (4) | −0.008 (3) |
C31 | 0.068 (4) | 0.049 (4) | 0.071 (5) | −0.013 (3) | 0.007 (4) | 0.015 (3) |
C32 | 0.060 (4) | 0.055 (4) | 0.049 (4) | −0.004 (3) | 0.007 (3) | 0.018 (3) |
C33 | 0.042 (3) | 0.045 (3) | 0.048 (4) | −0.001 (2) | −0.003 (3) | 0.006 (2) |
Hg1—C18 | 2.072 (5) | C13—C14 | 1.383 (7) |
Hg1—C6 | 2.079 (5) | C13—C18 | 1.407 (7) |
Hg2—C7 | 2.074 (5) | C14—C15 | 1.387 (7) |
Hg2—C1 | 2.079 (5) | C15—C16 | 1.358 (7) |
Hg3—C13 | 2.079 (5) | C16—C17 | 1.385 (7) |
Hg3—C12 | 2.084 (5) | C17—C18 | 1.377 (7) |
F1—C5 | 1.355 (6) | C19—C26 | 1.432 (6) |
F2—C4 | 1.338 (6) | C19—C20 | 1.468 (6) |
F3—C3 | 1.335 (6) | C20—C25 | 1.368 (6) |
F4—C2 | 1.356 (6) | C20—C21 | 1.416 (6) |
F5—C8 | 1.359 (6) | C21—C22 | 1.364 (7) |
F6—C9 | 1.347 (6) | C21—H21 | 0.9500 |
F7—C10 | 1.339 (6) | C22—C23 | 1.374 (8) |
F8—C11 | 1.351 (6) | C22—H22 | 0.9500 |
F9—C14 | 1.358 (6) | C23—C24 | 1.377 (7) |
F10—C15 | 1.352 (5) | C23—H23 | 0.9500 |
F11—C16 | 1.352 (6) | C24—C25 | 1.388 (7) |
F12—C17 | 1.363 (6) | C24—H24 | 0.9500 |
O1—C19 | 1.256 (5) | C26—C27 | 1.337 (7) |
O2—C27 | 1.358 (6) | C26—H26 | 0.9500 |
O2—C25 | 1.373 (5) | C27—C28 | 1.484 (6) |
C1—C2 | 1.378 (6) | C28—C33 | 1.374 (7) |
C1—C6 | 1.413 (7) | C28—C29 | 1.397 (7) |
C2—C3 | 1.376 (7) | C29—C30 | 1.380 (8) |
C3—C4 | 1.371 (8) | C29—H29 | 0.9500 |
C4—C5 | 1.388 (7) | C30—C31 | 1.374 (9) |
C5—C6 | 1.382 (7) | C30—H30 | 0.9500 |
C7—C8 | 1.381 (7) | C31—C32 | 1.358 (8) |
C7—C12 | 1.406 (7) | C31—H31 | 0.9500 |
C8—C9 | 1.379 (7) | C32—C33 | 1.385 (7) |
C9—C10 | 1.376 (8) | C32—H32 | 0.9500 |
C10—C11 | 1.370 (8) | C33—H33 | 0.9500 |
C11—C12 | 1.377 (7) | ||
C18—Hg1—C6 | 175.85 (19) | F12—C17—C18 | 119.9 (4) |
C7—Hg2—C1 | 175.8 (2) | F12—C17—C16 | 117.3 (5) |
C13—Hg3—C12 | 175.7 (2) | C18—C17—C16 | 122.8 (5) |
C27—O2—C25 | 119.1 (4) | C17—C18—C13 | 118.0 (4) |
C2—C1—C6 | 118.2 (4) | C17—C18—Hg1 | 120.4 (4) |
C2—C1—Hg2 | 120.0 (4) | C13—C18—Hg1 | 121.5 (4) |
C6—C1—Hg2 | 121.8 (3) | O1—C19—C26 | 123.4 (4) |
F4—C2—C3 | 117.3 (4) | O1—C19—C20 | 122.4 (4) |
F4—C2—C1 | 119.6 (4) | C26—C19—C20 | 114.2 (4) |
C3—C2—C1 | 123.1 (5) | C25—C20—C21 | 117.5 (4) |
F3—C3—C4 | 119.6 (5) | C25—C20—C19 | 119.8 (4) |
F3—C3—C2 | 121.3 (5) | C21—C20—C19 | 122.7 (4) |
C4—C3—C2 | 119.2 (5) | C22—C21—C20 | 120.4 (5) |
F2—C4—C3 | 120.9 (5) | C22—C21—H21 | 119.8 |
F2—C4—C5 | 120.2 (5) | C20—C21—H21 | 119.8 |
C3—C4—C5 | 118.9 (5) | C21—C22—C23 | 120.2 (5) |
F1—C5—C6 | 119.7 (4) | C21—C22—H22 | 119.9 |
F1—C5—C4 | 117.6 (5) | C23—C22—H22 | 119.9 |
C6—C5—C4 | 122.7 (5) | C22—C23—C24 | 121.2 (5) |
C5—C6—C1 | 118.0 (4) | C22—C23—H23 | 119.4 |
C5—C6—Hg1 | 120.2 (4) | C24—C23—H23 | 119.4 |
C1—C6—Hg1 | 121.8 (3) | C23—C24—C25 | 117.9 (5) |
C8—C7—C12 | 117.9 (4) | C23—C24—H24 | 121.0 |
C8—C7—Hg2 | 119.4 (4) | C25—C24—H24 | 121.0 |
C12—C7—Hg2 | 122.6 (3) | C20—C25—O2 | 122.1 (4) |
F5—C8—C9 | 117.2 (5) | C20—C25—C24 | 122.7 (4) |
F5—C8—C7 | 120.0 (5) | O2—C25—C24 | 115.2 (4) |
C9—C8—C7 | 122.8 (5) | C27—C26—C19 | 122.5 (5) |
F6—C9—C10 | 119.6 (5) | C27—C26—H26 | 118.7 |
F6—C9—C8 | 121.5 (5) | C19—C26—H26 | 118.7 |
C10—C9—C8 | 118.8 (5) | C26—C27—O2 | 122.2 (4) |
F7—C10—C11 | 121.4 (5) | C26—C27—C28 | 126.5 (5) |
F7—C10—C9 | 119.5 (5) | O2—C27—C28 | 111.3 (4) |
C11—C10—C9 | 119.1 (5) | C33—C28—C29 | 118.9 (5) |
F8—C11—C10 | 117.7 (5) | C33—C28—C27 | 120.9 (5) |
F8—C11—C12 | 119.5 (5) | C29—C28—C27 | 120.1 (5) |
C10—C11—C12 | 122.8 (5) | C30—C29—C28 | 119.2 (6) |
C11—C12—C7 | 118.4 (5) | C30—C29—H29 | 120.4 |
C11—C12—Hg3 | 120.2 (4) | C28—C29—H29 | 120.4 |
C7—C12—Hg3 | 121.3 (3) | C31—C30—C29 | 121.5 (6) |
C14—C13—C18 | 118.3 (4) | C31—C30—H30 | 119.3 |
C14—C13—Hg3 | 119.2 (4) | C29—C30—H30 | 119.3 |
C18—C13—Hg3 | 122.5 (3) | C32—C31—C30 | 119.1 (5) |
F9—C14—C13 | 120.4 (4) | C32—C31—H31 | 120.4 |
F9—C14—C15 | 117.3 (4) | C30—C31—H31 | 120.4 |
C13—C14—C15 | 122.3 (5) | C31—C32—C33 | 120.7 (6) |
F10—C15—C16 | 119.9 (5) | C31—C32—H32 | 119.6 |
F10—C15—C14 | 120.8 (5) | C33—C32—H32 | 119.6 |
C16—C15—C14 | 119.2 (4) | C28—C33—C32 | 120.6 (5) |
F11—C16—C15 | 120.1 (4) | C28—C33—H33 | 119.7 |
F11—C16—C17 | 120.7 (5) | C32—C33—H33 | 119.7 |
C15—C16—C17 | 119.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···F4i | 0.95 | 2.54 | 3.486 (6) | 173 |
C24—H24···F1ii | 0.95 | 2.68 | 3.342 (6) | 127 |
C30—H30···F11ii | 0.95 | 2.57 | 3.473 (7) | 160 |
C31—H31···F5iii | 0.95 | 2.62 | 3.200 (8) | 120 |
C32—H32···F5iii | 0.95 | 2.50 | 3.149 (6) | 126 |
C21—H21···C7 | 0.95 | 2.78 | 3.456 (7) | 129 |
C24—H24···C16iv | 0.95 | 2.82 | 3.621 (7) | 142 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Dr A. Yakovenko for fruitful discussions.
Funding information
Funding for this research was provided by: NSF PREM (grant No. DMR-2122108).
References
Baldamus, J., Deacon, G. B., Hey-Hawkins, E., Junk, P. C. & Martin, C. (2002). Aust. J. Chem. 55, 195–198. Web of Science CSD CrossRef CAS Google Scholar
Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885. Web of Science CrossRef CAS Google Scholar
Bruker (2019). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2020). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castañeda, R., Fonari, M. S., Risko, C., Getmanenko, Y. A. & Timofeeva, T. V. (2016). Cryst. Growth Des. 16, 2190–2200. Google Scholar
Castañeda, R., Yakovenko, A. A., Draguta, S., Fonari, M. S., Antipin, M. Yu. & Timofeeva, T. V. (2015). Cryst. Growth Des. 15, 1022–1026. Google Scholar
Cushnie, T. P. T. & Lamb, A. J. (2005). Int. J. Antimicrob. Agent. 26, 343–356. Web of Science CrossRef CAS Google Scholar
Cushnie, T. P. T. & Lamb, A. J. (2011). Int. J. Antimicrob. Agent. 38, 99–107. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Echeverría, J., Cirera, J. & Alvarez, S. (2017). Phys. Chem. Chem. Phys. 19, 11645–11654. Web of Science PubMed Google Scholar
Fisher, S. P. & Reinheimer, E. W. (2013). J. Chem. Crystallogr. 43, 478–483. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, H., Jiang, L., Zhang, Q., Huang, Y., Wang, J.-R. & Mei, X. (2015). CrystEngComm, 17, 6566–6574. Web of Science CSD CrossRef CAS Google Scholar
Jiang, L., Huang, Y., Zhang, Q., He, H., Xu, Y. & Mei, X. (2014). Cryst. Growth Des. 14, 4562–4573. Web of Science CSD CrossRef CAS Google Scholar
Khandavilli, U. B. R., Skořepová, E., Sinha, A. S., Bhogala, B. R., Maguire, N. M., Maguire, A. R. & Lawrence, S. E. (2018). Cryst. Growth Des. 18, 4571–4577. Web of Science CSD CrossRef CAS Google Scholar
King, J. B., Haneline, M. R., Tsunoda, M. & Gabbaï, F. P. (2002a). J. Am. Chem. Soc. 124, 9350–9351. Web of Science CSD CrossRef PubMed CAS Google Scholar
King, J. B., Tsunoda, M. & Gabbaï, F. P. (2002b). Organometallics, 21, 4201–4205. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Z., Li, M., Peng, B., Zhu, B., Wang, J.-R. & Mei, X. (2019). Cryst. Growth Des. 19, 1942–1953. Web of Science CSD CrossRef CAS Google Scholar
Loveday, O., Jover, J. & Echeverría, J. (2022). Inorg. Chem. 61, 12526–12533. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–239. Web of Science CrossRef CAS PubMed Google Scholar
Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Furin, G. G., Petrovskii, P. V. & Shur, V. B. (2001). Russ. Chem. Bull. 50, 1673–1678. Web of Science CrossRef CAS Google Scholar
Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2002). J. Organomet. Chem. 654, 123–131. Web of Science CSD CrossRef CAS Google Scholar
Tikhonova, I. A., Dolgushin, F. M., Yakovenko, A. A., Tugashov, K. I., Petrovskii, P. V., Furin, G. G. & Shur, V. B. (2005). Organometallics, 24, 3395–3400. Web of Science CSD CrossRef CAS Google Scholar
Tikhonova, I. A., Yakovenko, A. A., Tugashov, K. I., Dolgushin, F. M., Petrovskii, P. V., Minacheva, M. Kh., Strunin, B. N. & Shur, V. B. (2013). Russ. Chem. Bull. 62, 710–715. Web of Science CrossRef CAS Google Scholar
Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346. Web of Science CSD CrossRef IUCr Journals Google Scholar
Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yakovenko, A. A., Gallegos, J. H., Antipin, M. Yu., Masunov, A. & Timofeeva, T. V. (2011). Cryst. Growth Des. 11, 3964–3978. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.