research communications
and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one
aRUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str, Az 1148 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an In the crystal, molecules are linked by intermolecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect molecules into ribbons along the b-axis direction, consolidating the molecular packing. The intermolecular interactions in the were quantified and analysed using Hirshfeld surface analysis.
Keywords: crystal structure; acylation; thienylallylamines; maleic acid amide; weak interactions; Hirshfeld surface analysis.
CCDC reference: 2362911
1. Chemical context
As a result of their presence in many plants, tetrahydroquinoline derivatives have long been of great interest to organic chemists and biochemists. The tetrahydroquinoline moiety can be found in many et al., 2018; Khalilov et al., 2021; Safavora et al., 2019). Various studies show that tetrahydroquinolines have a wide spectrum of biological activity, and some are already being used as pharmaceutical agents (Sridharan et al., 2011; Akbari Afkhami et al., 2017; Abdelhamid et al., 2011). Modification of tetrahydroquinoline derivatives is effective in the search, design, and development of new drugs. However, thousands of compounds are required to find a structure that exhibits biological activity, which is why an efficient synthetic methodology for obtaining tetrahydroquinoline derivatives is necessary (Astudillo et al., 2009; Kouznetsov et al., 2004, 2007). One of the most widely used approaches for the synthesis of tetrahydroquinolines is the Povarov reaction, known as the aza-Diels–Alder reaction (Palacios et al., 2010; Zubkov et al., 2010; Zaitsev et al., 2009). Herein, we have synthesized 1-[6-bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one (I) by the reaction of (E)-N-(4-bromophenyl)-1-(4-fluorophenyl)methanimine with 1-vinylpyrrolidin-2-one in the presence of the most commonly used diethyl ether of boron trifluoride (Fig. 1). The mild conditions and efficiency of the cycloaddition of aromatic with electronically enriched make the Povarov reaction a useful tool in the synthesis of tetrahydroquinolines, optimization of the search for potential drugs, and obtaining hits. It should be mentioned that the conformation of the obtained 1,2,3,4-tetrahydroquinoline cycle plays a key role in the biological activity of a potential drug. The attached halogens (–F and –Br) as well as NH or C=O groups can participate in various sorts of intermolecular interactions (Gurbanov et al., 2020, 2022a,b; Kopylovich et al., 2011a,b; Mahmoudi et al., 2017a,b), which can improve the solubility of this compound. Thus, this communication is devoted to the elucidation of the spatial peculiarities of the partly hydrogenated quinoline fragment in the products of the Povarov reaction.
that possess antimalarial and antimicrobial properties (Ghashghaei2. Structural commentary
In the title compound (Fig. 2), the 1,2,3,4-tetrahydropyridine ring (N1/C2–C4/C4A/C8A) of the 1,2,3,4-tetrahydroquinoline ring system (N1/C2–C4/C4A/C5–C8/C8A) adopts an [the puckering parameters (Cremer & Pople, 1975) are QT = 0.509 (2) Å, θ = 46.3 (2)°, φ = 121.4 (3)°], while the benzene ring (C4A/C5–C8/C8A) is essentially planar (r.m.s. deviation = 0.002 Å). The plane (r.m.s deviation = 0.002 Å) of the 1,2,3,4-tetrahydroquinoline ring system forms angles of 65.91 (8) and 81.17 (9)°, respectively, with the fluorobenzene ring (C21–C26) and the pyrrolidine ring (N11/C12–C15) (r.m.s deviation = 0.002 Å), which has an [the puckering parameters are Q(2) = 0.195 (2) Å, φ(2) = 107.4 (6)°]. The angle between the pyrrolidine and fluorobenzene rings is 71.16 (11)°. The geometric parameters in the molecule are normal and in good agreement with those in the compounds discussed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linlked by intermolecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 3, 4 and 5). In addition, C—H⋯π interactions connect molecules, forming ribbons along the b-axis direction and consolidating molecular packing (Table 1; Figs. 6, 7 and 8).
To quantify the intermolecular interactions in the crystal, the Hirshfeld surfaces of the title molecule and the two-dimensional fingerprints were generated with CrystalExplorer17.5 (Spackman et al., 2021). The dnorm mappings for the title compound were performed in the range −0.2398 (red) to +1.3617 (blue) a.u. On the dnorm surfaces, bright-red spots show the locations of the N—H⋯O, C—H⋯O and C—H⋯F interactions (Table 1; Fig. 9a,b).
The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (Fig. 10b; 38.7%), C⋯H/H⋯C (Fig. 10c; 24.3%), Br⋯H/H⋯Br (Fig. 10d; 14.9%) and F⋯H/H⋯F (Fig. 10e; 9.6%) contacts are shown in Fig. 10. O⋯H/H⋯O (8.8%), Br⋯C/C⋯Br (1.8%), F⋯O/O⋯F (0.6%), F⋯C/C⋯F (0.6%), N⋯H/H⋯N (0.5%), Br⋯N/N⋯Br (0.1%) and Br⋯Br (0.1%) contacts have little directional influence on the molecular packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,2,3,4-tetrahydroquinoline unit showed that the six most closely related species to the title compound are those with refcodes WACWOO (Çelik et al., 2010a), CEDNUW (Çelik et al., 2010b), SUFDEE (Jeyaseelan, et al., 2015c), NOVGAI (Jeyaseelan et al., 2015a), WUFBEG (Jeyaseelan et al., 2015b) and EZOMIR (Çelik et al., 2016).
The π–π interactions [centroid–centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent molecules. In the crystal of CEDNUW, π–π stacking interactions are present between the pyridine and benzene rings of adjacent molecules [centroid–centroid distances = 3.634 (4) Å], and short Br⋯Br contacts [3.4443 (13) Å] occur. In the crystal of SUFDEE, molecules are linked by weak C—H⋯O hydrogen bonds, generating C(8) and C(4) chains propagating along [100] and [010], respectively, which together generate (001) sheets. In the crystal of NOVGAI, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(8) loops. In the crystal of WUFBEG, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Additional intermolecular C—H⋯O hydrogen bonds generate C(7) chains along [100]. In the crystal of EZOMIR, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops.
of WACWOO is consolidated by weak aromatic5. Synthesis and crystallization
N-[(E)-(4-Fluorophenyl)methylidene]-4-bromaniline: Anhydrous MgSO4 (3.61 g, 0.030 mol) and 4-fluorobenzaldehyde (1.86 g, 0.015 mol) were successively added to a solution of 4-bromaniline (2.60 g, 0.015 mol) in CH2Cl2 (35 mL). After 24 h at room temperature, the reaction mixture was filtered through a silica gel layer (2 × 3 cm), – CH2Cl2 (2 × 25 mL). The solvent was evaporated under reduced pressure and the residue was recrystallized from hexane/EtOAc. Azomethine was obtained as a light-yellow powder in a yield of 92% (3.88 g).
1-[6-Bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one (1): Boron trifluoride ether (0.33 mL, 0.0026 mol) and N-vinylpyrrolidone (1.50 mL, 0.014 mol) were added to a cooled solution (275–277 K) of the previously obtained azomethine (3.50 g, 0.013 mol) in freshly distilled CH2Cl2 (30 mL). After that, the suspension was mixed at room temperature for 24 h and treated with a small amount of water (0.2–0.3 mL) to decompose the catalyst. The reaction mixture was filtered through a layer of silica gel (2 × 3 cm), washed with CH2Cl2 (2 × 6 mL) and the solvent was evaporated under reduced pressure. The obtained product was recrystallized from a mixture of hexane/EtOAc. A white microcrystalline precipitate of the title compound was isolated in a yield of 43% (2.17 g), m.p. 460.3–462.3 K. IR (KBr), ν (cm−1): 3344 (NH), 2956 (Ph), 2897 (Ph), 1666 (N—C=O).1H NMR (700 MHz, CDCl3, 298 K) (J, Hz): δ 2.00–2.10 (m, 4H, H-3 + H-4-pyrrole), 2.43–2.47 (m, 1H, H-3-pyrrole-A), 2.52–2.57 (m, 1H, H-3-pyrrole-B), 3.19–3.26 (m, 2H, H-5-pyrrole), 4.56 (dd, J = 9.5, J = 5.0, 1H, H-2), 5.65–5.68 (m, 1H, H-4), 6.48 (d, J = 8.3, 1H, H-8), 6.95 (br.s, 1H, H-5), 7.05–7.08 (m, 2H, H-2,6–C6H4–F), 7.14 (dd, J = 8.6, J = 2.4, 1H, H-7), 7.38–7.40 (m, 2H, H-3,5–C6H4–F) ppm. 13C NMR{1H} (176 MHz, CDCl3, 298 K) (J, Hz): δ 18.18, 31.19, 34.82, 42.21, 48.07, 55.68, 110.10, 115.65 (d, 2C, 2JC,F = 21.6), 116.67, 121.05, 128.06 (d, 2C, 3JC,F = 8.1), 129.14, 131.10, 138.15 (br.s, 1C), 144.59, 162.38 (d, 1JC,F = 245.8), 175.84 ppm. 19F NMR{1H} (659 MHz, CDCl3, 298 K): δ −113.93 (s, 1F) ppm. Elemental analysis calculated (%) for C19H18BrFN2O: C, 58.62; H, 4.66; N, 7.20; found: C, 58.73; H, 4.53; N, 7.15. Single crystals (colourless prisms) of the title compound were grown from a mixture of hexane and ethyl acetate (∼3:1).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2362911
https://doi.org/10.1107/S2056989024005826/ex2084sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005826/ex2084Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005826/ex2084Isup3.cml
C19H18BrFN2O | F(000) = 792 |
Mr = 389.26 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2092 (6) Å | Cell parameters from 5298 reflections |
b = 9.0576 (6) Å | θ = 3.0–27.1° |
c = 20.4085 (13) Å | µ = 2.48 mm−1 |
β = 101.518 (2)° | T = 100 K |
V = 1668.06 (19) Å3 | Bulk, colourless |
Z = 4 | 0.40 × 0.36 × 0.34 mm |
Bruker Kappa APEXII area-detector diffractometer | 3713 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.1°, θmin = 3.8° |
Tmin = 0.752, Tmax = 1.000 | h = −12→12 |
28015 measured reflections | k = −12→12 |
4882 independent reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0267P)2 + 0.8068P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4882 reflections | Δρmax = 0.45 e Å−3 |
221 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.64897 (19) | 0.1250 (2) | 0.42863 (9) | 0.0113 (3) | |
H2A | 0.664204 | 0.021487 | 0.445624 | 0.014* | |
C3 | 0.7094 (2) | 0.2311 (2) | 0.48563 (9) | 0.0114 (4) | |
H3A | 0.695266 | 0.334338 | 0.469667 | 0.014* | |
H3B | 0.816813 | 0.213924 | 0.501577 | 0.014* | |
C4 | 0.62722 (19) | 0.2058 (2) | 0.54273 (9) | 0.0098 (3) | |
H4A | 0.639259 | 0.099050 | 0.555148 | 0.012* | |
C4A | 0.46344 (19) | 0.23196 (19) | 0.51703 (9) | 0.0097 (3) | |
C5 | 0.3722 (2) | 0.2855 (2) | 0.55836 (9) | 0.0125 (4) | |
H5A | 0.413562 | 0.314242 | 0.602937 | 0.015* | |
C6 | 0.2210 (2) | 0.2968 (2) | 0.53445 (10) | 0.0132 (4) | |
C7 | 0.1569 (2) | 0.2503 (2) | 0.47072 (10) | 0.0144 (4) | |
H7A | 0.052477 | 0.253929 | 0.455694 | 0.017* | |
C8 | 0.2472 (2) | 0.1984 (2) | 0.42916 (10) | 0.0127 (4) | |
H8A | 0.204136 | 0.166365 | 0.385250 | 0.015* | |
C8A | 0.4015 (2) | 0.19234 (19) | 0.45099 (9) | 0.0110 (4) | |
C12 | 0.74202 (19) | 0.2236 (2) | 0.66142 (9) | 0.0117 (4) | |
C13 | 0.8116 (2) | 0.3412 (2) | 0.70995 (10) | 0.0170 (4) | |
H13A | 0.921011 | 0.333787 | 0.718707 | 0.020* | |
H13B | 0.777820 | 0.331985 | 0.752877 | 0.020* | |
C14 | 0.7601 (3) | 0.4872 (2) | 0.67578 (10) | 0.0247 (5) | |
H14A | 0.677041 | 0.529078 | 0.693974 | 0.030* | |
H14B | 0.842211 | 0.559631 | 0.682281 | 0.030* | |
C15 | 0.7101 (2) | 0.4493 (2) | 0.60191 (10) | 0.0146 (4) | |
H15A | 0.617049 | 0.501351 | 0.582257 | 0.018* | |
H15B | 0.787199 | 0.475484 | 0.576387 | 0.018* | |
C21 | 0.7300 (2) | 0.1449 (2) | 0.37154 (9) | 0.0113 (4) | |
C22 | 0.8453 (2) | 0.0493 (2) | 0.36616 (10) | 0.0144 (4) | |
H22A | 0.866503 | −0.031520 | 0.396188 | 0.017* | |
C23 | 0.9300 (2) | 0.0700 (2) | 0.31764 (10) | 0.0169 (4) | |
H23A | 1.008962 | 0.004965 | 0.314036 | 0.020* | |
C24 | 0.8955 (2) | 0.1873 (3) | 0.27535 (10) | 0.0195 (4) | |
C25 | 0.7829 (2) | 0.2849 (3) | 0.27849 (11) | 0.0251 (5) | |
H25A | 0.762472 | 0.365242 | 0.248101 | 0.030* | |
C26 | 0.6999 (2) | 0.2627 (2) | 0.32732 (10) | 0.0184 (4) | |
H26A | 0.621590 | 0.328838 | 0.330588 | 0.022* | |
Br1 | 0.10063 (2) | 0.37706 (2) | 0.59152 (2) | 0.02069 (7) | |
F1 | 0.97779 (13) | 0.20988 (16) | 0.22741 (6) | 0.0311 (3) | |
N1 | 0.48956 (17) | 0.15098 (18) | 0.40598 (8) | 0.0127 (3) | |
N11 | 0.68720 (16) | 0.28987 (17) | 0.60227 (7) | 0.0101 (3) | |
O1 | 0.73676 (15) | 0.09059 (14) | 0.67215 (7) | 0.0159 (3) | |
H1 | 0.446 (3) | 0.094 (3) | 0.3753 (12) | 0.022 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0122 (8) | 0.0126 (9) | 0.0094 (9) | −0.0001 (7) | 0.0027 (7) | 0.0007 (7) |
C3 | 0.0121 (8) | 0.0117 (9) | 0.0106 (9) | −0.0017 (7) | 0.0029 (7) | −0.0004 (7) |
C4 | 0.0124 (8) | 0.0090 (9) | 0.0084 (9) | −0.0013 (7) | 0.0027 (7) | −0.0007 (7) |
C4A | 0.0128 (8) | 0.0071 (8) | 0.0094 (9) | −0.0022 (7) | 0.0029 (7) | 0.0016 (7) |
C5 | 0.0159 (9) | 0.0114 (9) | 0.0106 (9) | −0.0022 (7) | 0.0037 (7) | −0.0005 (7) |
C6 | 0.0132 (9) | 0.0111 (9) | 0.0171 (10) | 0.0006 (7) | 0.0072 (8) | −0.0006 (7) |
C7 | 0.0104 (8) | 0.0125 (9) | 0.0203 (10) | −0.0008 (7) | 0.0030 (8) | 0.0011 (8) |
C8 | 0.0137 (9) | 0.0105 (9) | 0.0131 (9) | −0.0029 (7) | 0.0007 (7) | −0.0011 (7) |
C8A | 0.0136 (9) | 0.0069 (9) | 0.0129 (9) | −0.0016 (7) | 0.0039 (7) | 0.0011 (7) |
C12 | 0.0094 (8) | 0.0164 (10) | 0.0102 (9) | 0.0024 (7) | 0.0038 (7) | 0.0011 (7) |
C13 | 0.0177 (10) | 0.0207 (11) | 0.0113 (10) | −0.0011 (8) | −0.0001 (8) | −0.0019 (8) |
C14 | 0.0411 (13) | 0.0161 (11) | 0.0148 (11) | −0.0047 (9) | 0.0005 (10) | −0.0031 (8) |
C15 | 0.0183 (9) | 0.0106 (9) | 0.0147 (10) | −0.0024 (7) | 0.0027 (8) | −0.0012 (7) |
C21 | 0.0126 (8) | 0.0136 (10) | 0.0071 (8) | −0.0010 (7) | 0.0008 (7) | −0.0021 (7) |
C22 | 0.0153 (9) | 0.0138 (10) | 0.0140 (10) | 0.0004 (7) | 0.0025 (8) | −0.0012 (8) |
C23 | 0.0116 (9) | 0.0220 (11) | 0.0167 (10) | −0.0004 (8) | 0.0016 (8) | −0.0069 (8) |
C24 | 0.0140 (9) | 0.0356 (12) | 0.0103 (10) | −0.0018 (9) | 0.0053 (8) | −0.0017 (9) |
C25 | 0.0218 (11) | 0.0363 (13) | 0.0188 (11) | 0.0066 (9) | 0.0080 (9) | 0.0138 (10) |
C26 | 0.0162 (9) | 0.0233 (11) | 0.0171 (10) | 0.0070 (8) | 0.0064 (8) | 0.0074 (8) |
Br1 | 0.01630 (10) | 0.02401 (11) | 0.02408 (12) | 0.00192 (9) | 0.00963 (8) | −0.00610 (10) |
F1 | 0.0234 (7) | 0.0555 (9) | 0.0186 (7) | 0.0011 (6) | 0.0141 (5) | 0.0060 (6) |
N1 | 0.0116 (7) | 0.0173 (9) | 0.0096 (8) | −0.0032 (6) | 0.0026 (6) | −0.0037 (6) |
N11 | 0.0137 (7) | 0.0084 (7) | 0.0079 (7) | −0.0002 (6) | 0.0013 (6) | −0.0002 (6) |
O1 | 0.0228 (7) | 0.0126 (7) | 0.0118 (7) | 0.0042 (5) | 0.0025 (6) | 0.0031 (5) |
C2—N1 | 1.467 (2) | C12—C13 | 1.508 (3) |
C2—C21 | 1.514 (2) | C13—C14 | 1.525 (3) |
C2—C3 | 1.526 (2) | C13—H13A | 0.9900 |
C2—H2A | 1.0000 | C13—H13B | 0.9900 |
C3—C4 | 1.528 (2) | C14—C15 | 1.525 (3) |
C3—H3A | 0.9900 | C14—H14A | 0.9900 |
C3—H3B | 0.9900 | C14—H14B | 0.9900 |
C4—N11 | 1.447 (2) | C15—N11 | 1.459 (2) |
C4—C4A | 1.513 (2) | C15—H15A | 0.9900 |
C4—H4A | 1.0000 | C15—H15B | 0.9900 |
C4A—C5 | 1.391 (2) | C21—C26 | 1.389 (3) |
C4A—C8A | 1.401 (3) | C21—C22 | 1.391 (3) |
C5—C6 | 1.384 (3) | C22—C23 | 1.390 (3) |
C5—H5A | 0.9500 | C22—H22A | 0.9500 |
C6—C7 | 1.382 (3) | C23—C24 | 1.365 (3) |
C6—Br1 | 1.9053 (18) | C23—H23A | 0.9500 |
C7—C8 | 1.383 (3) | C24—F1 | 1.367 (2) |
C7—H7A | 0.9500 | C24—C25 | 1.374 (3) |
C8—C8A | 1.403 (3) | C25—C26 | 1.386 (3) |
C8—H8A | 0.9500 | C25—H25A | 0.9500 |
C8A—N1 | 1.393 (2) | C26—H26A | 0.9500 |
C12—O1 | 1.227 (2) | N1—H1 | 0.85 (2) |
C12—N11 | 1.352 (2) | ||
N1—C2—C21 | 110.74 (14) | C14—C13—H13A | 110.7 |
N1—C2—C3 | 109.20 (15) | C12—C13—H13B | 110.7 |
C21—C2—C3 | 110.55 (14) | C14—C13—H13B | 110.7 |
N1—C2—H2A | 108.8 | H13A—C13—H13B | 108.8 |
C21—C2—H2A | 108.8 | C15—C14—C13 | 105.17 (17) |
C3—C2—H2A | 108.8 | C15—C14—H14A | 110.7 |
C2—C3—C4 | 109.03 (14) | C13—C14—H14A | 110.7 |
C2—C3—H3A | 109.9 | C15—C14—H14B | 110.7 |
C4—C3—H3A | 109.9 | C13—C14—H14B | 110.7 |
C2—C3—H3B | 109.9 | H14A—C14—H14B | 108.8 |
C4—C3—H3B | 109.9 | N11—C15—C14 | 103.49 (16) |
H3A—C3—H3B | 108.3 | N11—C15—H15A | 111.1 |
N11—C4—C4A | 113.30 (14) | C14—C15—H15A | 111.1 |
N11—C4—C3 | 113.41 (14) | N11—C15—H15B | 111.1 |
C4A—C4—C3 | 108.86 (15) | C14—C15—H15B | 111.1 |
N11—C4—H4A | 107.0 | H15A—C15—H15B | 109.0 |
C4A—C4—H4A | 107.0 | C26—C21—C22 | 118.86 (17) |
C3—C4—H4A | 107.0 | C26—C21—C2 | 121.75 (16) |
C5—C4A—C8A | 119.53 (17) | C22—C21—C2 | 119.20 (16) |
C5—C4A—C4 | 121.70 (16) | C23—C22—C21 | 121.23 (18) |
C8A—C4A—C4 | 118.66 (15) | C23—C22—H22A | 119.4 |
C6—C5—C4A | 119.94 (18) | C21—C22—H22A | 119.4 |
C6—C5—H5A | 120.0 | C24—C23—C22 | 117.51 (18) |
C4A—C5—H5A | 120.0 | C24—C23—H23A | 121.2 |
C7—C6—C5 | 121.30 (17) | C22—C23—H23A | 121.2 |
C7—C6—Br1 | 120.02 (14) | C23—C24—F1 | 118.44 (18) |
C5—C6—Br1 | 118.67 (14) | C23—C24—C25 | 123.63 (18) |
C6—C7—C8 | 118.99 (17) | F1—C24—C25 | 117.93 (19) |
C6—C7—H7A | 120.5 | C24—C25—C26 | 118.0 (2) |
C8—C7—H7A | 120.5 | C24—C25—H25A | 121.0 |
C7—C8—C8A | 120.88 (18) | C26—C25—H25A | 121.0 |
C7—C8—H8A | 119.6 | C25—C26—C21 | 120.77 (18) |
C8A—C8—H8A | 119.6 | C25—C26—H26A | 119.6 |
N1—C8A—C4A | 121.61 (16) | C21—C26—H26A | 119.6 |
N1—C8A—C8 | 119.18 (17) | C8A—N1—C2 | 120.88 (16) |
C4A—C8A—C8 | 119.19 (16) | C8A—N1—H1 | 113.3 (15) |
O1—C12—N11 | 125.02 (18) | C2—N1—H1 | 115.7 (15) |
O1—C12—C13 | 127.12 (17) | C12—N11—C4 | 121.86 (16) |
N11—C12—C13 | 107.85 (16) | C12—N11—C15 | 114.52 (16) |
C12—C13—C14 | 105.05 (16) | C4—N11—C15 | 123.22 (15) |
C12—C13—H13A | 110.7 | ||
N1—C2—C3—C4 | 59.01 (19) | N1—C2—C21—C22 | −140.90 (18) |
C21—C2—C3—C4 | −178.91 (15) | C3—C2—C21—C22 | 97.9 (2) |
C2—C3—C4—N11 | 173.65 (15) | C26—C21—C22—C23 | 0.0 (3) |
C2—C3—C4—C4A | −59.24 (19) | C2—C21—C22—C23 | −175.11 (17) |
N11—C4—C4A—C5 | −22.0 (2) | C21—C22—C23—C24 | −0.2 (3) |
C3—C4—C4A—C5 | −149.14 (17) | C22—C23—C24—F1 | 179.79 (18) |
N11—C4—C4A—C8A | 162.03 (16) | C22—C23—C24—C25 | 0.2 (3) |
C3—C4—C4A—C8A | 34.9 (2) | C23—C24—C25—C26 | 0.0 (3) |
C8A—C4A—C5—C6 | 1.1 (3) | F1—C24—C25—C26 | −179.62 (19) |
C4—C4A—C5—C6 | −174.83 (17) | C24—C25—C26—C21 | −0.2 (3) |
C4A—C5—C6—C7 | 2.6 (3) | C22—C21—C26—C25 | 0.2 (3) |
C4A—C5—C6—Br1 | −177.82 (14) | C2—C21—C26—C25 | 175.16 (19) |
C5—C6—C7—C8 | −3.2 (3) | C4A—C8A—N1—C2 | 9.6 (3) |
Br1—C6—C7—C8 | 177.20 (14) | C8—C8A—N1—C2 | −172.17 (17) |
C6—C7—C8—C8A | 0.1 (3) | C21—C2—N1—C8A | −156.30 (16) |
C5—C4A—C8A—N1 | 174.11 (16) | C3—C2—N1—C8A | −34.3 (2) |
C4—C4A—C8A—N1 | −9.8 (3) | O1—C12—N11—C4 | −5.8 (3) |
C5—C4A—C8A—C8 | −4.1 (3) | C13—C12—N11—C4 | 173.15 (15) |
C4—C4A—C8A—C8 | 171.96 (16) | O1—C12—N11—C15 | −178.77 (17) |
C7—C8—C8A—N1 | −174.75 (17) | C13—C12—N11—C15 | 0.2 (2) |
C7—C8—C8A—C4A | 3.5 (3) | C4A—C4—N11—C12 | 115.73 (18) |
O1—C12—C13—C14 | −169.00 (18) | C3—C4—N11—C12 | −119.53 (17) |
N11—C12—C13—C14 | 12.1 (2) | C4A—C4—N11—C15 | −71.9 (2) |
C12—C13—C14—C15 | −19.0 (2) | C3—C4—N11—C15 | 52.8 (2) |
C13—C14—C15—N11 | 18.7 (2) | C14—C15—N11—C12 | −12.3 (2) |
N1—C2—C21—C26 | 44.1 (2) | C14—C15—N11—C4 | 174.87 (16) |
C3—C2—C21—C26 | −77.1 (2) |
Cg3 is the centroid of the C4A/C5–C8/C8A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.85 (2) | 2.43 (2) | 3.217 (2) | 154 (2) |
C5—H5A···F1ii | 0.95 | 2.50 | 3.393 (2) | 157 |
C23—H23A···O1iii | 0.95 | 2.46 | 3.365 (2) | 159 |
C15—H15B···Br1iv | 0.99 | 2.98 | 3.703 (2) | 131 |
C2—H2A···Cg3i | 1.00 | 2.68 | 3.676 (2) | 172 |
C15—H15A···Cg3v | 0.99 | 2.94 | 3.386 (2) | 109 |
C15—H15B···Cg3v | 0.99 | 2.97 | 3.386 (2) | 106 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. This publication was supported by the RUDN University Scientific Projects Grant System, project No. 021408-2-000. EDY and ERS thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems". The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AAP and AGP; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) AAP, NDS, KIH and AGP; funding acquisition, AB and MA; supervision, MA and MSG.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Astudillo, L., S., Gutiérrez Cabrera, M. I., Gaete, H., Kouznetsov, V. V., Meléndez, C. M., Palenzuela, J. A. & Vallejos, G. (2009). Lett. Org. Chem. 6, 208–212. CrossRef CAS Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA. Google Scholar
Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997–o2998. CSD CrossRef IUCr Journals Google Scholar
Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, o3133. CSD CrossRef IUCr Journals Google Scholar
Çelik, I., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). IUCrData, 1, x161854. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71–79. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940. Web of Science CSD CrossRef CAS Google Scholar
Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20. CSD CrossRef IUCr Journals Google Scholar
Jeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660–662. CSD CrossRef IUCr Journals Google Scholar
Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249–o250. CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kouznetsov, V. V., Cruz, U. M., Zubkov, F. I. & Nikitina, E. V. (2007). Synthesis, 2007, 375–384. CSD CrossRef Google Scholar
Kouznetsov, V. V., Zubkov, F. I., Cruz, U. M., Voskressensky, L. G., Mendez, L. Y. V., Astudillo, L. & Stashenko, E. E. (2004). Lett. Org. Chem. 1, 37–39. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Palacios, F., Alonso, C., Arrieta, A., Cossío, F. P., Ezpeleta, J. M., Fuertes, M. & Rubiales, G. (2010). Eur. J. Org. Chem. pp. 2091–2099. CSD CrossRef Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157–7259. CrossRef CAS PubMed Google Scholar
Zaitsev, V. P., Mikhailova, N. M., Orlova, D. N., Nikitina, E. V., Boltukhina, E. V. & Zubkov, F. I. (2009). Chem. Heterocycl. Compd, 45, 308–316. CrossRef CAS Google Scholar
Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.