research communications
and Hirshfeld surface analysis of 6,6′-dimethyl-2,2′-bipyridine-1,1′-diium tetrachloridocobaltate(II)
aDepartment of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli-620005, Tamilnadu, India, bPG & Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli-620017, Tamilnadu, India, cCenter for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, India, dDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamilnadu, India, and eMolecular Biophysics Unit, Indian Institute of Science, Bangalore, India
*Correspondence e-mail: iiscjeevajasmine@gmail.com
In the title molecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitrogen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl interactions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the features weak anion-to-cation Cl⋯π interactions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant interactions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.
CCDC reference: 2347766
1. Chemical context
In recent years, non-covalent interactions have played an important role in organic–inorganic hybrid materials that have attracted researchers because of their potential applications in catalysis, energy storage devices, luminescence, photography and drug delivery (Bringley et al., 2005; Avila-Montiel et al., 2020). Cobalt(II) halide compounds are used as metal catalysts in various organic transformations and possess important fluorescence and magnetic properties (Decaroli et al., 2015). As part of our work in this area, we now describe the synthesis, structure and Hirshfeld surface analysis of the title salt, C12H14N22+·[CoCl4]2–, (I).
2. Structural commentary
The I) contains one C12H14N22+ (DMB2+) cation and one [CoCl4]2– anion in the triclinic P (Fig. 1). The pyridine ring nitrogen atoms are protonated, which is confirmed by the widening of the C2—N1—C6 [123.47 (14)°] and C8—C7—N2 [119.92 (14)°] bond angles compared to a value of 118.4° in the neutral compound (Sengül et al., 1998). The dihedral angle between the pyridine rings in (I) is 52.46 (9)°, showing that they are substantially twisted with respect to each other. The values for the torsion angles C5—C6—C7—C8 [–127.95 (17)°] and N1—C6—C7—N2 [–128.78 (14)°] indicate that the nitrogen atoms of the pyridine rings exhibit a (–)anti-clinal conformation. The Co—Cl bond lengths in the [CoCl4]2– anion range from 2.2600 (6)–2.2997 (7) Å, where Cl1 and Cl4 have a longer distance than Cl2 and Cl3. The average Co—Cl bond length of 2.280 Å is consistent with that of similar complexes (Zhang et al., 2005; Jebas & Balasubramanian, 2006). The Cl—Co—Cl bond angles are in the range 105.46 (3)–117.91 (2)° with an average bond angle of 111.13 (2)° (Azadbakht et al., 2012; Mghandef & Boughzala, 2015). The smallest bond angle (Cl2—Co1—Cl3) correlates with the shortest Co—Cl bond lengths but there is no obvious correlation between bond lengths and the largest angle.
of (3. Supramolecular features
In the extended structure of (I), the components are linked by N1—H1⋯Cl1 and N2—H2⋯Cl4 hydrogen bonds (Table 1), which generate infinite [10] chains. Weak C4—H4⋯Cl3 and C9—H9⋯Cl2 hydrogen bonds also occur, so that each chlorine atom accepts one hydrogen bond. Together, the hydrogen bonds generate infinite sheets in which R44(18) and R44(20) loops are apparent (Fig. 2). A wavy sheet-like structure of the compound can be seen when the structure is viewed along the ab-axis direction (Fig. 3). The also features weak anion⋯π interactions [Co1—Cl2⋯Cg2iv = 3.5465 (12) Å; Co1—Cl3⋯Cg1iv = 3.4891 (12) Å, where Cg1 is the centroid of the N1/C2–C6 ring and Cg2 is the centroid of the N2/C7–C11 ring; symmetry code: (iv) 1 + x, y, z] (Degtyarenko & Domasevitch, 2014).
The Hirshfeld surface analysis and its related fingerprint plots were created with Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface of the title salt (Fig. 4) mapped over dnorm within the range −0.43 to 1.17 a.u. shows bright red spots within the locales of D⋯A (D = donor, A = acceptor) interactions, as expected. The two-dimensional fingerprint plots (Fig. 5) show that the most significant contacts are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), C⋯H/H⋯C (11.2%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4%), Co⋯H (1.0%) and C⋯C (0.5%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.44. last update Jun 2023; Groom et al., 2016) for the 6,6′-dimethyl-2,2′-bipyridinium ion yielded six entries, viz. CSD refcodes IQUREU (Yoshikawa, 2021), IQUREU01 (Yoshikawa et al., 2022), KARRAA (Jurowska et al., 2021), QUJVUO (Thangavelu et al., 2015), UWUKAZ02 (Kobayashi et al., 2014) and YABGIS (Chan & Baird, 2004). The mean dihedral angle between the pyridine rings of the DMB2+ cations in these structures is 38.75 (10)°
5. Synthesis and crystallization
The compound of interest was synthesized by a literature method (Jagadeesan et al., 2013) by dissolving 2.00 mmol (0.3682 g) of the ligand in methanol and adding directly 1.00 mmol (0.1289 g) of anhydrous cobaltous chloride. The whole mixture was refluxed for about an hour. A dark-brown solution was obtained. Afterwards, a sufficient amount of chlorine gas was passed through the solution until precipitation occurred. The precipitate was dissolved in aqueous HCl (0.001 M) by warming to 333 K for 30 min and the resulting mixture was kept undisturbed overnight. The resulting precipitate was discarded and the filtrate was kept for a few weeks until dark-blue crystals of (I) appeared (0.067 g).
6. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2347766
https://doi.org/10.1107/S2056989024005152/hb8095sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005152/hb8095Isup2.hkl
(C12H14N2)[CoCl4] | Z = 2 |
Mr = 386.98 | F(000) = 390 |
Triclinic, P1 | Dx = 1.653 Mg m−3 |
a = 6.6419 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6512 (19) Å | Cell parameters from 9272 reflections |
c = 15.837 (4) Å | θ = 2.7–28.6° |
α = 99.458 (6)° | µ = 1.78 mm−1 |
β = 98.020 (6)° | T = 301 K |
γ = 97.046 (6)° | Block, blue |
V = 777.3 (3) Å3 | 0.21 × 0.11 × 0.04 mm |
Bruker APEXII CCD diffractometer | 3661 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.041 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.6°, θmin = 2.7° |
Tmin = 0.625, Tmax = 0.746 | h = −8→8 |
13285 measured reflections | k = −10→10 |
3890 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.2392P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
3890 reflections | Δρmax = 0.41 e Å−3 |
180 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.83193 (3) | 0.11776 (3) | 0.75825 (2) | 0.02835 (8) | |
Cl1 | 0.50544 (6) | 0.08040 (5) | 0.79190 (3) | 0.03681 (10) | |
Cl2 | 1.04301 (7) | 0.30332 (6) | 0.87001 (3) | 0.04763 (12) | |
Cl3 | 0.82188 (7) | 0.26717 (7) | 0.64540 (3) | 0.04459 (11) | |
Cl4 | 0.91033 (8) | −0.16382 (6) | 0.71718 (3) | 0.04905 (12) | |
N1 | 0.34377 (19) | 0.34550 (17) | 0.66800 (8) | 0.0288 (2) | |
H1 | 0.371 (3) | 0.276 (3) | 0.7098 (14) | 0.043* | |
N2 | 0.2849 (2) | 0.69414 (16) | 0.82797 (8) | 0.0295 (2) | |
H2 | 0.178 (3) | 0.719 (3) | 0.7963 (14) | 0.044* | |
C1 | 0.2787 (3) | 0.0670 (3) | 0.56372 (13) | 0.0511 (5) | |
H1A | 0.235167 | 0.025817 | 0.502509 | 0.077* | |
H1B | 0.181069 | 0.013236 | 0.594770 | 0.077* | |
H1C | 0.411174 | 0.033861 | 0.580711 | 0.077* | |
C2 | 0.2923 (2) | 0.2659 (2) | 0.58417 (10) | 0.0351 (3) | |
C3 | 0.2537 (3) | 0.3744 (3) | 0.52323 (11) | 0.0432 (4) | |
H3 | 0.220294 | 0.323926 | 0.464580 | 0.052* | |
C4 | 0.2648 (3) | 0.5561 (3) | 0.54950 (11) | 0.0465 (4) | |
H4 | 0.239832 | 0.628226 | 0.508449 | 0.056* | |
C5 | 0.3130 (3) | 0.6328 (2) | 0.63697 (11) | 0.0386 (3) | |
H5 | 0.317851 | 0.755367 | 0.655242 | 0.046* | |
C6 | 0.3535 (2) | 0.52315 (19) | 0.69586 (9) | 0.0276 (3) | |
C7 | 0.4097 (2) | 0.58981 (18) | 0.79017 (9) | 0.0276 (3) | |
C8 | 0.5805 (3) | 0.5515 (2) | 0.83936 (11) | 0.0360 (3) | |
H8 | 0.669290 | 0.481996 | 0.814006 | 0.043* | |
C9 | 0.6170 (3) | 0.6193 (2) | 0.92811 (11) | 0.0440 (4) | |
H9 | 0.731908 | 0.595592 | 0.962668 | 0.053* | |
C10 | 0.4840 (3) | 0.7213 (2) | 0.96494 (10) | 0.0441 (4) | |
H10 | 0.507794 | 0.764127 | 1.024450 | 0.053* | |
C11 | 0.3147 (3) | 0.7606 (2) | 0.91364 (10) | 0.0368 (3) | |
C12 | 0.1623 (4) | 0.8715 (3) | 0.94657 (14) | 0.0555 (5) | |
H12A | 0.186823 | 0.894239 | 1.008855 | 0.083* | |
H12B | 0.025769 | 0.808301 | 0.925793 | 0.083* | |
H12C | 0.176477 | 0.983126 | 0.926248 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02780 (12) | 0.03196 (12) | 0.02530 (12) | 0.00566 (8) | 0.00268 (8) | 0.00579 (8) |
Cl1 | 0.03370 (19) | 0.03675 (19) | 0.0430 (2) | 0.00376 (14) | 0.01266 (15) | 0.01194 (15) |
Cl2 | 0.0492 (2) | 0.0456 (2) | 0.0389 (2) | −0.00486 (18) | −0.01213 (18) | 0.00607 (17) |
Cl3 | 0.0398 (2) | 0.0659 (3) | 0.0347 (2) | 0.00992 (19) | 0.00815 (16) | 0.02524 (19) |
Cl4 | 0.0507 (3) | 0.0430 (2) | 0.0507 (3) | 0.02070 (19) | 0.00004 (19) | −0.00242 (18) |
N1 | 0.0270 (6) | 0.0315 (6) | 0.0266 (6) | 0.0068 (5) | 0.0002 (4) | 0.0032 (5) |
N2 | 0.0350 (6) | 0.0275 (6) | 0.0265 (6) | 0.0043 (5) | 0.0051 (5) | 0.0068 (4) |
C1 | 0.0499 (10) | 0.0451 (10) | 0.0481 (10) | 0.0075 (8) | 0.0000 (8) | −0.0142 (8) |
C2 | 0.0264 (7) | 0.0447 (8) | 0.0298 (7) | 0.0061 (6) | 0.0014 (5) | −0.0034 (6) |
C3 | 0.0377 (8) | 0.0659 (11) | 0.0241 (7) | 0.0080 (8) | 0.0028 (6) | 0.0040 (7) |
C4 | 0.0482 (10) | 0.0668 (12) | 0.0301 (8) | 0.0134 (9) | 0.0054 (7) | 0.0224 (8) |
C5 | 0.0462 (9) | 0.0390 (8) | 0.0343 (8) | 0.0109 (7) | 0.0058 (7) | 0.0149 (6) |
C6 | 0.0266 (6) | 0.0315 (7) | 0.0253 (6) | 0.0063 (5) | 0.0031 (5) | 0.0062 (5) |
C7 | 0.0312 (7) | 0.0250 (6) | 0.0257 (6) | 0.0018 (5) | 0.0020 (5) | 0.0061 (5) |
C8 | 0.0353 (8) | 0.0330 (7) | 0.0371 (8) | 0.0045 (6) | −0.0039 (6) | 0.0078 (6) |
C9 | 0.0470 (9) | 0.0429 (9) | 0.0355 (8) | −0.0034 (7) | −0.0117 (7) | 0.0117 (7) |
C10 | 0.0619 (11) | 0.0393 (8) | 0.0247 (7) | −0.0076 (8) | 0.0003 (7) | 0.0045 (6) |
C11 | 0.0511 (9) | 0.0294 (7) | 0.0298 (7) | −0.0015 (6) | 0.0123 (7) | 0.0058 (6) |
C12 | 0.0712 (14) | 0.0506 (11) | 0.0466 (10) | 0.0094 (10) | 0.0273 (10) | −0.0002 (8) |
Co1—Cl2 | 2.2600 (6) | C4—C5 | 1.389 (2) |
Co1—Cl3 | 2.2720 (6) | C4—H4 | 0.9300 |
Co1—Cl4 | 2.2901 (7) | C5—C6 | 1.374 (2) |
Co1—Cl1 | 2.2997 (7) | C5—H5 | 0.9300 |
N1—C2 | 1.3441 (19) | C6—C7 | 1.4758 (19) |
N1—C6 | 1.3490 (19) | C7—C8 | 1.375 (2) |
N1—H1 | 0.93 (2) | C8—C9 | 1.392 (2) |
N2—C11 | 1.346 (2) | C8—H8 | 0.9300 |
N2—C7 | 1.3511 (19) | C9—C10 | 1.376 (3) |
N2—H2 | 0.87 (2) | C9—H9 | 0.9300 |
C1—C2 | 1.492 (3) | C10—C11 | 1.387 (3) |
C1—H1A | 0.9600 | C10—H10 | 0.9300 |
C1—H1B | 0.9600 | C11—C12 | 1.492 (3) |
C1—H1C | 0.9600 | C12—H12A | 0.9600 |
C2—C3 | 1.390 (3) | C12—H12B | 0.9600 |
C3—C4 | 1.374 (3) | C12—H12C | 0.9600 |
C3—H3 | 0.9300 | ||
Cl2—Co1—Cl3 | 105.46 (3) | C6—C5—C4 | 118.36 (16) |
Cl2—Co1—Cl4 | 117.91 (2) | C6—C5—H5 | 120.8 |
Cl3—Co1—Cl4 | 110.39 (2) | C4—C5—H5 | 120.8 |
Cl2—Co1—Cl1 | 108.93 (2) | N1—C6—C5 | 119.83 (14) |
Cl3—Co1—Cl1 | 107.287 (19) | N1—C6—C7 | 116.98 (12) |
Cl4—Co1—Cl1 | 106.46 (2) | C5—C6—C7 | 123.19 (14) |
C2—N1—C6 | 123.47 (14) | N2—C7—C8 | 119.92 (14) |
C2—N1—H1 | 119.4 (14) | N2—C7—C6 | 116.93 (13) |
C6—N1—H1 | 117.1 (14) | C8—C7—C6 | 123.15 (14) |
C11—N2—C7 | 123.32 (14) | C7—C8—C9 | 118.30 (16) |
C11—N2—H2 | 117.4 (14) | C7—C8—H8 | 120.9 |
C7—N2—H2 | 119.2 (14) | C9—C8—H8 | 120.9 |
C2—C1—H1A | 109.5 | C10—C9—C8 | 120.32 (16) |
C2—C1—H1B | 109.5 | C10—C9—H9 | 119.8 |
H1A—C1—H1B | 109.5 | C8—C9—H9 | 119.8 |
C2—C1—H1C | 109.5 | C9—C10—C11 | 120.25 (15) |
H1A—C1—H1C | 109.5 | C9—C10—H10 | 119.9 |
H1B—C1—H1C | 109.5 | C11—C10—H10 | 119.9 |
N1—C2—C3 | 117.74 (15) | N2—C11—C10 | 117.86 (16) |
N1—C2—C1 | 117.33 (16) | N2—C11—C12 | 117.45 (17) |
C3—C2—C1 | 124.93 (16) | C10—C11—C12 | 124.69 (17) |
C4—C3—C2 | 120.12 (15) | C11—C12—H12A | 109.5 |
C4—C3—H3 | 119.9 | C11—C12—H12B | 109.5 |
C2—C3—H3 | 119.9 | H12A—C12—H12B | 109.5 |
C3—C4—C5 | 120.43 (16) | C11—C12—H12C | 109.5 |
C3—C4—H4 | 119.8 | H12A—C12—H12C | 109.5 |
C5—C4—H4 | 119.8 | H12B—C12—H12C | 109.5 |
C6—N1—C2—C3 | 2.1 (2) | N1—C6—C7—N2 | −128.78 (14) |
C6—N1—C2—C1 | −177.24 (15) | C5—C6—C7—N2 | 51.6 (2) |
N1—C2—C3—C4 | −1.2 (3) | N1—C6—C7—C8 | 51.7 (2) |
C1—C2—C3—C4 | 178.05 (18) | C5—C6—C7—C8 | −127.95 (17) |
C2—C3—C4—C5 | −0.5 (3) | N2—C7—C8—C9 | 1.4 (2) |
C3—C4—C5—C6 | 1.4 (3) | C6—C7—C8—C9 | −179.06 (15) |
C2—N1—C6—C5 | −1.2 (2) | C7—C8—C9—C10 | 0.3 (3) |
C2—N1—C6—C7 | 179.19 (14) | C8—C9—C10—C11 | −1.4 (3) |
C4—C5—C6—N1 | −0.6 (2) | C7—N2—C11—C10 | 1.0 (2) |
C4—C5—C6—C7 | 178.99 (15) | C7—N2—C11—C12 | −179.01 (15) |
C11—N2—C7—C8 | −2.1 (2) | C9—C10—C11—N2 | 0.8 (2) |
C11—N2—C7—C6 | 178.36 (14) | C9—C10—C11—C12 | −179.26 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.93 (2) | 2.32 (2) | 3.2205 (16) | 164.5 (18) |
N2—H2···Cl4i | 0.87 (2) | 2.38 (2) | 3.2436 (16) | 171 (2) |
C4—H4···Cl3ii | 0.93 | 2.68 | 3.571 (2) | 161 |
C9—H9···Cl2iii | 0.93 | 2.79 | 3.565 (2) | 141 |
Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+2. |
Acknowledgements
Authors thank the DST–FIST single-crystal X-ray Diffraction Facility at IIT Gandhinagar Project No: SR/FST/CSI-277/2016. They also thank Dr Vijay Thiruvenkatam, Dr Sivapriya Kirubakaran and Miss Delna Johnson (IIT-Gandhinagar) for their support with the data collection.
Funding information
Funding for this research was provided by: UGC-DSK-PDF [award No. F.4-2/2006 (BSR)/CH/18-19/0165(80th List)/18th March 2019 to NJJ]; BHC {grant No. [MRP/1911/2019 (BHC)] to RSD}.
References
Avila-Montiel, C., Tapia-Benavides, A. R., Islas-Trejo, E., Ariza, A., Tlahuext, H. & Tlahuextl, M. (2020). J. Mol. Struct. 1202, 127258. Google Scholar
Azadbakht, R., Hadadzadeh, H. & Amiri Rudbari, H. (2012). Acta Cryst. E68, m859. CSD CrossRef IUCr Journals Google Scholar
Bringley, J. F., Rajeswaran, M., Olson, L. P. & Liebert, N. B. (2005). J. Solid State Chem. 178, 3074–3089. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, B. C. K. & Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776–2782. Web of Science CSD CrossRef CAS Google Scholar
Decaroli, C., Arevalo-Lopez, A. M., Woodall, C. H., Rodriguez, E. E., Attfield, J. P., Parker, S. F. & Stock, C. (2015). Acta Cryst. B71, 20–24. Web of Science CSD CrossRef IUCr Journals Google Scholar
Degtyarenko, A. S. & Domasevitch, K. V. (2014). Acta Cryst. C70, 173–177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jagadeesan, S., Balasubramanian, V., Baumann, P., Neuburger, M., Häussinger, D. & Palivan, C. G. (2013). Inorg. Chem. 52, 12535–12544. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jurowska, A., Hodorowicz, M., Kruczała, K. & Szklarzewicz, J. (2021). Dalton Trans. 50, 17981–17987. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kobayashi, K., Horiuchi, S., Ishibashi, S., Kagawa, F., Murakami, Y. & Kumai, R. (2014). Chem. Eur. J. 20, 17515–17522. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555–557. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661–662. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thangavelu, S. G., Butcher, R. J. & Cahill, C. L. (2015). Cryst. Growth Des. 15, 3481–3492. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & &Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshikawa, N. (2021). CSD Communication (refcode IQUREU). CCDC, Cambridge, England. Google Scholar
Yoshikawa, N., Yamazaki, S., Nishiyama, A., Yamashita, Y., Kanehisa, N., Tohnai, N., Nakata, E. & Takashima, H. (2022). J. Mol. Struct. 1251, 131990. Web of Science CSD CrossRef Google Scholar
Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.