research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6,6′-di­methyl-2,2′-bi­pyridine-1,1′-diium tetra­chlorido­cobaltate(II)

crossmark logo

aDepartment of Chemistry, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli-620005, Tamilnadu, India, bPG & Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli-620017, Tamilnadu, India, cCenter for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, India, dDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamilnadu, India, and eMolecular Biophysics Unit, Indian Institute of Science, Bangalore, India
*Correspondence e-mail: iiscjeevajasmine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 22 April 2024; accepted 30 May 2024; online 11 June 2024)

In the title mol­ecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitro­gen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl inter­actions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π inter­actions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant inter­actions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts.

1. Chemical context

In recent years, non-covalent inter­actions have played an important role in organicinorganic hybrid materials that have attracted researchers because of their potential applications in catalysis, energy storage devices, luminescence, photography and drug delivery (Bringley et al., 2005[Bringley, J. F., Rajeswaran, M., Olson, L. P. & Liebert, N. B. (2005). J. Solid State Chem. 178, 3074-3089.]; Avila-Montiel et al., 2020[Avila-Montiel, C., Tapia-Benavides, A. R., Islas-Trejo, E., Ariza, A., Tlahuext, H. & Tlahuextl, M. (2020). J. Mol. Struct. 1202, 127258.]). Cobalt(II) halide compounds are used as metal catalysts in various organic transformations and possess important fluorescence and magnetic properties (Decaroli et al., 2015[Decaroli, C., Arevalo-Lopez, A. M., Woodall, C. H., Rodriguez, E. E., Attfield, J. P., Parker, S. F. & Stock, C. (2015). Acta Cryst. B71, 20-24.]). As part of our work in this area, we now describe the synthesis, structure and Hirshfeld surface analysis of the title salt, C12H14N22+·[CoCl4]2–, (I).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I) contains one C12H14N22+ (DMB2+) cation and one [CoCl4]2– anion in the triclinic space group P[\overline{1}] (Fig. 1[link]). The pyridine ring nitro­gen atoms are protonated, which is confirmed by the widening of the C2—N1—C6 [123.47 (14)°] and C8—C7—N2 [119.92 (14)°] bond angles compared to a value of 118.4° in the neutral compound (Sengül et al., 1998[Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661-662.]). The dihedral angle between the pyridine rings in (I) is 52.46 (9)°, showing that they are substanti­ally twisted with respect to each other. The values for the torsion angles C5—C6—C7—C8 [–127.95 (17)°] and N1—C6—C7—N2 [–128.78 (14)°] indicate that the nitro­gen atoms of the pyridine rings exhibit a (–)anti-clinal conformation. The Co—Cl bond lengths in the [CoCl4]2– anion range from 2.2600 (6)–2.2997 (7) Å, where Cl1 and Cl4 have a longer distance than Cl2 and Cl3. The average Co—Cl bond length of 2.280 Å is consistent with that of similar complexes (Zhang et al., 2005[Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677-m678.]; Jebas & Balasubramanian, 2006[Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.]). The Cl—Co—Cl bond angles are in the range 105.46 (3)–117.91 (2)° with an average bond angle of 111.13 (2)° (Azadbakht et al., 2012[Azadbakht, R., Hadadzadeh, H. & Amiri Rudbari, H. (2012). Acta Cryst. E68, m859.]; Mghandef & Boughzala, 2015[Mghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555-557.]). The smallest bond angle (Cl2—Co1—Cl3) correlates with the shortest Co—Cl bond lengths but there is no obvious correlation between bond lengths and the largest angle.

[Figure 1]
Figure 1
The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the extended structure of (I), the components are linked by N1—H1⋯Cl1 and N2—H2⋯Cl4 hydrogen bonds (Table 1[link]), which generate infinite [1[\overline{1}]0] chains. Weak C4—H4⋯Cl3 and C9—H9⋯Cl2 hydrogen bonds also occur, so that each chlorine atom accepts one hydrogen bond. Together, the hydrogen bonds generate infinite sheets in which R44(18) and R44(20) loops are apparent (Fig. 2[link]). A wavy sheet-like structure of the compound can be seen when the structure is viewed along the ab-axis direction (Fig. 3[link]). The crystal structure also features weak anion⋯π inter­actions [Co1—Cl2⋯Cg2iv = 3.5465 (12) Å; Co1—Cl3⋯Cg1iv = 3.4891 (12) Å, where Cg1 is the centroid of the N1/C2–C6 ring and Cg2 is the centroid of the N2/C7–C11 ring; symmetry code: (iv) 1 + x, y, z] (Degtyarenko & Domasevitch, 2014[Degtyarenko, A. S. & Domasevitch, K. V. (2014). Acta Cryst. C70, 173-177.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.93 (2) 2.32 (2) 3.2205 (16) 164.5 (18)
N2—H2⋯Cl4i 0.87 (2) 2.38 (2) 3.2436 (16) 171 (2)
C4—H4⋯Cl3ii 0.93 2.68 3.571 (2) 161
C9—H9⋯Cl2iii 0.93 2.79 3.565 (2) 141
Symmetry codes: (i) [x-1, y+1, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+1, -z+2].
[Figure 2]
Figure 2
A view of the supra­molecular architecture of (I), showing the R44(18) and R44(20) loops. [Symmetry code: (iv) 1 + x, y, z.]
[Figure 3]
Figure 3
The wavy sheet-like two-dimensional supra­molecular architecture of (I) viewed along the ab direction. The black dotted lines represent hydrogen bonds.

The Hirshfeld surface analysis and its related fingerprint plots were created with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & &Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.]). The Hirshfeld surface of the title salt (Fig. 4[link]) mapped over dnorm within the range −0.43 to 1.17 a.u. shows bright red spots within the locales of DA (D = donor, A = acceptor) inter­actions, as expected. The two-dimensional fingerprint plots (Fig. 5[link]) show that the most significant contacts are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), C⋯H/H⋯C (11.2%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4%), Co⋯H (1.0%) and C⋯C (0.5%).

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of (I)[link] mapped over dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plot for (I) showing all inter­molecular inter­actions and delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, Cl⋯C/C⋯Cl, Cl⋯N/N⋯Cl, Cl⋯Cl, Co⋯H and C⋯ contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44. last update Jun 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 6,6′-dimethyl-2,2′-bipyridinium ion yielded six entries, viz. CSD refcodes IQUREU (Yoshikawa, 2021[Yoshikawa, N. (2021). CSD Communication (refcode IQUREU). CCDC, Cambridge, England.]), IQUREU01 (Yoshikawa et al., 2022[Yoshikawa, N., Yamazaki, S., Nishiyama, A., Yamashita, Y., Kanehisa, N., Tohnai, N., Nakata, E. & Takashima, H. (2022). J. Mol. Struct. 1251, 131990.]), KARRAA (Jurowska et al., 2021[Jurowska, A., Hodorowicz, M., Kruczała, K. & Szklarzewicz, J. (2021). Dalton Trans. 50, 17981-17987.]), QUJVUO (Thangavelu et al., 2015[Thangavelu, S. G., Butcher, R. J. & Cahill, C. L. (2015). Cryst. Growth Des. 15, 3481-3492.]), UWUKAZ02 (Kobayashi et al., 2014[Kobayashi, K., Horiuchi, S., Ishibashi, S., Kagawa, F., Murakami, Y. & Kumai, R. (2014). Chem. Eur. J. 20, 17515-17522.]) and YABGIS (Chan & Baird, 2004[Chan, B. C. K. & Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776-2782.]). The mean dihedral angle between the pyridine rings of the DMB2+ cations in these structures is 38.75 (10)°

5. Synthesis and crystallization

The compound of inter­est was synthesized by a literature method (Jagadeesan et al., 2013[Jagadeesan, S., Balasubramanian, V., Baumann, P., Neuburger, M., Häussinger, D. & Palivan, C. G. (2013). Inorg. Chem. 52, 12535-12544.]) by dissolving 2.00 mmol (0.3682 g) of the ligand in methanol and adding directly 1.00 mmol (0.1289 g) of anhydrous cobaltous chloride. The whole mixture was refluxed for about an hour. A dark-brown solution was obtained. Afterwards, a sufficient amount of chlorine gas was passed through the solution until precipitation occurred. The precipitate was dissolved in aqueous HCl (0.001 M) by warming to 333 K for 30 min and the resulting mixture was kept undisturbed overnight. The resulting precipitate was discarded and the filtrate was kept for a few weeks until dark-blue crystals of (I) appeared (0.067 g).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula (C12H14N2)[CoCl4]
Mr 386.98
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 301
a, b, c (Å) 6.6419 (16), 7.6512 (19), 15.837 (4)
α, β, γ (°) 99.458 (6), 98.020 (6), 97.046 (6)
V3) 777.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.78
Crystal size (mm) 0.21 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.625, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13285, 3890, 3661
Rint 0.041
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.03
No. of reflections 3890
No. of parameters 180
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.36
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

6,6'-Dimethyl-2,2'-bipyridine-1,1'-diium tetrachloridocobaltate(II) top
Crystal data top
(C12H14N2)[CoCl4]Z = 2
Mr = 386.98F(000) = 390
Triclinic, P1Dx = 1.653 Mg m3
a = 6.6419 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6512 (19) ÅCell parameters from 9272 reflections
c = 15.837 (4) Åθ = 2.7–28.6°
α = 99.458 (6)°µ = 1.78 mm1
β = 98.020 (6)°T = 301 K
γ = 97.046 (6)°Block, blue
V = 777.3 (3) Å30.21 × 0.11 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3661 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.6°, θmin = 2.7°
Tmin = 0.625, Tmax = 0.746h = 88
13285 measured reflectionsk = 1010
3890 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.2392P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3890 reflectionsΔρmax = 0.41 e Å3
180 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.83193 (3)0.11776 (3)0.75825 (2)0.02835 (8)
Cl10.50544 (6)0.08040 (5)0.79190 (3)0.03681 (10)
Cl21.04301 (7)0.30332 (6)0.87001 (3)0.04763 (12)
Cl30.82188 (7)0.26717 (7)0.64540 (3)0.04459 (11)
Cl40.91033 (8)0.16382 (6)0.71718 (3)0.04905 (12)
N10.34377 (19)0.34550 (17)0.66800 (8)0.0288 (2)
H10.371 (3)0.276 (3)0.7098 (14)0.043*
N20.2849 (2)0.69414 (16)0.82797 (8)0.0295 (2)
H20.178 (3)0.719 (3)0.7963 (14)0.044*
C10.2787 (3)0.0670 (3)0.56372 (13)0.0511 (5)
H1A0.2351670.0258170.5025090.077*
H1B0.1810690.0132360.5947700.077*
H1C0.4111740.0338610.5807110.077*
C20.2923 (2)0.2659 (2)0.58417 (10)0.0351 (3)
C30.2537 (3)0.3744 (3)0.52323 (11)0.0432 (4)
H30.2202940.3239260.4645800.052*
C40.2648 (3)0.5561 (3)0.54950 (11)0.0465 (4)
H40.2398320.6282260.5084490.056*
C50.3130 (3)0.6328 (2)0.63697 (11)0.0386 (3)
H50.3178510.7553670.6552420.046*
C60.3535 (2)0.52315 (19)0.69586 (9)0.0276 (3)
C70.4097 (2)0.58981 (18)0.79017 (9)0.0276 (3)
C80.5805 (3)0.5515 (2)0.83936 (11)0.0360 (3)
H80.6692900.4819960.8140060.043*
C90.6170 (3)0.6193 (2)0.92811 (11)0.0440 (4)
H90.7319080.5955920.9626680.053*
C100.4840 (3)0.7213 (2)0.96494 (10)0.0441 (4)
H100.5077940.7641271.0244500.053*
C110.3147 (3)0.7606 (2)0.91364 (10)0.0368 (3)
C120.1623 (4)0.8715 (3)0.94657 (14)0.0555 (5)
H12A0.1868230.8942391.0088550.083*
H12B0.0257690.8083010.9257930.083*
H12C0.1764770.9831260.9262480.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02780 (12)0.03196 (12)0.02530 (12)0.00566 (8)0.00268 (8)0.00579 (8)
Cl10.03370 (19)0.03675 (19)0.0430 (2)0.00376 (14)0.01266 (15)0.01194 (15)
Cl20.0492 (2)0.0456 (2)0.0389 (2)0.00486 (18)0.01213 (18)0.00607 (17)
Cl30.0398 (2)0.0659 (3)0.0347 (2)0.00992 (19)0.00815 (16)0.02524 (19)
Cl40.0507 (3)0.0430 (2)0.0507 (3)0.02070 (19)0.00004 (19)0.00242 (18)
N10.0270 (6)0.0315 (6)0.0266 (6)0.0068 (5)0.0002 (4)0.0032 (5)
N20.0350 (6)0.0275 (6)0.0265 (6)0.0043 (5)0.0051 (5)0.0068 (4)
C10.0499 (10)0.0451 (10)0.0481 (10)0.0075 (8)0.0000 (8)0.0142 (8)
C20.0264 (7)0.0447 (8)0.0298 (7)0.0061 (6)0.0014 (5)0.0034 (6)
C30.0377 (8)0.0659 (11)0.0241 (7)0.0080 (8)0.0028 (6)0.0040 (7)
C40.0482 (10)0.0668 (12)0.0301 (8)0.0134 (9)0.0054 (7)0.0224 (8)
C50.0462 (9)0.0390 (8)0.0343 (8)0.0109 (7)0.0058 (7)0.0149 (6)
C60.0266 (6)0.0315 (7)0.0253 (6)0.0063 (5)0.0031 (5)0.0062 (5)
C70.0312 (7)0.0250 (6)0.0257 (6)0.0018 (5)0.0020 (5)0.0061 (5)
C80.0353 (8)0.0330 (7)0.0371 (8)0.0045 (6)0.0039 (6)0.0078 (6)
C90.0470 (9)0.0429 (9)0.0355 (8)0.0034 (7)0.0117 (7)0.0117 (7)
C100.0619 (11)0.0393 (8)0.0247 (7)0.0076 (8)0.0003 (7)0.0045 (6)
C110.0511 (9)0.0294 (7)0.0298 (7)0.0015 (6)0.0123 (7)0.0058 (6)
C120.0712 (14)0.0506 (11)0.0466 (10)0.0094 (10)0.0273 (10)0.0002 (8)
Geometric parameters (Å, º) top
Co1—Cl22.2600 (6)C4—C51.389 (2)
Co1—Cl32.2720 (6)C4—H40.9300
Co1—Cl42.2901 (7)C5—C61.374 (2)
Co1—Cl12.2997 (7)C5—H50.9300
N1—C21.3441 (19)C6—C71.4758 (19)
N1—C61.3490 (19)C7—C81.375 (2)
N1—H10.93 (2)C8—C91.392 (2)
N2—C111.346 (2)C8—H80.9300
N2—C71.3511 (19)C9—C101.376 (3)
N2—H20.87 (2)C9—H90.9300
C1—C21.492 (3)C10—C111.387 (3)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.492 (3)
C1—H1C0.9600C12—H12A0.9600
C2—C31.390 (3)C12—H12B0.9600
C3—C41.374 (3)C12—H12C0.9600
C3—H30.9300
Cl2—Co1—Cl3105.46 (3)C6—C5—C4118.36 (16)
Cl2—Co1—Cl4117.91 (2)C6—C5—H5120.8
Cl3—Co1—Cl4110.39 (2)C4—C5—H5120.8
Cl2—Co1—Cl1108.93 (2)N1—C6—C5119.83 (14)
Cl3—Co1—Cl1107.287 (19)N1—C6—C7116.98 (12)
Cl4—Co1—Cl1106.46 (2)C5—C6—C7123.19 (14)
C2—N1—C6123.47 (14)N2—C7—C8119.92 (14)
C2—N1—H1119.4 (14)N2—C7—C6116.93 (13)
C6—N1—H1117.1 (14)C8—C7—C6123.15 (14)
C11—N2—C7123.32 (14)C7—C8—C9118.30 (16)
C11—N2—H2117.4 (14)C7—C8—H8120.9
C7—N2—H2119.2 (14)C9—C8—H8120.9
C2—C1—H1A109.5C10—C9—C8120.32 (16)
C2—C1—H1B109.5C10—C9—H9119.8
H1A—C1—H1B109.5C8—C9—H9119.8
C2—C1—H1C109.5C9—C10—C11120.25 (15)
H1A—C1—H1C109.5C9—C10—H10119.9
H1B—C1—H1C109.5C11—C10—H10119.9
N1—C2—C3117.74 (15)N2—C11—C10117.86 (16)
N1—C2—C1117.33 (16)N2—C11—C12117.45 (17)
C3—C2—C1124.93 (16)C10—C11—C12124.69 (17)
C4—C3—C2120.12 (15)C11—C12—H12A109.5
C4—C3—H3119.9C11—C12—H12B109.5
C2—C3—H3119.9H12A—C12—H12B109.5
C3—C4—C5120.43 (16)C11—C12—H12C109.5
C3—C4—H4119.8H12A—C12—H12C109.5
C5—C4—H4119.8H12B—C12—H12C109.5
C6—N1—C2—C32.1 (2)N1—C6—C7—N2128.78 (14)
C6—N1—C2—C1177.24 (15)C5—C6—C7—N251.6 (2)
N1—C2—C3—C41.2 (3)N1—C6—C7—C851.7 (2)
C1—C2—C3—C4178.05 (18)C5—C6—C7—C8127.95 (17)
C2—C3—C4—C50.5 (3)N2—C7—C8—C91.4 (2)
C3—C4—C5—C61.4 (3)C6—C7—C8—C9179.06 (15)
C2—N1—C6—C51.2 (2)C7—C8—C9—C100.3 (3)
C2—N1—C6—C7179.19 (14)C8—C9—C10—C111.4 (3)
C4—C5—C6—N10.6 (2)C7—N2—C11—C101.0 (2)
C4—C5—C6—C7178.99 (15)C7—N2—C11—C12179.01 (15)
C11—N2—C7—C82.1 (2)C9—C10—C11—N20.8 (2)
C11—N2—C7—C6178.36 (14)C9—C10—C11—C12179.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.93 (2)2.32 (2)3.2205 (16)164.5 (18)
N2—H2···Cl4i0.87 (2)2.38 (2)3.2436 (16)171 (2)
C4—H4···Cl3ii0.932.683.571 (2)161
C9—H9···Cl2iii0.932.793.565 (2)141
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2.
 

Acknowledgements

Authors thank the DST–FIST single-crystal X-ray Diffraction Facility at IIT Gandhinagar Project No: SR/FST/CSI-277/2016. They also thank Dr Vijay Thiruvenkatam, Dr Sivapriya Kirubakaran and Miss Delna Johnson (IIT-Gandhinagar) for their support with the data collection.

Funding information

Funding for this research was provided by: UGC-DSK-PDF [award No. F.4-2/2006 (BSR)/CH/18-19/0165(80th List)/18th March 2019 to NJJ]; BHC {grant No. [MRP/1911/2019 (BHC)] to RSD}.

References

First citationAvila-Montiel, C., Tapia-Benavides, A. R., Islas-Trejo, E., Ariza, A., Tlahuext, H. & Tlahuextl, M. (2020). J. Mol. Struct. 1202, 127258.  Google Scholar
First citationAzadbakht, R., Hadadzadeh, H. & Amiri Rudbari, H. (2012). Acta Cryst. E68, m859.  CSD CrossRef IUCr Journals Google Scholar
First citationBringley, J. F., Rajeswaran, M., Olson, L. P. & Liebert, N. B. (2005). J. Solid State Chem. 178, 3074–3089.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, B. C. K. & Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776–2782.  Web of Science CSD CrossRef CAS Google Scholar
First citationDecaroli, C., Arevalo-Lopez, A. M., Woodall, C. H., Rodriguez, E. E., Attfield, J. P., Parker, S. F. & Stock, C. (2015). Acta Cryst. B71, 20–24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDegtyarenko, A. S. & Domasevitch, K. V. (2014). Acta Cryst. C70, 173–177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJagadeesan, S., Balasubramanian, V., Baumann, P., Neuburger, M., Häussinger, D. & Palivan, C. G. (2013). Inorg. Chem. 52, 12535–12544.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJurowska, A., Hodorowicz, M., Kruczała, K. & Szklarzewicz, J. (2021). Dalton Trans. 50, 17981–17987.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKobayashi, K., Horiuchi, S., Ishibashi, S., Kagawa, F., Murakami, Y. & Kumai, R. (2014). Chem. Eur. J. 20, 17515–17522.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555–557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661–662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThangavelu, S. G., Butcher, R. J. & Cahill, C. L. (2015). Cryst. Growth Des. 15, 3481–3492.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & &Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, N. (2021). CSD Communication (refcode IQUREU). CCDC, Cambridge, England.  Google Scholar
First citationYoshikawa, N., Yamazaki, S., Nishiyama, A., Yamashita, Y., Kanehisa, N., Tohnai, N., Nakata, E. & Takashima, H. (2022). J. Mol. Struct. 1251, 131990.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds