research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydroquinolin-4-yl]pyrrolidin-2-one

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str, Az 1148 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 April 2024; accepted 14 June 2024; online 25 June 2024)

In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect mol­ecules into ribbons along the b-axis direction, consolidating the mol­ecular packing. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

As a result of their presence in many plants, tetra­hydro­quinoline derivatives have long been of great inter­est to organic chemists and biochemists. The tetra­hydro­quinoline moiety can be found in many alkaloids that possess anti­malarial and anti­microbial properties (Ghashghaei et al., 2018[Ghashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71-79.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). Various studies show that tetra­hydro­quinolines have a wide spectrum of biological activity, and some are already being used as pharmaceutical agents (Sridharan et al., 2011[Sridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157-7259.]; Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]). Modification of tetra­hydro­quinoline derivatives is effective in the search, design, and development of new drugs. However, thousands of compounds are required to find a structure that exhibits biological activity, which is why an efficient synthetic methodology for obtaining tetra­hydro­quinoline derivatives is necessary (Astudillo et al., 2009[Astudillo, L., S., Gutiérrez Cabrera, M. I., Gaete, H., Kouznetsov, V. V., Meléndez, C. M., Palenzuela, J. A. & Vallejos, G. (2009). Lett. Org. Chem. 6, 208-212.]; Kouznetsov et al., 2004[Kouznetsov, V. V., Zubkov, F. I., Cruz, U. M., Voskressensky, L. G., Mendez, L. Y. V., Astudillo, L. & Stashenko, E. E. (2004). Lett. Org. Chem. 1, 37-39.], 2007[Kouznetsov, V. V., Cruz, U. M., Zubkov, F. I. & Nikitina, E. V. (2007). Synthesis, 2007, 375-384.]). One of the most widely used approaches for the synthesis of tetra­hydro­quinolines is the Povarov reaction, known as the aza-Diels–Alder reaction (Palacios et al., 2010[Palacios, F., Alonso, C., Arrieta, A., Cossío, F. P., Ezpeleta, J. M., Fuertes, M. & Rubiales, G. (2010). Eur. J. Org. Chem. pp. 2091-2099.]; Zubkov et al., 2010[Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192-1206.]; Zaitsev et al., 2009[Zaitsev, V. P., Mikhailova, N. M., Orlova, D. N., Nikitina, E. V., Boltukhina, E. V. & Zubkov, F. I. (2009). Chem. Heterocycl. Compd, 45, 308-316.]). Herein, we have synthesized 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one (I)[link] by the reaction of (E)-N-(4-bromo­phen­yl)-1-(4-fluoro­phen­yl)methanimine with 1-vinyl­pyrrolidin-2-one in the presence of the most commonly used Lewis acid, diethyl ether of boron trifluoride (Fig. 1[link]). The mild conditions and efficiency of the cyclo­addition of aromatic imines with electronically enriched alkenes make the Povarov reaction a useful tool in the synthesis of tetra­hydro­quinolines, optimization of the search for potential drugs, and obtaining hits. It should be mentioned that the conformation of the obtained 1,2,3,4-tetra­hydro­quinoline cycle plays a key role in the biological activity of a potential drug. The attached halogens (–F and –Br) as well as NH or C=O groups can participate in various sorts of inter­molecular inter­actions (Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833-14837.], 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175-180.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]), which can improve the solubility of this compound. Thus, this communication is devoted to the elucidation of the spatial peculiarities of the partly hydrogenated quinoline fragment in the products of the Povarov reaction.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 1-[6-bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one (I)[link].

2. Structural commentary

In the title compound (Fig. 2[link]), the 1,2,3,4-tetra­hydro­pyridine ring (N1/C2–C4/C4A/C8A) of the 1,2,3,4-tetra­hydro­quinoline ring system (N1/C2–C4/C4A/C5–C8/C8A) adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.509 (2) Å, θ = 46.3 (2)°, φ = 121.4 (3)°], while the benzene ring (C4A/C5–C8/C8A) is essentially planar (r.m.s. deviation = 0.002 Å). The plane (r.m.s deviation = 0.002 Å) of the 1,2,3,4-tetra­hydro­quinoline ring system forms angles of 65.91 (8) and 81.17 (9)°, respectively, with the fluoro­benzene ring (C21–C26) and the pyrrolidine ring (N11/C12–C15) (r.m.s deviation = 0.002 Å), which has an envelope conformation [the puckering parameters are Q(2) = 0.195 (2) Å, φ(2) = 107.4 (6)°]. The angle between the pyrrol­idine and fluoro­benzene rings is 71.16 (11)°. The geometric parameters in the mol­ecule are normal and in good agreement with those in the compounds discussed in the Database survey section.

[Figure 2]
Figure 2
View of the title mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linlked by inter­molecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 3[link], 4[link] and 5[link]). In addition, C—H⋯π inter­actions connect mol­ecules, forming ribbons along the b-axis direction and consol­idating mol­ecular packing (Table 1[link]; Figs. 6[link], 7[link] and 8[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4A/C5–C8/C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (2) 2.43 (2) 3.217 (2) 154 (2)
C5—H5A⋯F1ii 0.95 2.50 3.393 (2) 157
C23—H23A⋯O1iii 0.95 2.46 3.365 (2) 159
C15—H15B⋯Br1iv 0.99 2.98 3.703 (2) 131
C2—H2ACg3i 1.00 2.68 3.676 (2) 172
C15—H15ACg3v 0.99 2.94 3.386 (2) 109
C15—H15BCg3v 0.99 2.97 3.386 (2) 106
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y, -z+1]; (iv) [x+1, y, z]; (v) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
A view of the mol­ecular packing along the a axis of the title compound, showing the N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds.
[Figure 4]
Figure 4
A view of the mol­ecular packing along the b axis of the title compound.
[Figure 5]
Figure 5
A view of the mol­ecular packing along the c axis of the title compound.
[Figure 6]
Figure 6
A view of the mol­ecular packing along the a axis of the title compound, showing the C—H⋯π inter­actions.
[Figure 7]
Figure 7
A view of the mol­ecular packing along the b axis.
[Figure 8]
Figure 8
A view of the mol­ecular packing of the title compound showing supramolecular ribbons running along the c-axis direction.

To qu­antify the inter­mol­ecular inter­actions in the crystal, the Hirshfeld surfaces of the title mol­ecule and the two-dimensional fingerprints were generated with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm mappings for the title compound were performed in the range −0.2398 (red) to +1.3617 (blue) a.u. On the dnorm surfaces, bright-red spots show the locations of the N—H⋯O, C—H⋯O and C—H⋯F inter­actions (Table 1[link]; Fig. 9[link]a,b).

[Figure 9]
Figure 9
(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound. Some N—H⋯O, C—H⋯O and C—H⋯F inter­actions are shown as dashed lines.

The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (Fig. 10[link]b; 38.7%), C⋯H/H⋯C (Fig. 10[link]c; 24.3%), Br⋯H/H⋯Br (Fig. 10[link]d; 14.9%) and F⋯H/H⋯F (Fig. 10[link]e; 9.6%) contacts are shown in Fig. 10[link]. O⋯H/H⋯O (8.8%), Br⋯C/C⋯Br (1.8%), F⋯O/O⋯F (0.6%), F⋯C/C⋯F (0.6%), N⋯H/H⋯N (0.5%), Br⋯N/N⋯Br (0.1%) and Br⋯Br (0.1%) contacts have little directional influence on the mol­ecular packing.

[Figure 10]
Figure 10
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Br⋯H/H⋯Br and (e) F⋯H/H⋯F inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 1,2,3,4-tetra­hydro­quinoline unit showed that the six most closely related species to the title compound are those with refcodes WACWOO (Çelik et al., 2010a[Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, o3133.]), CEDNUW (Çelik et al., 2010b[Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997-o2998.]), SUFDEE (Jeyaseelan, et al., 2015c[Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249-o250.]), NOVGAI (Jeyaseelan et al., 2015a[Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.]), WUFBEG (Jeyaseelan et al., 2015b[Jeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660-662.]) and EZOMIR (Çelik et al., 2016[Çelik, I., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). IUCrData, 1, x161854.]).

The crystal structure of WACWOO is consolidated by weak aromatic ππ inter­actions [centroid–centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent mol­ecules. In the crystal of CEDNUW, ππ stacking inter­actions are present between the pyridine and benzene rings of adjacent mol­ecules [centroid–centroid distances = 3.634 (4) Å], and short Br⋯Br contacts [3.4443 (13) Å] occur. In the crystal of SUFDEE, mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating C(8) and C(4) chains propagating along [100] and [010], respectively, which together generate (001) sheets. In the crystal of NOVGAI, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(8) loops. In the crystal of WUFBEG, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Additional inter­molecular C—H⋯O hydrogen bonds generate C(7) chains along [100]. In the crystal of EZOMIR, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops.

5. Synthesis and crystallization

N-[(E)-(4-Fluoro­phen­yl)methyl­idene]-4-bromaniline: Anhydrous MgSO4 (3.61 g, 0.030 mol) and 4-fluoro­benzaldehyde (1.86 g, 0.015 mol) were successively added to a solution of 4-bromaniline (2.60 g, 0.015 mol) in CH2Cl2 (35 mL). After 24 h at room temperature, the reaction mixture was filtered through a silica gel layer (2 × 3 cm), eluent – CH2Cl2 (2 × 25 mL). The solvent was evaporated under reduced pressure and the residue was recrystallized from hexa­ne/EtOAc. Azomethine was obtained as a light-yellow powder in a yield of 92% (3.88 g).

1-[6-Bromo-2-(4-fluoro­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one (1): Boron trifluoride ether (0.33 mL, 0.0026 mol) and N-vinyl­pyrrolidone (1.50 mL, 0.014 mol) were added to a cooled solution (275–277 K) of the previously obtained azomethine (3.50 g, 0.013 mol) in freshly distilled CH2Cl2 (30 mL). After that, the suspension was mixed at room temperature for 24 h and treated with a small amount of water (0.2–0.3 mL) to decompose the catalyst. The reaction mixture was filtered through a layer of silica gel (2 × 3 cm), washed with CH2Cl2 (2 × 6 mL) and the solvent was evapor­ated under reduced pressure. The obtained product was recrystallized from a mixture of hexa­ne/EtOAc. A white microcrystalline precipitate of the title compound was isolated in a yield of 43% (2.17 g), m.p. 460.3–462.3 K. IR (KBr), ν (cm−1): 3344 (NH), 2956 (Ph), 2897 (Ph), 1666 (N—C=O).1H NMR (700 MHz, CDCl3, 298 K) (J, Hz): δ 2.00–2.10 (m, 4H, H-3 + H-4-pyrrole), 2.43–2.47 (m, 1H, H-3-pyrrole-A), 2.52–2.57 (m, 1H, H-3-pyrrole-B), 3.19–3.26 (m, 2H, H-5-pyrrole), 4.56 (dd, J = 9.5, J = 5.0, 1H, H-2), 5.65–5.68 (m, 1H, H-4), 6.48 (d, J = 8.3, 1H, H-8), 6.95 (br.s, 1H, H-5), 7.05–7.08 (m, 2H, H-2,6–C6H4–F), 7.14 (dd, J = 8.6, J = 2.4, 1H, H-7), 7.38–7.40 (m, 2H, H-3,5–C6H4–F) ppm. 13C NMR{1H} (176 MHz, CDCl3, 298 K) (J, Hz): δ 18.18, 31.19, 34.82, 42.21, 48.07, 55.68, 110.10, 115.65 (d, 2C, 2JC,F = 21.6), 116.67, 121.05, 128.06 (d, 2C, 3JC,F = 8.1), 129.14, 131.10, 138.15 (br.s, 1C), 144.59, 162.38 (d, 1JC,F = 245.8), 175.84 ppm. 19F NMR{1H} (659 MHz, CDCl3, 298 K): δ −113.93 (s, 1F) ppm. Elemental analysis calculated (%) for C19H18BrFN2O: C, 58.62; H, 4.66; N, 7.20; found: C, 58.73; H, 4.53; N, 7.15. Single crystals (colourless prisms) of the title compound were grown from a mixture of hexane and ethyl acetate (∼3:1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C19H18BrFN2O
Mr 389.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.2092 (6), 9.0576 (6), 20.4085 (13)
β (°) 101.518 (2)
V3) 1668.06 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.48
Crystal size (mm) 0.40 × 0.36 × 0.34
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.752, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28015, 4882, 3713
Rint 0.057
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.02
No. of reflections 4882
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.41
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

1-[6-Bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one top
Crystal data top
C19H18BrFN2OF(000) = 792
Mr = 389.26Dx = 1.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2092 (6) ÅCell parameters from 5298 reflections
b = 9.0576 (6) Åθ = 3.0–27.1°
c = 20.4085 (13) ŵ = 2.48 mm1
β = 101.518 (2)°T = 100 K
V = 1668.06 (19) Å3Bulk, colourless
Z = 40.40 × 0.36 × 0.34 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3713 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.1°, θmin = 3.8°
Tmin = 0.752, Tmax = 1.000h = 1212
28015 measured reflectionsk = 1212
4882 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.8068P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4882 reflectionsΔρmax = 0.45 e Å3
221 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.64897 (19)0.1250 (2)0.42863 (9)0.0113 (3)
H2A0.6642040.0214870.4456240.014*
C30.7094 (2)0.2311 (2)0.48563 (9)0.0114 (4)
H3A0.6952660.3343380.4696670.014*
H3B0.8168130.2139240.5015770.014*
C40.62722 (19)0.2058 (2)0.54273 (9)0.0098 (3)
H4A0.6392590.0990500.5551480.012*
C4A0.46344 (19)0.23196 (19)0.51703 (9)0.0097 (3)
C50.3722 (2)0.2855 (2)0.55836 (9)0.0125 (4)
H5A0.4135620.3142420.6029370.015*
C60.2210 (2)0.2968 (2)0.53445 (10)0.0132 (4)
C70.1569 (2)0.2503 (2)0.47072 (10)0.0144 (4)
H7A0.0524770.2539290.4556940.017*
C80.2472 (2)0.1984 (2)0.42916 (10)0.0127 (4)
H8A0.2041360.1663650.3852500.015*
C8A0.4015 (2)0.19234 (19)0.45099 (9)0.0110 (4)
C120.74202 (19)0.2236 (2)0.66142 (9)0.0117 (4)
C130.8116 (2)0.3412 (2)0.70995 (10)0.0170 (4)
H13A0.9210110.3337870.7187070.020*
H13B0.7778200.3319850.7528770.020*
C140.7601 (3)0.4872 (2)0.67578 (10)0.0247 (5)
H14A0.6770410.5290780.6939740.030*
H14B0.8422110.5596310.6822810.030*
C150.7101 (2)0.4493 (2)0.60191 (10)0.0146 (4)
H15A0.6170490.5013510.5822570.018*
H15B0.7871990.4754840.5763870.018*
C210.7300 (2)0.1449 (2)0.37154 (9)0.0113 (4)
C220.8453 (2)0.0493 (2)0.36616 (10)0.0144 (4)
H22A0.8665030.0315200.3961880.017*
C230.9300 (2)0.0700 (2)0.31764 (10)0.0169 (4)
H23A1.0089620.0049650.3140360.020*
C240.8955 (2)0.1873 (3)0.27535 (10)0.0195 (4)
C250.7829 (2)0.2849 (3)0.27849 (11)0.0251 (5)
H25A0.7624720.3652420.2481010.030*
C260.6999 (2)0.2627 (2)0.32732 (10)0.0184 (4)
H26A0.6215900.3288380.3305880.022*
Br10.10063 (2)0.37706 (2)0.59152 (2)0.02069 (7)
F10.97779 (13)0.20988 (16)0.22741 (6)0.0311 (3)
N10.48956 (17)0.15098 (18)0.40598 (8)0.0127 (3)
N110.68720 (16)0.28987 (17)0.60227 (7)0.0101 (3)
O10.73676 (15)0.09059 (14)0.67215 (7)0.0159 (3)
H10.446 (3)0.094 (3)0.3753 (12)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0122 (8)0.0126 (9)0.0094 (9)0.0001 (7)0.0027 (7)0.0007 (7)
C30.0121 (8)0.0117 (9)0.0106 (9)0.0017 (7)0.0029 (7)0.0004 (7)
C40.0124 (8)0.0090 (9)0.0084 (9)0.0013 (7)0.0027 (7)0.0007 (7)
C4A0.0128 (8)0.0071 (8)0.0094 (9)0.0022 (7)0.0029 (7)0.0016 (7)
C50.0159 (9)0.0114 (9)0.0106 (9)0.0022 (7)0.0037 (7)0.0005 (7)
C60.0132 (9)0.0111 (9)0.0171 (10)0.0006 (7)0.0072 (8)0.0006 (7)
C70.0104 (8)0.0125 (9)0.0203 (10)0.0008 (7)0.0030 (8)0.0011 (8)
C80.0137 (9)0.0105 (9)0.0131 (9)0.0029 (7)0.0007 (7)0.0011 (7)
C8A0.0136 (9)0.0069 (9)0.0129 (9)0.0016 (7)0.0039 (7)0.0011 (7)
C120.0094 (8)0.0164 (10)0.0102 (9)0.0024 (7)0.0038 (7)0.0011 (7)
C130.0177 (10)0.0207 (11)0.0113 (10)0.0011 (8)0.0001 (8)0.0019 (8)
C140.0411 (13)0.0161 (11)0.0148 (11)0.0047 (9)0.0005 (10)0.0031 (8)
C150.0183 (9)0.0106 (9)0.0147 (10)0.0024 (7)0.0027 (8)0.0012 (7)
C210.0126 (8)0.0136 (10)0.0071 (8)0.0010 (7)0.0008 (7)0.0021 (7)
C220.0153 (9)0.0138 (10)0.0140 (10)0.0004 (7)0.0025 (8)0.0012 (8)
C230.0116 (9)0.0220 (11)0.0167 (10)0.0004 (8)0.0016 (8)0.0069 (8)
C240.0140 (9)0.0356 (12)0.0103 (10)0.0018 (9)0.0053 (8)0.0017 (9)
C250.0218 (11)0.0363 (13)0.0188 (11)0.0066 (9)0.0080 (9)0.0138 (10)
C260.0162 (9)0.0233 (11)0.0171 (10)0.0070 (8)0.0064 (8)0.0074 (8)
Br10.01630 (10)0.02401 (11)0.02408 (12)0.00192 (9)0.00963 (8)0.00610 (10)
F10.0234 (7)0.0555 (9)0.0186 (7)0.0011 (6)0.0141 (5)0.0060 (6)
N10.0116 (7)0.0173 (9)0.0096 (8)0.0032 (6)0.0026 (6)0.0037 (6)
N110.0137 (7)0.0084 (7)0.0079 (7)0.0002 (6)0.0013 (6)0.0002 (6)
O10.0228 (7)0.0126 (7)0.0118 (7)0.0042 (5)0.0025 (6)0.0031 (5)
Geometric parameters (Å, º) top
C2—N11.467 (2)C12—C131.508 (3)
C2—C211.514 (2)C13—C141.525 (3)
C2—C31.526 (2)C13—H13A0.9900
C2—H2A1.0000C13—H13B0.9900
C3—C41.528 (2)C14—C151.525 (3)
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—N111.447 (2)C15—N111.459 (2)
C4—C4A1.513 (2)C15—H15A0.9900
C4—H4A1.0000C15—H15B0.9900
C4A—C51.391 (2)C21—C261.389 (3)
C4A—C8A1.401 (3)C21—C221.391 (3)
C5—C61.384 (3)C22—C231.390 (3)
C5—H5A0.9500C22—H22A0.9500
C6—C71.382 (3)C23—C241.365 (3)
C6—Br11.9053 (18)C23—H23A0.9500
C7—C81.383 (3)C24—F11.367 (2)
C7—H7A0.9500C24—C251.374 (3)
C8—C8A1.403 (3)C25—C261.386 (3)
C8—H8A0.9500C25—H25A0.9500
C8A—N11.393 (2)C26—H26A0.9500
C12—O11.227 (2)N1—H10.85 (2)
C12—N111.352 (2)
N1—C2—C21110.74 (14)C14—C13—H13A110.7
N1—C2—C3109.20 (15)C12—C13—H13B110.7
C21—C2—C3110.55 (14)C14—C13—H13B110.7
N1—C2—H2A108.8H13A—C13—H13B108.8
C21—C2—H2A108.8C15—C14—C13105.17 (17)
C3—C2—H2A108.8C15—C14—H14A110.7
C2—C3—C4109.03 (14)C13—C14—H14A110.7
C2—C3—H3A109.9C15—C14—H14B110.7
C4—C3—H3A109.9C13—C14—H14B110.7
C2—C3—H3B109.9H14A—C14—H14B108.8
C4—C3—H3B109.9N11—C15—C14103.49 (16)
H3A—C3—H3B108.3N11—C15—H15A111.1
N11—C4—C4A113.30 (14)C14—C15—H15A111.1
N11—C4—C3113.41 (14)N11—C15—H15B111.1
C4A—C4—C3108.86 (15)C14—C15—H15B111.1
N11—C4—H4A107.0H15A—C15—H15B109.0
C4A—C4—H4A107.0C26—C21—C22118.86 (17)
C3—C4—H4A107.0C26—C21—C2121.75 (16)
C5—C4A—C8A119.53 (17)C22—C21—C2119.20 (16)
C5—C4A—C4121.70 (16)C23—C22—C21121.23 (18)
C8A—C4A—C4118.66 (15)C23—C22—H22A119.4
C6—C5—C4A119.94 (18)C21—C22—H22A119.4
C6—C5—H5A120.0C24—C23—C22117.51 (18)
C4A—C5—H5A120.0C24—C23—H23A121.2
C7—C6—C5121.30 (17)C22—C23—H23A121.2
C7—C6—Br1120.02 (14)C23—C24—F1118.44 (18)
C5—C6—Br1118.67 (14)C23—C24—C25123.63 (18)
C6—C7—C8118.99 (17)F1—C24—C25117.93 (19)
C6—C7—H7A120.5C24—C25—C26118.0 (2)
C8—C7—H7A120.5C24—C25—H25A121.0
C7—C8—C8A120.88 (18)C26—C25—H25A121.0
C7—C8—H8A119.6C25—C26—C21120.77 (18)
C8A—C8—H8A119.6C25—C26—H26A119.6
N1—C8A—C4A121.61 (16)C21—C26—H26A119.6
N1—C8A—C8119.18 (17)C8A—N1—C2120.88 (16)
C4A—C8A—C8119.19 (16)C8A—N1—H1113.3 (15)
O1—C12—N11125.02 (18)C2—N1—H1115.7 (15)
O1—C12—C13127.12 (17)C12—N11—C4121.86 (16)
N11—C12—C13107.85 (16)C12—N11—C15114.52 (16)
C12—C13—C14105.05 (16)C4—N11—C15123.22 (15)
C12—C13—H13A110.7
N1—C2—C3—C459.01 (19)N1—C2—C21—C22140.90 (18)
C21—C2—C3—C4178.91 (15)C3—C2—C21—C2297.9 (2)
C2—C3—C4—N11173.65 (15)C26—C21—C22—C230.0 (3)
C2—C3—C4—C4A59.24 (19)C2—C21—C22—C23175.11 (17)
N11—C4—C4A—C522.0 (2)C21—C22—C23—C240.2 (3)
C3—C4—C4A—C5149.14 (17)C22—C23—C24—F1179.79 (18)
N11—C4—C4A—C8A162.03 (16)C22—C23—C24—C250.2 (3)
C3—C4—C4A—C8A34.9 (2)C23—C24—C25—C260.0 (3)
C8A—C4A—C5—C61.1 (3)F1—C24—C25—C26179.62 (19)
C4—C4A—C5—C6174.83 (17)C24—C25—C26—C210.2 (3)
C4A—C5—C6—C72.6 (3)C22—C21—C26—C250.2 (3)
C4A—C5—C6—Br1177.82 (14)C2—C21—C26—C25175.16 (19)
C5—C6—C7—C83.2 (3)C4A—C8A—N1—C29.6 (3)
Br1—C6—C7—C8177.20 (14)C8—C8A—N1—C2172.17 (17)
C6—C7—C8—C8A0.1 (3)C21—C2—N1—C8A156.30 (16)
C5—C4A—C8A—N1174.11 (16)C3—C2—N1—C8A34.3 (2)
C4—C4A—C8A—N19.8 (3)O1—C12—N11—C45.8 (3)
C5—C4A—C8A—C84.1 (3)C13—C12—N11—C4173.15 (15)
C4—C4A—C8A—C8171.96 (16)O1—C12—N11—C15178.77 (17)
C7—C8—C8A—N1174.75 (17)C13—C12—N11—C150.2 (2)
C7—C8—C8A—C4A3.5 (3)C4A—C4—N11—C12115.73 (18)
O1—C12—C13—C14169.00 (18)C3—C4—N11—C12119.53 (17)
N11—C12—C13—C1412.1 (2)C4A—C4—N11—C1571.9 (2)
C12—C13—C14—C1519.0 (2)C3—C4—N11—C1552.8 (2)
C13—C14—C15—N1118.7 (2)C14—C15—N11—C1212.3 (2)
N1—C2—C21—C2644.1 (2)C14—C15—N11—C4174.87 (16)
C3—C2—C21—C2677.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C4A/C5–C8/C8A ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.43 (2)3.217 (2)154 (2)
C5—H5A···F1ii0.952.503.393 (2)157
C23—H23A···O1iii0.952.463.365 (2)159
C15—H15B···Br1iv0.992.983.703 (2)131
C2—H2A···Cg3i1.002.683.676 (2)172
C15—H15A···Cg3v0.992.943.386 (2)109
C15—H15B···Cg3v0.992.973.386 (2)106
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. This publication was supported by the RUDN University Scientific Projects Grant System, project No. 021408-2-000. EDY and ERS thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems". The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AAP and AGP; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) AAP, NDS, KIH and AGP; funding acquisition, AB and MA; supervision, MA and MSG.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAstudillo, L., S., Gutiérrez Cabrera, M. I., Gaete, H., Kouznetsov, V. V., Meléndez, C. M., Palenzuela, J. A. & Vallejos, G. (2009). Lett. Org. Chem. 6, 208–212.  CrossRef CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997–o2998.  CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, o3133.  CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, I., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). IUCrData, 1, x161854.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71–79.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660–662.  CSD CrossRef IUCr Journals Google Scholar
First citationJeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249–o250.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKouznetsov, V. V., Cruz, U. M., Zubkov, F. I. & Nikitina, E. V. (2007). Synthesis, 2007, 375–384.  CSD CrossRef Google Scholar
First citationKouznetsov, V. V., Zubkov, F. I., Cruz, U. M., Voskressensky, L. G., Mendez, L. Y. V., Astudillo, L. & Stashenko, E. E. (2004). Lett. Org. Chem. 1, 37–39.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationPalacios, F., Alonso, C., Arrieta, A., Cossío, F. P., Ezpeleta, J. M., Fuertes, M. & Rubiales, G. (2010). Eur. J. Org. Chem. pp. 2091–2099.  CSD CrossRef Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157–7259.  CrossRef CAS PubMed Google Scholar
First citationZaitsev, V. P., Mikhailova, N. M., Orlova, D. N., Nikitina, E. V., Boltukhina, E. V. & Zubkov, F. I. (2009). Chem. Heterocycl. Compd, 45, 308–316.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds