research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­{N,N-di­ethyl-N′-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III)

crossmark logo

aDepartment of Chemistry, Northern Michigan University, Marquette, MI, 49855, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
*Correspondence e-mail: lroecker@nmu.edu, s.parkin@uky.edu

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 3 June 2024; accepted 6 June 2024; online 11 June 2024)

The synthesis, crystal structure, and a Hirshfeld surface analysis of tris­{N,N-diethyl-N′-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III) conducted at 180 K are presented. The complex consists of three N,N-diethyl-N′-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ato ligands, threefold sym­metric­ally bonded about the CoIII ion, in approximately octa­hedral coordination, which generates a triple of individually near planar metallacyclic (Co—S—C—N—C—O) rings. The overall geometry of the complex is determined by the mutual orientation of each metallacycle about the crystallographically imposed threefold axis [dihedral angles = 81.70 (2)°] and by the dihedral angles between the various planar groups within each asymmetric unit [metallacycle to benzene ring = 13.83 (7)°; benzene ring to nitro group = 17.494 (8)°]. The complexes stack in anti-parallel columns about the [\overline{3}] axis of the space group (P[\overline{3}]), generating solvent-accessible channels along [001]. These channels contain ill-defined, multiply disordered, partial-occupancy solvent. Atom–atom contacts in the crystal packing predominantly (∼96%) involve hydrogen, the most abundant types being H⋯H (36.6%), H⋯O (31.0%), H⋯C (19.2%), H⋯N (4.8%), and H⋯S (4.4%).

1. Chemical context

Thio­urea derivatives and their metal complexes have been of inter­est for the past two decades. Recent reviews have highlighted current trends in their chemistry (Zahra et al., 2022[Zahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). RSC Adv. 12, 12710-12745.]; Saeed et al., 2014[Saeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318-355.]) including medical and chemosensing applications (Khan et al., 2021[Khan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812-834.]). One older study evaluated the potential of N-benzoyl-N′-dialkyl derivatives and their CoIII complexes as anti­fungal agents (Wiequn et al., 2003[Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215-223.], 2005[Weiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314-1319.]). The synthesis of these later complexes are straightforward: mixing three equivalents of the ligand with CoCl2·6H2O in water and stirring for an hour results in deposition of the neutral, dark-green CoIII complexes. Making the analogous tris-coordinated complexes was not our original intention. In the course of preparing CoIII complexes coordinated by a single κ2−S,O ligand, the neutral tris product was invariably formed as a side product when reacting the labile CoIII starting material [(en)2Co(OSO2CF3)]CF3SO3 (Dixon et al., 1981[Dixon, N. E., Jackson, W. G., Lancaster, M. J., Lawrance, G. A. & Sargeson, A. M. (1981). Inorg. Chem. 20, 470-476.]) with one equivalent of ligand. This paper presents the synthesis and crystal structure of tris­{N,N-diethyl-N′-[(4-nitro­phen­yl)(oxo)meth­yl]carbamimido­thio­ato}cobalt(III), I.

2. Structural commentary

The mol­ecule of I consists of three N,N-diethyl-N′-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ato ligands, each bound to a single CoIII centre by their sulfur and carbonyl oxygen atoms. The complex has crystallographic threefold symmetry, with the CoIII atom (Fig. 1[link]) occupying Wyckoff position d (1/3, 2/3, z) in the space group of type P[\overline{3}]. The coordination geometry about Co1 is moderately distorted octa­hedral. Due to the threefold symmetry, all Co—S bonds are equivalent [dCo1—S1 = 2.2082 (5) Å], as are all Co—O bonds [dCo1—O1 = 1.9202 (11) Å]. The bond-valence sum for Co1 amounts to 3.20 v.u. (v.u. = valence units; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). Deviations from octa­hedral geometry are especially apparent in the bond angles subtended at Co1. All S1—Co1—S1 [88.35 (2)°] and O1—Co1—O1 [84.68 (5)°] type bond angles are acute, while equatorial bond angles of type S1—Co—O1 [91.87 (4), 95.09 (3)] are obtuse. The axial S1—Co—O1 bond angles are 176.56 (3)°. These are summarized in Table 1[link].

[Scheme 1]

Table 1
Selected geometric parameters (Å, °) for I

Distances   Angles  
Co1—S1sym 2.2082 (5) (S1—Co1—S1)sym 88.35 (2)
Co1—O1sym 1.9202 (11) (O1—Co1—O1)sym 84.68 (5)
    O1—Co1—S1 95.09 (3)
    O1—Co1—S1i 91.87 (4)
    O1—Co1—S1ii 176.56 (3)
Symmetry codes: (i) −y + 1, x − y + 1, z; (ii) −x + y, −x + 1, z; here ‘sym’ refers to all crystallographic equivalents about the threefold axis, i.e., (i), (ii), and x, y, z.
[Figure 1]
Figure 1
An ellipsoid plot (30% probability) of I. Unlabelled atoms correspond to symmetry codes: (i) −y + 1, x − y + 1, z; (ii) −x + y, −x + 1, z, as indicated by the superscripts on the O and S atoms of the symmetry-equivalent ligands.

Within the asymmetric unit, the metallacyclic (Co1–S1–C1–N1–C2–O1) ring is almost planar [mean plane r.m.s. deviation = 0.0300 Å, largest = 0.0614 (12) Å at N1]. The dihedral angle between this metallacycle and the benzene ring is 13.83 (7)°, while that of the nitro group relative to the benzene ring is 17.494 (8)°. The mean plane through atoms N2–C1–C9–C11 [r.m.s. deviation = 0.0141 Å, largest = 0.0244 (14) Å at N2] forms a dihedral with the metallacycle mean plane of 6.21 (11)°. Lastly, the torsion angles of the two ethyl groups (C1—N2—C9—C10 and C1—N2—C11—C12) are the same at 90.7 (2)°. The overall geometry of the complex is then determined by the dihedral angles between the metallacycles in each asymmetric unit about the crystallographic threefold axis, which are all symmetrically equivalent at 81.70 (2)°.

3. Supra­molecular features

There are no conventional hydrogen bonds in the in the crystal structure of I. There are, however, three weak hydrogen-bond-type inter­actions with C—H donors and S or O acceptors (Table 2[link]). Of these, only the C9—H9B⋯O3iv [dD⋯A = 3.213 (2) Å] and C7—H7A⋯S1iii [dD⋯A = 3.8362 (19) Å] (symmetry codes as per Table 2[link]) contacts are inter­molecular. The former (and their [\overline{3}]-symmetric equivalents) link groups of six mol­ecules into puckered ring assemblies about the c-axis, which create and confine the solvent-accessible channels that extend along [001] (Fig. 2[link]). Attempts to create an unambiguous model for the solvent within these channels were unsatis­factory (see section 6, below). Individual mol­ecules loosely stack into columns that propagate parallel to [001] via the C7—H7A⋯S1iii (and their symmetry equivalent) inter­actions (Fig. 3[link]). Adjacent columns are anti­parallel (i.e., along [001] and [00[\overline{1}]]). Two-dimensional fingerprint plots from a Hirshfeld surface analysis conducted using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) show that almost all inter­molecular contacts (∼96% of the total) involve hydrogen. These are shown in Fig. 4[link], separated into H⋯H (36.6%), H⋯O (31.0%), H⋯C (19.2%), H⋯N (4.8%), and H⋯S (4.4%), including reciprocal contacts. All other types, i.e. those not involving hydrogen, have negligible coverage.

Table 2
Close contacts (Å, °) for I

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S1 0.98 3.03 3.510 (2) 111.6
C7—H7A⋯S1iii 0.95 2.91 3.8362 (19) 166.4
C9—H9B⋯O3iv 0.99 2.53 3.213 (2) 126.3
Symmetry codes: (iii) −y + 1, x − y + 1, z + 1; (iv) x − y, x, −z + 2.
[Figure 2]
Figure 2
A packing plot of I viewed down [001], showing the extended channels running through the crystal along the c-axis direction.
[Figure 3]
Figure 3
A partial packing plot of I viewed approximately along [110] showing a column of mol­ecules extending parallel to [001].
[Figure 4]
Figure 4
Two-dimensional fingerprint plots from a Hirshfeld surface analysis of I showing: (a) all contacts; (b) H⋯H (36.6%); (c) H⋯O/O⋯H (31.0%); (d) H⋯C/C⋯H (19.2%); (e) H⋯N/N⋯H (4.8%); (f) H⋯S/S⋯H (4.4%).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a search fragment consisting of just the organic ligand, returned two hits: ZIMNOA (Saeed et al., 2013[Saeed, S., Rashid, N., Azad Malik, M., O'Brien, P. & Wong, W. T. (2013). J. Coord. Chem. 66, 2788-2801.]), a square-planar NiII complex that contains two of the ligands and NOJWIV (Kuchar et al., 2019[Kuchar, J., Rust, J., Lehmann, C. W. & Mohr, F. (2019). New J. Chem. 43, 10750-10754.]), a gold complex that has little else in common with I. A modified search with the NO2 group replaced by ‘any atom’ gave 75 matches. A combined search using this same fragment, but restricted to only trigonal or hexa­gonal crystal systems resulted in four matches: DOVDOK (Barnard & Koch, 2019[Barnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019.]), YUFBIK (Bensch & Schuster, 1995[Bensch, W. & Schuster, M. (1995). Z. Kristallogr. 210, 68-68.]), YIVROM (Mandal & Ray, 2014[Mandal, H. & Ray, D. (2014). Inorg. Chim. Acta, 414, 127-133.]), and VEMKIH (Sieler et al., 1990[Sieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167-174.]). These four structures are isotypic to I, and share the same space-group symmetry (P[\overline{3}]). The most similar to I are entries DOVDOK and YUFBIK; each have cobalt as the metal centre, with –OMe and –H, respectively, in place of NO2. Structures YIVROM and VEMKIH contain iron and ruthenium, respectively, and similar to YUFBIK, have H at the 4-position of the benzene ring. Structures DOVDOK and YIVROM include water in the channels along [001].

5. Synthesis and crystallization

Cis-(en)2Co(OSO2CF3)]CF3SO3 (0.993 g, 1.57 mmol) and N,N-diethyl-N′-[(4-nitro­benzene)(oxo)meth­yl]carbamimido­thio­ate (Weiqun et al., 2003[Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215-223.]) (0.524 g, 1.93 mmol) were added to 10 g of sulfolane, stoppered and stirred at room temperature (4 days) resulting in a dark-green solution. Extraction with one 100 mL portion of diethyl ether followed by two 100 mL portions of chloro­form resulted in the formation of a maroon precipitate and dark-green solution. Evaporation of the diethyl ether/chloro­form mixture resulted in deposition of dark-green crystals of the title complex (0.129 g, 9%).

6. Data collection, structure solution and refinement

On standard cold-N2 gas stream cooling below about 100 K, all crystals of I could be indexed as primitive monoclinic, giving cell dimensions of approximately a = 16.6, b = 9.1, c = 44.1 Å, β = 100.6°, but many reflections were split and/or streaked, the severity of which varied from crystal to crystal. At room temperature, however, the symmetry was clearly trigonal or hexa­gonal, with sharp diffraction maxima. Attempts to ‘lock in’ the room-temperature structure by rapid cooling in liquid N2 and mounting using cryotongs (Parkin & Hope, 1998[Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945-953.]) were unsuccessful. One such crystal, however, was monitored on slow warming at about 10° per minute. By 180 K, all splitting/streaking had disappeared. This crystal was used for data collection; details are given in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Co(C12H14N3O3S)3]
Mr 899.89
Crystal system, space group Trigonal, P[\overline{3}]
Temperature (K) 180
a, c (Å) 16.6906 (3), 9.1346 (2)
V3) 2203.76 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.89
Crystal size (mm) 0.12 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker X8 Proteum diffractometer
Absorption correction Multi-scan [SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]), XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])]
Tmin, Tmax 0.580, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 30546, 2682, 2571
Rint 0.038
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.08
No. of reflections 2682
No. of parameters 179
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.25
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structure solution (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refinement (SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were straightforward aside from the presence of severely disordered electron density in the channels running along [001]. Modelling of this diffuse electron density as fractional-occupancy chloro­form was less than satisfactory, perhaps because the presence of other species (e.g. water) could not be ruled out [water was modelled in the channels of DOVDOK and YIVROM (see section 4, above)]. For this reason, the SQUEEZE routine (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to factor out the solvent contribution, which amounted to ∼12.5 electrons per asymmetric unit.

All H atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp2—H), 0.98 Å (R—CH3) and 0.99 Å (R2—CH2). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (R—CH3 only) of the attached atom.

Supporting information


Computing details top

Tris{N,N-diethyl-N'-[(4-nitrophenyl)(oxo)methyl]carbamimidothioato}cobalt(III) top
Crystal data top
[Co(C12H14N3O3S)3]Dx = 1.356 Mg m3
Mr = 899.89Cu Kα radiation, λ = 1.54178 Å
Trigonal, P3Cell parameters from 9548 reflections
a = 16.6906 (3) Åθ = 3.1–68.1°
c = 9.1346 (2) ŵ = 4.89 mm1
V = 2203.76 (9) Å3T = 180 K
Z = 2Shard, dark green
F(000) = 9360.12 × 0.11 × 0.04 mm
Data collection top
Bruker X8 Proteum
diffractometer
2682 independent reflections
Radiation source: fine-focus rotating anode2571 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.038
φ and ω scansθmax = 68.1°, θmin = 3.1°
Absorption correction: multi-scan
[SADABS (Krause et al., 2015), XABS2 (Parkin et al., 1995)]
h = 2014
Tmin = 0.580, Tmax = 0.753k = 2020
30546 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.5678P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2682 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00080 (18)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

The crystals underwent a reversible phase transition to a triply twinned incommensurately modulated phase when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -93° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using PLATO (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.3333330.6666670.48360 (4)0.03514 (14)
S10.21178 (3)0.58999 (3)0.34007 (5)0.04670 (15)
O10.30064 (7)0.56544 (7)0.61574 (12)0.0381 (3)
N10.14855 (9)0.45396 (10)0.55380 (14)0.0397 (3)
N20.06185 (9)0.42651 (11)0.35035 (14)0.0446 (3)
N30.20338 (13)0.32053 (16)1.18453 (19)0.0637 (5)
O20.16284 (15)0.23576 (15)1.18709 (19)0.0855 (5)
O30.24204 (13)0.36914 (15)1.28994 (17)0.0922 (6)
C10.13955 (11)0.48454 (12)0.42182 (16)0.0385 (4)
C20.22264 (10)0.49475 (11)0.63716 (16)0.0337 (3)
C30.21352 (11)0.44836 (11)0.78216 (16)0.0355 (3)
C40.14649 (12)0.35663 (13)0.80514 (18)0.0442 (4)
H4A0.1029650.3231220.7302240.053*
C50.14277 (13)0.31379 (14)0.9367 (2)0.0506 (4)
H5A0.0986570.2503730.9519410.061*
C60.20480 (13)0.36553 (15)1.04516 (18)0.0475 (4)
C70.26939 (13)0.45713 (14)1.02840 (19)0.0501 (4)
H7A0.3094950.4914871.1065390.060*
C80.27465 (12)0.49831 (13)0.89451 (18)0.0437 (4)
H8A0.3203510.5611900.8791340.052*
C90.00988 (12)0.34040 (15)0.4202 (2)0.0567 (5)
H9A0.0714220.3258730.3830100.068*
H9B0.0090340.3502940.5271810.068*
C100.00396 (16)0.25957 (16)0.3914 (3)0.0696 (6)
H10A0.0462910.2039540.4370660.104*
H10B0.0633080.2721390.4328400.104*
H10C0.0039090.2498660.2856170.104*
C110.03874 (12)0.44629 (14)0.20525 (18)0.0477 (4)
H11A0.0025150.3875630.1509220.057*
H11B0.0964990.4853340.1500520.057*
C120.01665 (15)0.49554 (18)0.2149 (2)0.0637 (6)
H12A0.0334710.5048560.1161350.096*
H12B0.0206650.5556580.2626760.096*
H12C0.0729660.4579320.2720890.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03772 (18)0.03772 (18)0.0300 (2)0.01886 (9)0.0000.000
S10.0477 (2)0.0531 (3)0.0353 (2)0.0221 (2)0.00973 (17)0.00513 (17)
O10.0392 (6)0.0374 (6)0.0367 (6)0.0184 (5)0.0083 (4)0.0005 (4)
N10.0343 (7)0.0538 (8)0.0258 (6)0.0180 (6)0.0017 (5)0.0002 (6)
N20.0341 (7)0.0661 (9)0.0272 (7)0.0203 (7)0.0042 (5)0.0021 (6)
N30.0647 (11)0.0996 (15)0.0439 (10)0.0539 (11)0.0078 (8)0.023 (1)
O20.1145 (15)0.1025 (14)0.0634 (10)0.0722 (12)0.018 (1)0.0327 (10)
O30.0829 (12)0.1351 (17)0.0430 (9)0.0427 (11)0.0153 (8)0.0233 (10)
C10.0334 (8)0.0541 (9)0.0284 (8)0.0220 (7)0.0003 (6)0.0029 (6)
C20.0372 (8)0.0409 (8)0.0282 (7)0.0233 (7)0.0021 (6)0.0047 (6)
C30.0381 (8)0.0475 (9)0.0274 (7)0.0262 (7)0.0014 (6)0.0024 (6)
C40.0418 (9)0.0528 (10)0.0331 (8)0.0201 (8)0.0019 (7)0.0004 (7)
C50.0493 (10)0.0576 (11)0.0435 (10)0.0256 (9)0.0060 (8)0.0114 (8)
C60.0507 (10)0.0752 (13)0.0309 (8)0.0421 (10)0.0030 (7)0.0095 (8)
C70.0539 (10)0.0723 (13)0.0316 (9)0.0372 (10)0.0099 (7)0.0056 (8)
C80.0472 (9)0.0519 (10)0.0354 (9)0.0273 (8)0.0082 (7)0.0050 (7)
C90.0336 (9)0.0778 (14)0.0365 (9)0.0112 (9)0.0016 (7)0.0002 (8)
C100.0578 (12)0.0661 (14)0.0576 (13)0.0105 (10)0.0003 (10)0.0028 (10)
C110.0418 (9)0.0761 (12)0.0287 (8)0.0321 (9)0.0069 (7)0.0065 (8)
C120.0608 (12)0.1016 (17)0.0469 (11)0.0541 (13)0.0111 (9)0.0114 (11)
Geometric parameters (Å, º) top
Co1—O1i1.9202 (11)C4—H4A0.9500
Co1—O1ii1.9202 (11)C5—C61.380 (3)
Co1—O11.9202 (11)C5—H5A0.9500
Co1—S12.2082 (5)C6—C71.369 (3)
Co1—S1i2.2082 (5)C7—C81.384 (2)
Co1—S1ii2.2082 (5)C7—H7A0.9500
S1—C11.7284 (17)C8—H8A0.9500
O1—C21.2606 (19)C9—C101.501 (3)
N1—C21.316 (2)C9—H9A0.9900
N1—C11.347 (2)C9—H9B0.9900
N2—C11.338 (2)C10—H10A0.9800
N2—C111.464 (2)C10—H10B0.9800
N2—C91.478 (2)C10—H10C0.9800
N3—O31.216 (3)C11—C121.516 (3)
N3—O21.226 (3)C11—H11A0.9900
N3—C61.472 (2)C11—H11B0.9900
C2—C31.503 (2)C12—H12A0.9800
C3—C41.388 (2)C12—H12B0.9800
C3—C81.392 (2)C12—H12C0.9800
C4—C51.384 (2)
O1i—Co1—O1ii84.68 (5)C5—C4—H4A119.9
O1i—Co1—O184.68 (5)C3—C4—H4A119.9
O1ii—Co1—O184.68 (5)C6—C5—C4118.31 (18)
O1i—Co1—S191.87 (4)C6—C5—H5A120.8
O1ii—Co1—S1176.56 (3)C4—C5—H5A120.8
O1—Co1—S195.09 (3)C7—C6—C5122.94 (16)
O1i—Co1—S1i95.09 (3)C7—C6—N3117.99 (18)
O1ii—Co1—S1i91.87 (4)C5—C6—N3119.06 (19)
O1—Co1—S1i176.56 (4)C6—C7—C8118.19 (17)
S1—Co1—S1i88.35 (2)C6—C7—H7A120.9
O1i—Co1—S1ii176.56 (3)C8—C7—H7A120.9
O1ii—Co1—S1ii95.09 (3)C7—C8—C3120.56 (17)
O1—Co1—S1ii91.87 (4)C7—C8—H8A119.7
S1—Co1—S1ii88.35 (2)C3—C8—H8A119.7
S1i—Co1—S1ii88.35 (2)N2—C9—C10112.60 (16)
C1—S1—Co1ii107.73 (5)N2—C9—H9A109.1
C1—S1—Co1107.73 (5)C10—C9—H9A109.1
C1—S1—Co1i107.73 (5)N2—C9—H9B109.1
C2—O1—Co1ii128.85 (10)C10—C9—H9B109.1
C2—O1—Co1i128.85 (10)H9A—C9—H9B107.8
C2—O1—Co1128.85 (10)C9—C10—H10A109.5
C2—N1—C1125.19 (14)C9—C10—H10B109.5
C1—N2—C11123.23 (15)H10A—C10—H10B109.5
C1—N2—C9120.92 (14)C9—C10—H10C109.5
C11—N2—C9115.69 (14)H10A—C10—H10C109.5
O3—N3—O2123.89 (19)H10B—C10—H10C109.5
O3—N3—C6118.5 (2)N2—C11—C12111.76 (15)
O2—N3—C6117.7 (2)N2—C11—H11A109.3
N2—C1—N1114.46 (15)C12—C11—H11A109.3
N2—C1—S1117.16 (12)N2—C11—H11B109.3
N1—C1—S1128.28 (12)C12—C11—H11B109.3
O1—C2—N1131.15 (14)H11A—C11—H11B107.9
O1—C2—C3114.22 (13)C11—C12—H12A109.5
N1—C2—C3114.62 (14)C11—C12—H12B109.5
C4—C3—C8119.62 (15)H12A—C12—H12B109.5
C4—C3—C2121.31 (14)C11—C12—H12C109.5
C8—C3—C2119.07 (15)H12A—C12—H12C109.5
C5—C4—C3120.29 (16)H12B—C12—H12C109.5
C11—N2—C1—N1179.82 (15)N1—C2—C3—C419.9 (2)
C9—N2—C1—N14.9 (2)O1—C2—C3—C819.8 (2)
C11—N2—C1—S13.5 (2)N1—C2—C3—C8161.13 (15)
C9—N2—C1—S1171.79 (14)C8—C3—C4—C52.7 (3)
C2—N1—C1—N2173.13 (15)C2—C3—C4—C5176.26 (15)
C2—N1—C1—S110.6 (2)C3—C4—C5—C62.5 (3)
Co1ii—S1—C1—N2178.97 (11)C4—C5—C6—C70.2 (3)
Co1—S1—C1—N2178.97 (11)C4—C5—C6—N3178.52 (16)
Co1i—S1—C1—N2178.97 (11)O3—N3—C6—C717.8 (3)
Co1ii—S1—C1—N14.85 (17)O2—N3—C6—C7162.28 (18)
Co1—S1—C1—N14.85 (17)O3—N3—C6—C5163.37 (19)
Co1i—S1—C1—N14.85 (17)O2—N3—C6—C516.5 (3)
Co1ii—O1—C2—N122.6 (2)C5—C6—C7—C82.5 (3)
Co1i—O1—C2—N122.6 (2)N3—C6—C7—C8176.20 (16)
Co1—O1—C2—N122.6 (2)C6—C7—C8—C32.2 (3)
Co1ii—O1—C2—C3158.52 (10)C4—C3—C8—C70.3 (3)
Co1i—O1—C2—C3158.52 (10)C2—C3—C8—C7178.67 (15)
Co1—O1—C2—C3158.52 (10)C1—N2—C9—C1090.7 (2)
C1—N1—C2—O13.4 (3)C11—N2—C9—C1093.7 (2)
C1—N1—C2—C3177.75 (14)C1—N2—C11—C1290.7 (2)
O1—C2—C3—C4159.17 (15)C9—N2—C11—C1284.8 (2)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.983.033.510 (2)112
C7—H7A···S1iii0.952.913.8362 (19)166
C9—H9B···O3iv0.992.533.213 (2)126
Symmetry codes: (iii) y+1, xy+1, z+1; (iv) xy, x, z+2.
Selected geometric parameters (Å, °) for I top
DistancesAngles
Co1—S1sym2.2082 (5)(S1—Co1—S1)sym88.35 (2)
Co1—O1sym1.9202 (11)(O1—Co1—O1)sym84.68 (5)
O1—Co1—S195.09 (3)
O1—Co1—S1i91.87 (4)
O1—Co1—S1ii176.56 (3)
Symmetry codes: (i) -y + 1, x - y + 1, z; (ii) -x + y, -x + 1, z; here `sym' refers to all crystallographic equivalents about the threefold axis, i.e., (i), (ii), and x, y, z.
Close contacts (Å, °) for I top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S10.983.033.510 (2)111.6
C7—H7A···S1iii0.952.913.8362 (19)166.4
C9—H9B···O3iv0.992.533.213 (2)126.3
Symmetry codes: (iii) -y + 1, x - y + 1, z + 1; (iv) x - y, x, -z + 2.
 

Funding information

The X8 Proteum diffractometer was funded by the NSF (MRI CHE0319176, 70%), and by the University of Kentucky (cost share, 30%).

References

First citationBarnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019.  Web of Science CSD CrossRef Google Scholar
First citationBensch, W. & Schuster, M. (1995). Z. Kristallogr. 210, 68–68.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDixon, N. E., Jackson, W. G., Lancaster, M. J., Lawrance, G. A. & Sargeson, A. M. (1981). Inorg. Chem. 20, 470–476.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812–834.  Web of Science CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuchar, J., Rust, J., Lehmann, C. W. & Mohr, F. (2019). New J. Chem. 43, 10750–10754.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, H. & Ray, D. (2014). Inorg. Chim. Acta, 414, 127–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationParkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945–953.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318–355.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Azad Malik, M., O'Brien, P. & Wong, W. T. (2013). J. Coord. Chem. 66, 2788–2801.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167–174.  CSD CrossRef CAS Web of Science Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215–223.  Web of Science CSD CrossRef Google Scholar
First citationWeiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314–1319.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). RSC Adv. 12, 12710–12745.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds