research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1,1′-bis­­(carb­­oxy­meth­yl)-4,4′-bipyridinium derivatives

crossmark logo

a41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan, and bNanakuma Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 7 May 2024; accepted 30 May 2024; online 4 June 2024)

The crystal structures of 2-[1′-(carb­oxy­meth­yl)-4,4′-bi­pyridine-1,1′-diium-1-yl]acetate tetra­fluoro­borate, C14H13N2O4+·BF4 or (Hbcbpy)(BF4), and neutral 1,1′-bis­(carboxyl­atometh­yl)-4,4′-bi­pyridine-1,1′-diium (bcbpy), C14H20N2O8, are reported. The asymmetric unit of the (Hbcbpy)(BF4) consists of a Hbcbpy+ monocation, a BF4 anion, and one-half of a water mol­ecule. The BF4 anion is disordered. Two pyridinium rings of the Hbcbpy+ monocation are twisted at a torsion angle of 30.3 (2)° with respect to each other. The Hbcbpy monocation contains a carb­oxy­lic acid group and a deprotonated carboxyl­ate group. Both groups exhibit both a long and a short C—O bond. The cations are linked by inter­molecular hydrogen-bonding inter­actions between the carb­oxy­lic acid and the deprotonated carboxyl­ate group to give one-dimensional zigzag chains. The asymmetric unit of the neutral bcbpy consists of one-half of the bcbpy and two water mol­ecules. In contrast to the Hbcbpy+ monocation, the neutral bcbpy mol­ecule contains two pyridinium rings that are coplanar with each other and a carboxyl­ate group with similar C—O bond lengths. The mol­ecules are connected by inter­molecular hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate groups, forming a three-dimensional hydrogen-bonding network.

1. Chemical context

Viologen derivatives (N,N′-disubstituted bipyridinium salts) have been widely researched because of their reversible electroactivity, good photochromic properties, and high biochemical activity. Because of these inter­esting physical and chemical properties, the synthesis of organic polymers or metal–organic frameworks by assembling viologen derivatives using covalent bonds or coordination bonds is attracting attention (Jouhara et al., 2019[Jouhara, A., Quarez, E., Dolhem, F., Armand, M., Dupré, N. & Poizot, P. (2019). Angew. Chem. Int. Ed. 58, 15680-15684.]; Madasamy et al., 2019[Madasamy, K., Velayutham, D., Suryanarayanan, V., Kathiresan, M. & Ho, K. C. (2019). J. Mater. Chem. C. 7, 4622-4637.]; Sun & Zhang, 2015[Sun, J. K. & Zhang, J. (2015). Dalton Trans. 44, 19041-19055.]). Non-covalent inter­actions such as hydrogen-bonding and electrostatic inter­actions have been used to assemble functional mol­ecules in the field of crystal engin­eering (Desiraju, 2001[Desiraju, G. R. (2001). Nature, 412, 397-400.]; Horiuchi et al., 2007[Horiuchi, S., Kumai, R. & Tokura, Y. (2007). Chem. Commun. pp. 2321-2329.]; Lehn, 1995[Lehn, J.-M. (1995). Supramolecular Chemistry, Concepts and Perspectives. Weinheim, Germany: VCH.]). We have been working on hydrogen-bonded assemblies to synthesize functional materials and have previously reported hydrogen-bonded assemblies in which functional mol­ecules such as redox-active ferrocene derivatives or tetra­thia­fulvalene are used (Kitagawa & Kawata, 2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]; Nagayoshi et al., 2003[Nagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221-232.]). In the present study, we focus on hydrogen-bonded assemblies of N,N′-bis­(2-carb­oxy­eth­yl)-4,4′-bipyridinium derivatives.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (Hbcbpy)(BF4) consists of a Hbcbpy+ monocation, a BF4 anion, and one-half of a water mol­ecule (Fig. 1[link]). The BF4 anion is disordered. The key feature of the structure is a hydrogen-bonded one-dimensional chain structure in which the chains are connected by inter­molecular –COO⋯HOOC– hydrogen-bonding inter­actions (Table 1[link], Fig. 2[link]). Because the water mol­ecules of (Hbcbpy)(BF4) are not involved in the hydrogen-bonding inter­actions, water mol­ecules are easily lost from the crystal to give partial occupancy. Two pyridinium groups of the Hbcbpy+ monocation are twisted at a C4—C5—C8—C9 torsion angle of 30.3 (2)° [dihedral angle between the rings = 30.18 (8)°] to each other. The carb­oxy­methyl groups bonded to the pyridinium groups exhibit a bent structure and are nearly perpendicular to the pyridinium groups. The Hbcbpy+ monocation contains a carb­oxy­lic acid group, –COOH, and a deprotonated negatively charged carboxyl­ate group, –COO, at each end of the monocation. The charge is compensated by a BF4 anion. The C—O and C=O bond lengths in the carb­oxy­lic acid group, C1—O1 and C1—O2, are 1.294 (2) and 1.223 (2) Å, respectively, with a difference of 0.071 (2) Å. Although the carboxyl­ate group is deprotonated, C14—O3 and C14—O4 also show two different bond lengths of 1.235 (2) and 1.287 (2) Å, respectively, where the difference is 0.052 (2) Å. The carb­oxy­lic acid group acts as a hydrogen-bond donor, and O4 of the deprotonated carboxyl­ate groups acts as a hydrogen-bond acceptor; the C14—O4 bond is longer than the C14—O3 bond. No hydrogen-bonding inter­actions are found for O3. The corresponding ClO4 salt also exhibits two different C—O bond lengths in the deprotonated carboxyl­ate group and similar hydrogen-bonding inter­actions to give a zigzag chain structure (Gutov et al., 2008[Gutov, A. V., Rusanov, E. B., Yegorov, O. A. & Gernega, A. N. (2008). Zh. Org. Farm. Khim. 6, 46-48.]). While the measurements of the (Hbcbpy)(BF4) were conducted at 100 K, the hydrogen-bonding distances of O(carb­oxy­lic acid)⋯O(carboxyl­ate) is very similar to that of the ClO4 salt measured at room temperature, indicative of a small influence of thermal libration (Gutov et al., 2008[Gutov, A. V., Rusanov, E. B., Yegorov, O. A. & Gernega, A. N. (2008). Zh. Org. Farm. Khim. 6, 46-48.]). We assume that the different C—O bond lengths in the carboxyl­ate group arise from inter­molecular hydrogen-bonding inter­actions.

Table 1
Hydrogen-bond geometry (Å, °) for (Hbcbpy)(BF4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O4i 1.05 1.42 2.4694 (18) 172.0
Symmetry code: (i) [x-{\script{9\over 2}}, -y-{\script{7\over 2}}, z-{\script{7\over 2}}].
[Figure 1]
Figure 1
Structure of (Hbcbpy)(BF4) with labeling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
View of the hydrogen-bonded zigzag chain structure of Hbcbpy+ monocations. Dashed lines represent hydrogen bonds between oxygen atoms of Hbcbpy+ monocations. Only the carb­oxy­lic hydrogen atoms are shown for clarity. [Symmetry code: (i) x − [{9\over 2}], −y − [{7\over 2}], z − [{7\over 2}].]

The asymmetric unit of bcbpy consists of one-half of the neutral bcbpy mol­ecule and two solvent water mol­ecules (Fig. 3[link]). The key feature of the structure is a hydrogen-bonded three-dimensional network in which the mol­ecules are connected by inter­molecular hydrogen bonding inter­actions between bcbpy and water mol­ecules (Table 2[link], Fig. 4[link]). In the bcbpy mol­ecule, two negatively charged deprotonated carboxyl­ate groups are attached to the pyridinium groups to give a neutral mol­ecule. The carb­oxy­methyl group bonded to the pyridinium group exhibits a structure similar to that of a Hbcbpy+ monocation. Two C—O bonds in the carboxyl­ate group form similar hydrogen-bonding inter­actions between water mol­ecules. Two differences are observed between the structure of the bcbpy mol­ecule and that of the Hbcbpy+ monocation. The first difference is the arrangement of the two pyridinium groups. Although the two pyridinium groups are twisted toward each other in the Hbcbpy+ monocation, they are coplanar with each other in the neutral bcbpy mol­ecule, with a C6—C5—C5i—C4i torsion angle of 0.31 (14)°. The other difference is the C—O bond lengths in the deprotonated carboxyl­ate group. In the neutral bcbpy mol­ecule, the two C—O bond lengths are similar [1.248 (1) and 1.255 (1) Å, and the difference [0.007 (1) Å] is smaller than that between the C—O bond lengths in the deprotonated carboxyl­ate group in the Hbcbpy+ monocation. Both C—O bonds in the carboxyl­ate group undergo similar hydrogen-bonding inter­actions between water mol­ecules (Fig. 4[link]). A neutral bcbpy mol­ecule without coordination bonds has been reported in [Zn(H2O)6]·(bcbpy)·(1,4-benzen di­carboxyl­ate)·3H2O (Zhao & Liu, 2021[Zhao, G. Z. & Liu, J. J. (2021). RSC Adv. 11, 24500-24507.]). The bcbpy mol­ecule in this Zn compound contains two types of carboxyl­ate groups. One carboxyl­ate group shows hydrogen-bonding inter­actions similar to those observed in our structure; the two C—O bond lengths in the carboxyl­ate group are 1.236 (3) and 1.249 (3) Å, differing by 0.013 (3) Å. The other carboxyl­ate group in the Zn compound exhibits two types of hydrogen-bonding inter­actions: inter­actions with three water mol­ecules, and an inter­action with one water mol­ecule. The two C—O bond lengths in the carboxyl­ate group are 1.235 (3) and 1.259 (3) Å; thus, the difference between the C—O bond lengths [0.024 (3) Å] is slightly larger than the corresponding difference for the first carboxyl­ate group. These results indicate that the difference between the two C—O bond lengths in the carboxyl­ate group is influenced by the type of hydrogen-bonding inter­actions in the bcbpy system.

Table 2
Hydrogen-bond geometry (Å, °) for bcbpy[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H9⋯O2 0.859 (19) 1.96 (2) 2.8135 (12) 172.1 (19)
O3—H8⋯O1i 0.85 (2) 1.95 (2) 2.7888 (11) 171 (2)
O4—H10⋯O2 0.89 (2) 1.97 (2) 2.8233 (12) 158.9 (18)
O4—H11⋯O1ii 0.85 (2) 1.97 (2) 2.8007 (13) 164.1 (17)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Structure of bcbpy with labeling scheme and 50% probability displacement ellipsoids. [Symmetry code: (i) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]]
[Figure 4]
Figure 4
View of hydrogen-bonded network of bcbpy mol­ecules and water mol­ecules. Dashed lines represent hydrogen bonds between oxygen atoms. Hydrogen atoms of bcbpy are omitted for clarity. Only the hydrogen atoms of the water mol­ecules are shown for clarity. [Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]

3. Supra­molecular features

The Hbcbpy+ monocation contains a carb­oxy­lic acid and a deprotonated carboxyl­ate group at each end of the mono­cation. Inter­molecular hydrogen-bonding inter­actions occur between the carb­oxy­lic acid of one cation and the negatively charged carboxyl­ate groups of another monocation to give one-dimensional chains (Table 1[link], Fig. 2[link]). The chains zigzag because of the bent structure of the carb­oxy­methyl groups attached to the pyridinium groups. Within the chains, the pyridinium rings are not coplanar, exhibiting no ππ stacking inter­actions.

The bcbpy mol­ecule contains two deprotonated carboxyl­ate groups at its ends. The negatively charged carboxyl­ate groups undergo inter­molecular hydrogen-bonding inter­actions between water mol­ecules (Table 2[link]). The negatively charged carboxyl­ate groups act as hydrogen-bond acceptors, and water mol­ecules act as hydrogen-bond donors. The water mol­ecule bridges two bcbpy mol­ecules by hydrogen-bonding inter­actions, forming a three-dimensional hydrogen bonding network. Although the two pyridinium groups are coplanar, no ππ stacking inter­actions are observed.

Both compounds lack ππ stacking inter­actions. A possible explanation for this is that the carb­oxy­methyl groups bonded to the pyridinium groups, which are bent and nearly perpendicular to the pyridinium groups, prevent stacking inter­actions. Thus, the supra­molecular structures of the Hbcbpy+ monocation and bcbpy mol­ecule are primarily stabilized by the hydrogen-bonding inter­actions between negatively charged carboxyl­ate groups and carb­oxy­lic acids or water mol­ecules.

4. Database survey

A survey of the Cambridge Structural Database (CSD, v5.44, April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with a bcbpy moiety resulted in nine matches. Of these, (Hbcbpy)(ClO4) (ODOQUV; Zhao & Liu, 2021[Zhao, G. Z. & Liu, J. J. (2021). RSC Adv. 11, 24500-24507.]) and (Zn(H2O)6)(bcbpy)(1,4-benzene di­carboxyl­ate) (AXEJEV; Gutov et al., 2008[Gutov, A. V., Rusanov, E. B., Yegorov, O. A. & Gernega, A. N. (2008). Zh. Org. Farm. Khim. 6, 46-48.]) are related to the present work. Other compounds exhibit metal coordination and contain co-bridging ligands such as tri­carboxyl­ate or hexa­cyano metallate ions to compensate charges (Li et al., 2020[Li, M. H., Lv, S. L., You, M. H. & Lin, M. J. (2020). Dalton Trans. 49, 13083-13089.]; Liu et al., 2020[Liu, J. J., Lu, Y. W. & Lu, W. B. (2020). Dyes and Pigments, 180, 108498.]; Ma et al., 2009[Ma, Y., Zhang, J. Y., Cheng, A. L., Sun, Q., Gao, E. Q. & Liu, C. M. (2009). Inorg. Chem. 48, 6142-6151.], 2011[Ma, Y., Bandeira, N. A. G., Robert, V. & Gao, E. Q. (2011). Chem. Eur. J. 17, 1988-1998.]). The crystal structures of similar viologens in which carb­oxy­ethyl groups are attached to nitro­gen atoms have been reported, viz. 3-[1′-(2-carb­oxy­eth­yl)-4,4′-bipyridinium-1-yl]propano­ate perchlorate (ODOQOP; Gutov et al., 2008[Gutov, A. V., Rusanov, E. B., Yegorov, O. A. & Gernega, A. N. (2008). Zh. Org. Farm. Khim. 6, 46-48.]) and catena-[tris­[1,1′-bis­(2-carb­oxy­eth­yl)-4,4′-bipyridinium]hexa­kis­(μ-bromo)­tri­bromo­trilead(II) dihydrate] (FEBLOQ; Sun et al., 2017[Sun, C., Wang, M. S., Zhang, X., Zhang, N. N., Cai, L. R. & Guo, G. C. (2017). CrystEngComm, 19, 4476-4479.]). ODOQOP is a monocation similar to ODOQUV. FEBLOQ is a dication in which [Pb3Br9]n3n chains act as counter-ions in the crystal. (4-{2-[1-(Carb­oxy­meth­yl)pyridin-1-ium-4-yl]ethen­yl}pyridin-1-ium-1-yl)acetate tetra­fluoro­bor­ate (MUPBUX), (4-{2-[1-(carb­oxy­meth­yl)pyridin-1-ium-4-yl]ethen­yl}pyridin-1-ium-1-yl)acetate perchlorate (MUPCAE), and tris­(aqua)-[1-(carb­oxy­meth­yl)-4-(2-{1-[(carb­oxy)meth­yl]pyridin-1-ium-4-yl}eth­en­yl)pyridin-1-iumato]lithium iodide dihydrate (MUPCEI) are ethyl­enic derivatives in which two pyridinium groups are linked by an ethyl­ene group (Jouhara et al., 2019[Jouhara, A., Quarez, E., Dolhem, F., Armand, M., Dupré, N. & Poizot, P. (2019). Angew. Chem. Int. Ed. 58, 15680-15684.]). MUPBUX and MUPCAE are monocations similar to the Hbcbpy+ monocation.

5. Synthesis and crystallization

The di­bromo salt H2bcbpy(Br)2 was synthesized using a modified version of a reported procedure (Fajardo & Lewis, 1997[Fajardo, A. M. & Lewis, N. S. (1997). J. Phys. Chem. B, 101, 11136-11151.]). The route is presented in the supporting information (scheme S1). (Hbcbpy)(BF4) and bcbpy were obtained as follows. An aqueous solution (50 mL) of Li(BF4) (38.6 g, 320 mmol) was added to an aqueous solution (50 mL) of H2bcbpy(Br)2 (20.0 g, 40 mmol). The mixture was stirred, the resultant white precipitate was collected by filtration, and the obtained solution was slowly evaporated to yield colorless crystals of (Hbcbpy)(BF4). The crystals (4.9 g, 11 mmol) were dissolved in 30 mL of distilled water, and an aqueous solution (20 mL) of LiOH (0.42 g, 18 mmol) was added. The resultant solution was evaporated, and the obtained white precipitate was filtered. Colorless crystals began to form from the obtained solution at ambient temperature. One of these crystals was used for X-ray crystallographic analysis.

6. Refinement

The crystal data, data collection, and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the carb­oxy­lic acid and water mol­ecules, which are involved in hydrogen-bonding inter­actions were located in difference-Fourier maps and refined isotropically. Other hydrogen atoms were placed in idealized positions and refined using a riding model. The occupancy of the water mol­ecule in (Hbcbpy)(BF4) was refined.

Table 3
Experimental details

  (Hbcbpy)(BF4) bcbpy
Crystal data
Chemical formula C14H13N2O4.5+·BF4 C14H20N2O8
Mr 368.08 344.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 296
a, b, c (Å) 7.6794 (16), 20.987 (4), 10.0514 (19) 6.2521 (2), 11.4122 (4), 11.1413 (4)
β (°) 95.123 (3) 99.4832 (14)
V3) 1613.5 (5) 784.07 (5)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.14 0.12
Crystal size (mm) 0.60 × 0.40 × 0.40 0.48 × 0.46 × 0.42
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.656, 0.987 0.788, 0.951
No. of measured, independent and observed reflections 15631, 3652, 3119 [I > 2σ(I)] 7476, 1793, 1678 [F2 > 2.0σ(F2)]
Rint 0.032 0.022
(sin θ/λ)max−1) 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.05 0.048, 0.123, 1.11
No. of reflections 3652 1793
No. of parameters 292 125
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.56 0.40, −0.28
Computer programs: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

1,1'-Bis(carboxylatomethyl)-4,4'-bipyridine-1,1'-diium (bcbpy) top
Crystal data top
C14H20N2O8F(000) = 364.00
Mr = 344.32Dx = 1.458 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 6.2521 (2) ÅCell parameters from 7055 reflections
b = 11.4122 (4) Åθ = 3.3–27.5°
c = 11.1413 (4) ŵ = 0.12 mm1
β = 99.4832 (14)°T = 296 K
V = 784.07 (5) Å3Block, yellow
Z = 20.48 × 0.46 × 0.42 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1678 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 87
Tmin = 0.788, Tmax = 0.951k = 1414
7476 measured reflectionsl = 1414
1793 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.1761P]
where P = (Fo2 + 2Fc2)/3
1793 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.28 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51613 (14)0.68508 (8)0.03041 (7)0.0252 (2)
O20.48570 (13)0.70887 (7)0.22699 (7)0.0228 (2)
O30.80684 (15)0.87902 (8)0.29910 (8)0.0270 (2)
O40.41417 (14)0.74797 (8)0.46745 (8)0.0277 (2)
N10.17838 (14)0.54278 (8)0.22070 (8)0.0176 (2)
C70.28870 (17)0.46929 (10)0.30354 (10)0.0207 (3)
H70.4112380.4309060.2862050.025*
C60.22108 (18)0.45072 (9)0.41363 (10)0.0204 (3)
H60.2971680.3992960.4698560.025*
C50.03839 (16)0.50899 (9)0.44103 (9)0.0165 (3)
C40.07103 (17)0.58473 (10)0.35318 (9)0.0194 (3)
H40.1932610.6248170.3684210.023*
C30.00173 (17)0.60021 (10)0.24390 (10)0.0199 (3)
H30.0718870.6507360.1858220.024*
C20.26195 (17)0.56648 (10)0.10675 (9)0.0195 (3)
H2A0.1433160.5911060.0444790.023*
H2B0.3224750.4950570.0791100.023*
C10.43789 (17)0.66260 (9)0.12460 (9)0.0183 (2)
H90.709 (3)0.8291 (18)0.2700 (17)0.041 (5)*
H80.860 (3)0.8538 (18)0.369 (2)0.049 (5)*
H100.400 (3)0.7365 (16)0.387 (2)0.041 (5)*
H110.285 (3)0.7551 (15)0.4820 (18)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (4)0.0337 (5)0.0190 (4)0.0043 (3)0.0071 (3)0.0034 (3)
O20.0228 (4)0.0264 (4)0.0193 (4)0.0036 (3)0.0037 (3)0.0010 (3)
O30.0265 (5)0.0282 (5)0.0259 (5)0.0060 (3)0.0033 (3)0.0055 (3)
O40.0210 (5)0.0380 (5)0.0241 (5)0.0000 (3)0.0041 (3)0.0065 (4)
N10.0185 (5)0.0185 (4)0.0162 (4)0.0025 (3)0.0045 (3)0.0000 (3)
C70.0206 (5)0.0204 (5)0.0221 (5)0.0028 (4)0.0067 (4)0.0023 (4)
C60.0215 (5)0.0198 (5)0.0209 (5)0.0032 (4)0.0059 (4)0.0039 (4)
C50.0173 (5)0.0155 (5)0.0171 (5)0.0023 (4)0.0037 (4)0.0004 (4)
C40.0180 (5)0.0212 (5)0.0193 (5)0.0016 (4)0.0045 (4)0.0013 (4)
C30.0191 (5)0.0219 (5)0.0186 (5)0.0016 (4)0.0029 (4)0.0025 (4)
C20.0214 (5)0.0230 (5)0.0151 (5)0.0017 (4)0.0058 (4)0.0003 (4)
C10.0162 (5)0.0209 (5)0.0182 (5)0.0013 (4)0.0035 (4)0.0026 (4)
Geometric parameters (Å, º) top
O1—C11.2553 (13)C6—C51.3982 (14)
O2—C11.2479 (14)C6—H60.9300
O3—H90.86 (2)C5—C41.3973 (15)
O3—H80.85 (2)C5—C5i1.4856 (19)
O4—H100.89 (2)C4—C31.3794 (14)
O4—H110.85 (2)C4—H40.9300
N1—C31.3454 (14)C3—H30.9300
N1—C71.3495 (15)C2—C11.5429 (15)
N1—C21.4753 (13)C2—H2A0.9700
C7—C61.3780 (14)C2—H2B0.9700
C7—H70.9300
H9—O3—H8105.7 (19)C3—C4—H4119.9
H10—O4—H11105.3 (18)C5—C4—H4119.9
C3—N1—C7120.97 (9)N1—C3—C4120.51 (10)
C3—N1—C2119.62 (9)N1—C3—H3119.7
C7—N1—C2119.27 (9)C4—C3—H3119.7
N1—C7—C6120.47 (10)N1—C2—C1111.44 (8)
N1—C7—H7119.8N1—C2—H2A109.3
C6—C7—H7119.8C1—C2—H2A109.3
C7—C6—C5120.17 (10)N1—C2—H2B109.3
C7—C6—H6119.9C1—C2—H2B109.3
C5—C6—H6119.9H2A—C2—H2B108.0
C4—C5—C6117.68 (9)O2—C1—O1127.60 (10)
C4—C5—C5i120.85 (11)O2—C1—C2118.49 (9)
C6—C5—C5i121.47 (12)O1—C1—C2113.91 (9)
C3—C4—C5120.19 (10)
C3—N1—C7—C60.60 (17)C7—N1—C3—C40.25 (16)
C2—N1—C7—C6176.33 (10)C2—N1—C3—C4175.96 (10)
N1—C7—C6—C50.68 (17)C5—C4—C3—N10.02 (17)
C7—C6—C5—C40.41 (16)C3—N1—C2—C192.74 (11)
C7—C6—C5—C5i179.89 (11)C7—N1—C2—C183.05 (12)
C6—C5—C4—C30.07 (16)N1—C2—C1—O21.12 (14)
C5i—C5—C4—C3179.76 (11)N1—C2—C1—O1179.23 (9)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O20.859 (19)1.96 (2)2.8135 (12)172.1 (19)
O3—H8···O1ii0.85 (2)1.95 (2)2.7888 (11)171 (2)
O4—H10···O20.89 (2)1.97 (2)2.8233 (12)158.9 (18)
O4—H11···O1iii0.85 (2)1.97 (2)2.8007 (13)164.1 (17)
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2.
2-[1'-(Carboxymethyl)-4,4'-bipyridine-1,1'-diium-1-yl]acetate tetrafluoroborate (HbcbpyBF4) top
Crystal data top
C14H13N2O4.5+·BF4F(000) = 756
Mr = 368.08Dx = 1.519 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.6794 (16) ÅCell parameters from 2543 reflections
b = 20.987 (4) Åθ = 5.6–27.4°
c = 10.0514 (19) ŵ = 0.14 mm1
β = 95.123 (3)°T = 100 K
V = 1613.5 (5) Å3Platelet, colorless
Z = 40.60 × 0.40 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3119 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.032
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 99
Tmin = 0.656, Tmax = 0.987k = 2727
15631 measured reflectionsl = 1313
3652 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 1.2013P]
where P = (Fo2 + 2Fc2)/3
3652 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.12434 (15)0.59508 (5)0.51560 (12)0.0246 (3)
O30.18392 (15)0.49606 (6)0.58466 (13)0.0278 (3)
C140.0977 (2)0.54581 (7)0.59083 (16)0.0212 (3)
C130.0546 (2)0.54866 (8)0.69960 (17)0.0232 (3)
H130.0069640.5509380.7878240.028*
H13A0.1230930.5087980.6970340.028*
N20.17293 (17)0.60349 (6)0.68628 (13)0.0206 (3)
C100.3334 (2)0.59435 (8)0.64492 (17)0.0224 (3)
H100.3689600.5528140.6212800.027*
C90.4466 (2)0.64527 (8)0.63679 (17)0.0233 (3)
H90.5596460.6386780.6078590.028*
C80.3941 (2)0.70639 (8)0.67125 (16)0.0211 (3)
C50.5167 (2)0.76126 (8)0.67427 (16)0.0221 (3)
N10.75008 (18)0.86160 (6)0.68917 (14)0.0227 (3)
C120.2245 (2)0.71446 (8)0.70921 (17)0.0249 (4)
H120.1838720.7557530.7297130.030*
C70.6207 (2)0.86054 (8)0.77144 (18)0.0252 (3)
H70.6110230.8940420.8339160.030*
C11.0355 (2)0.88901 (7)0.80414 (16)0.0208 (3)
O11.14297 (16)0.93451 (6)0.84102 (13)0.0305 (3)
O21.04698 (15)0.83348 (5)0.84064 (12)0.0240 (3)
C110.1169 (2)0.66241 (8)0.71677 (17)0.0246 (3)
H110.0023720.6678850.7436150.029*
C60.5025 (2)0.81110 (8)0.76520 (17)0.0250 (3)
H60.4109680.8108020.8228260.030*
C20.8844 (2)0.91214 (8)0.70692 (18)0.0246 (3)
H20.8327480.9511660.7423280.029*
H2A0.9279930.9225730.6197440.029*
F1A0.2612 (3)0.83677 (18)0.3422 (3)0.0623 (9)0.662 (3)
C40.6512 (2)0.76409 (8)0.58975 (17)0.0272 (4)
H40.6634650.7313360.5260090.033*
F2A0.1745 (3)0.84329 (14)0.5476 (2)0.0524 (7)0.662 (3)
C30.7663 (2)0.81476 (9)0.59933 (18)0.0283 (4)
H30.8580560.8166310.5419660.034*
B1A0.2445 (7)0.8769 (2)0.4484 (4)0.0336 (9)0.662 (3)
F3A0.4096 (3)0.89999 (11)0.4970 (2)0.0540 (7)0.662 (3)
F4A0.1333 (5)0.92664 (13)0.4093 (3)0.0938 (13)0.662 (3)
B1B0.1633 (13)0.8772 (5)0.4399 (9)0.037 (2)0.338 (3)
H1B0.2599000.5819000.4131000.050*
F1B0.2530 (6)0.9024 (3)0.5528 (4)0.0615 (15)0.338 (3)
F2B0.2596 (6)0.8794 (4)0.3323 (4)0.0537 (15)0.338 (3)
F3B0.1320 (8)0.8129 (3)0.4697 (7)0.0718 (17)0.338 (3)
F4B0.0007 (6)0.9038 (2)0.4137 (3)0.0508 (13)0.338 (3)
O5B0.5838 (6)0.9583 (2)0.5161 (4)0.0446 (11)0.352 (2)
O5A0.1551 (12)0.9609 (5)0.4223 (9)0.036 (2)0.148 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0198 (6)0.0195 (6)0.0340 (6)0.0016 (4)0.0005 (5)0.0036 (5)
O30.0219 (6)0.0218 (6)0.0396 (7)0.0056 (5)0.0020 (5)0.0037 (5)
C140.0158 (7)0.0200 (7)0.0285 (8)0.0005 (6)0.0057 (6)0.0001 (6)
C130.0203 (8)0.0192 (7)0.0303 (8)0.0010 (6)0.0034 (6)0.0037 (6)
N20.0172 (6)0.0193 (6)0.0251 (7)0.0003 (5)0.0008 (5)0.0002 (5)
C100.0166 (7)0.0206 (7)0.0297 (8)0.0028 (6)0.0005 (6)0.0042 (6)
C90.0168 (7)0.0238 (8)0.0294 (8)0.0001 (6)0.0024 (6)0.0057 (6)
C80.0192 (7)0.0204 (8)0.0236 (7)0.0014 (6)0.0002 (6)0.0026 (6)
C50.0183 (7)0.0201 (7)0.0273 (8)0.0001 (6)0.0016 (6)0.0016 (6)
N10.0200 (7)0.0181 (6)0.0294 (7)0.0015 (5)0.0019 (5)0.0004 (5)
C120.0213 (8)0.0194 (8)0.0339 (9)0.0018 (6)0.0022 (6)0.0047 (7)
C70.0216 (8)0.0204 (8)0.0330 (9)0.0016 (6)0.0005 (6)0.0059 (7)
C10.0185 (7)0.0186 (7)0.0260 (8)0.0003 (6)0.0053 (6)0.0016 (6)
O10.0262 (6)0.0195 (6)0.0438 (7)0.0050 (5)0.0087 (5)0.0016 (5)
O20.0231 (6)0.0179 (6)0.0311 (6)0.0008 (4)0.0021 (5)0.0012 (5)
C110.0190 (8)0.0229 (8)0.0322 (8)0.0025 (6)0.0046 (6)0.0045 (7)
C60.0198 (8)0.0229 (8)0.0325 (9)0.0007 (6)0.0041 (6)0.0048 (7)
C20.0216 (8)0.0176 (7)0.0338 (9)0.0031 (6)0.0011 (6)0.0010 (6)
F1A0.0304 (11)0.099 (2)0.0589 (15)0.0085 (14)0.0125 (10)0.0396 (17)
C40.0267 (9)0.0260 (8)0.0291 (8)0.0052 (7)0.0044 (7)0.0081 (7)
F2A0.0353 (11)0.0829 (18)0.0405 (11)0.0104 (11)0.0127 (9)0.0096 (12)
C30.0265 (9)0.0294 (9)0.0294 (9)0.0051 (7)0.0054 (7)0.0055 (7)
B1A0.034 (2)0.0352 (19)0.032 (2)0.000 (2)0.007 (2)0.0040 (14)
F3A0.0532 (13)0.0619 (14)0.0449 (11)0.0261 (10)0.0073 (9)0.0120 (10)
F4A0.122 (3)0.0458 (15)0.103 (2)0.0258 (17)0.054 (2)0.0037 (14)
B1B0.028 (4)0.058 (5)0.026 (4)0.009 (5)0.011 (4)0.004 (3)
F1B0.049 (3)0.100 (4)0.034 (2)0.000 (2)0.0034 (17)0.020 (2)
F2B0.033 (2)0.103 (4)0.0269 (19)0.027 (3)0.0100 (15)0.006 (3)
F3B0.075 (4)0.059 (3)0.085 (4)0.002 (3)0.026 (3)0.021 (3)
F4B0.038 (2)0.091 (3)0.0237 (17)0.009 (2)0.0002 (14)0.0136 (18)
O5B0.050 (3)0.041 (2)0.041 (2)0.004 (2)0.0052 (19)0.0051 (19)
O5A0.040 (5)0.037 (5)0.030 (4)0.001 (4)0.000 (4)0.002 (4)
Geometric parameters (Å, º) top
O4—C141.287 (2)C12—H120.9500
O4—H1B1.4248C7—C61.376 (2)
O3—C141.2350 (19)C7—H70.9500
C14—C131.529 (2)C1—O21.2226 (19)
C13—N21.480 (2)C1—O11.2944 (19)
C13—H130.9900C1—C21.528 (2)
C13—H13A0.9900C11—H110.9500
N2—C101.349 (2)C6—H60.9500
N2—C111.353 (2)C2—H20.9900
C10—C91.384 (2)C2—H2A0.9900
C10—H100.9500F1A—B1A1.375 (5)
C9—C81.398 (2)C4—C31.381 (2)
C9—H90.9500C4—H40.9500
C8—C121.399 (2)F2A—B1A1.370 (5)
C8—C51.486 (2)C3—H30.9500
C5—C41.396 (2)B1A—F4A1.384 (5)
C5—C61.400 (2)B1A—F3A1.404 (6)
N1—C31.348 (2)B1B—F2B1.364 (9)
N1—C71.349 (2)B1B—F4B1.372 (12)
N1—C21.479 (2)B1B—F1B1.380 (10)
C12—C111.376 (2)B1B—F3B1.406 (11)
C14—O4—H1B109.7O2—C1—O1126.19 (15)
O3—C14—O4126.40 (15)O2—C1—C2121.66 (14)
O3—C14—C13116.20 (14)O1—C1—C2112.15 (13)
O4—C14—C13117.40 (14)N2—C11—C12120.56 (15)
N2—C13—C14113.73 (13)N2—C11—H11119.7
N2—C13—H13108.8C12—C11—H11119.7
C14—C13—H13108.8C7—C6—C5120.26 (15)
N2—C13—H13A108.8C7—C6—H6119.9
C14—C13—H13A108.8C5—C6—H6119.9
H13—C13—H13A107.7N1—C2—C1109.32 (13)
C10—N2—C11121.13 (14)N1—C2—H2109.8
C10—N2—C13120.19 (13)C1—C2—H2109.8
C11—N2—C13118.68 (13)N1—C2—H2A109.8
N2—C10—C9120.27 (15)C1—C2—H2A109.8
N2—C10—H10119.9H2—C2—H2A108.3
C9—C10—H10119.9C3—C4—C5119.62 (16)
C10—C9—C8119.83 (14)C3—C4—H4120.2
C10—C9—H9120.1C5—C4—H4120.2
C8—C9—H9120.1N1—C3—C4120.75 (16)
C9—C8—C12118.34 (15)N1—C3—H3119.6
C9—C8—C5121.34 (14)C4—C3—H3119.6
C12—C8—C5120.25 (14)F2A—B1A—F1A108.7 (4)
C4—C5—C6118.07 (15)F2A—B1A—F4A108.8 (4)
C4—C5—C8121.48 (15)F1A—B1A—F4A109.9 (4)
C6—C5—C8120.43 (15)F2A—B1A—F3A109.0 (3)
C3—N1—C7121.07 (14)F1A—B1A—F3A109.7 (4)
C3—N1—C2119.89 (14)F4A—B1A—F3A110.7 (4)
C7—N1—C2118.82 (14)F2B—B1B—F4B112.4 (7)
C11—C12—C8119.80 (15)F2B—B1B—F1B111.9 (7)
C11—C12—H12120.1F4B—B1B—F1B112.4 (7)
C8—C12—H12120.1F2B—B1B—F3B108.5 (8)
N1—C7—C6120.23 (15)F4B—B1B—F3B105.1 (7)
N1—C7—H7119.9F1B—B1B—F3B106.0 (8)
C6—C7—H7119.9
O3—C14—C13—N2168.93 (14)C2—N1—C7—C6174.36 (15)
O4—C14—C13—N211.5 (2)C10—N2—C11—C121.5 (2)
C14—C13—N2—C10107.12 (17)C13—N2—C11—C12178.25 (15)
C14—C13—N2—C1173.10 (19)C8—C12—C11—N20.8 (3)
C11—N2—C10—C92.0 (2)N1—C7—C6—C50.6 (3)
C13—N2—C10—C9177.78 (15)C4—C5—C6—C71.1 (2)
N2—C10—C9—C80.2 (2)C8—C5—C6—C7177.33 (15)
C10—C9—C8—C122.0 (2)C3—N1—C2—C184.48 (19)
C10—C9—C8—C5175.02 (15)C7—N1—C2—C190.16 (17)
C9—C8—C5—C430.3 (2)O2—C1—C2—N110.3 (2)
C12—C8—C5—C4152.72 (17)O1—C1—C2—N1169.22 (14)
C9—C8—C5—C6148.12 (17)C6—C5—C4—C30.9 (3)
C12—C8—C5—C628.9 (2)C8—C5—C4—C3177.53 (16)
C9—C8—C12—C112.5 (2)C7—N1—C3—C40.4 (3)
C5—C8—C12—C11174.60 (15)C2—N1—C3—C4174.09 (16)
C3—N1—C7—C60.2 (3)C5—C4—C3—N10.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.433.387 (2)161
C10—H10···O3ii0.952.613.126 (2)114
C10—H10···O1i0.952.513.362 (2)149
C12—H12···O2iii0.952.283.188 (2)159
C7—H7···O3iv0.952.343.208 (2)151
C2—H2···O3iv0.992.363.231 (2)146
C4—H4···O2v0.952.413.278 (2)151
O4—H1B···O2vi1.422.393.3044 (17)118.1
O1—H1B···O4vii1.051.422.4694 (18)172.0
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+3/2; (v) x1/2, y+3/2, z1/2; (vi) x3/2, y+3/2, z1/2; (vii) x9/2, y7/2, z7/2.
 

Acknowledgements

We would like to thank Dr Mitsutaro Umehara for help with the database survey.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (2001). Nature, 412, 397–400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFajardo, A. M. & Lewis, N. S. (1997). J. Phys. Chem. B, 101, 11136–11151.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutov, A. V., Rusanov, E. B., Yegorov, O. A. & Gernega, A. N. (2008). Zh. Org. Farm. Khim. 6, 46–48.  CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2007). Chem. Commun. pp. 2321–2329.  Web of Science CrossRef Google Scholar
First citationJouhara, A., Quarez, E., Dolhem, F., Armand, M., Dupré, N. & Poizot, P. (2019). Angew. Chem. Int. Ed. 58, 15680–15684.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry, Concepts and Perspectives. Weinheim, Germany: VCH.  Google Scholar
First citationLi, M. H., Lv, S. L., You, M. H. & Lin, M. J. (2020). Dalton Trans. 49, 13083–13089.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, J. J., Lu, Y. W. & Lu, W. B. (2020). Dyes and Pigments, 180, 108498.  Web of Science CSD CrossRef Google Scholar
First citationMa, Y., Bandeira, N. A. G., Robert, V. & Gao, E. Q. (2011). Chem. Eur. J. 17, 1988–1998.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, Y., Zhang, J. Y., Cheng, A. L., Sun, Q., Gao, E. Q. & Liu, C. M. (2009). Inorg. Chem. 48, 6142–6151.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadasamy, K., Velayutham, D., Suryanarayanan, V., Kathiresan, M. & Ho, K. C. (2019). J. Mater. Chem. C. 7, 4622–4637.  Web of Science CrossRef CAS Google Scholar
First citationNagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221–232.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, C., Wang, M. S., Zhang, X., Zhang, N. N., Cai, L. R. & Guo, G. C. (2017). CrystEngComm, 19, 4476–4479.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, J. K. & Zhang, J. (2015). Dalton Trans. 44, 19041–19055.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, G. Z. & Liu, J. J. (2021). RSC Adv. 11, 24500–24507.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds