research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­chloro­thallate within a caesium chloride–phospho­tungstate lattice Cs9(TlCl6)(PW12O40)2·9CsCl

crossmark logo

aPhysical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
*Correspondence e-mail: colliard1@llnl.gov

Edited by Y. Ozawa, University of Hyogo, Japan (Received 16 April 2024; accepted 10 June 2024; online 14 June 2024)

Crystal formation of caesium thallium chloride phospho­tungstates, Cs9(TlCl6)(PW12O40)2·9CsCl showcases the ability to capture and crystallize octa­hedral complexes via the use of polyoxometalates (POMs). The large number of caesium chlorides allows for the POM [α-PW12O40]3− to arrange itself in a cubic close-packing lattice extended framework, in which the voids created enable the capture of the [TlCl6]3− complex.

1. Chemical context

The Keggin ion, [α-XW12O40]n (X = B, Si, P, Ga, Ge, etc.), along with many other polyoxometalates (POMs), are renowned for their ability to lose [WOx] moieties, yielding lacunary POMs (Pope, 1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates, 1st ed., p. 33. Berlin, Heidelberg: Springer-Verlag.]). These lacunary derivatives of the Keggin, [XW11O39]n, [XW10O36]n, and [XW9O34]n, have been extensively studied as chelators for metal ions, in which they directly bind to cations, for example trivalent lanthanides and actinides (Wang et al., 2024[Wang, M., Pang, J., Wang, J. & Niu, J. (2024). Coord. Chem. Rev. 508, 215730-215757.]). Recently, crystallization of microgram qu­anti­ties of the radioactive element curium (Cm3+) with [XW11O39]n, showcased the utility of the POM chelators (Colliard et al., 2022[Colliard, I., Lee, J. R. I., Colla, C. A., Mason, H. E., Sawvel, A. M., Zavarin, M., Nyman, M. & Deblonde, G. J.-P. (2022). Nat. Chem. 14, 1357-1366.]). However, not all metal ions have been able to coordinate to lacunary Keggin deriv­atives. In particular, some metals form highly stable complexes with smaller ions, like chlorides, impeding their potential inter­actions with POM chelators. As such, a new method to capture metal ions has been developed where the metal of choice can be captured in the lattice arrangement of the parent Keggin ion, [α-XW12O40]n, instead of direct inter­action with lacunary Keggin ion ([XW11O39]n). This allows for the POM-induced crystallization of the halide metal complex.

2. Structural commentary

This new crystal that incorporates thallium(III) into a caesium chloride and phospho­tungstates lattice is fully formulated as Cs9(TlCl6)(PW12O40)2·9CsCl and crystallizes in the cubic space group Fm[\overline{3}]m with a volume of 12,166.8 (4) Å3, Fig. 1[link]. The crystal features the parent Keggin structure, [α-PW12O40]3−, which arises from the successive hydrolysis and condensation reactions of [WO4]2− in the presence of [PO4]3− ions as the pH is lowered (ca lower than 7). Briefly, twelve octa­hedral [WO6] units can be grouped into four trimer sets [W3O13]8−. Each trimer is linked by the central phosphate anion and then to each other, keeping the overall tetra­hedral symmetry of the central [PO4]3−. The W—O bond lengths are all consistent with reported values for other POMs (Pope, 1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates, 1st ed., p. 33. Berlin, Heidelberg: Springer-Verlag.]): W—OPO3 of 2.347 (8) Å, W—O in the range 1.918 (2)–1.942 (4) Å and W=O of 1.713 (10) Å. The asymmetric unit that describes the Keggin ion is thus represented by the tungsten (W1), oxygen (O1, O2, O3, and O4), and phospho­rous (P1) atoms. The tetra­hedral symmetry of the Keggin ion thus arises from the tetra­hedral symmetry of the central phosphate ion (atoms P1/O1–O4). Atom P1 is on the Wyckoff site 8c, corresponding to [\overline{4}]m3 symmetry, which then extends to O4 with a Wyckoff site of 32f with a symmetry of ·3m. The remaining atoms W1, O1, O2, and O3 thus arrange themselves with the same tetra­hedral symmetry, however, now with a Wyckoff site symmetry of ··m. The structure further features the sixfold coordinate Tl3+ ion, making a [TlCl6]3− complex. The arrangement of the complex within the structure is discussed in the next section. Nevertheless, the asymmetric unit that describes the thallium complex is comprised of Tl1 and Cl1 and Wyckoff site symmetries of 4a and 24e, respectively. The symmetry around Tl1 i.e. Wyckoff site 4a is m[\overline{3}]m, with Cl1 having 4mm symmetry. This results in an octa­hedral complex with six chlorides bound to Tl3+. However, the [TlCl6]3− ion features slightly longer bond lengths between Tl and Cl of 2.613 (12) Å compared to 2.423 Å in KTlCl4 (ICSD 1527421; Glaser, 1980[Glaser, J. (1980). Acta Chem. Scand. 34a, 75-76.]). What is unusual about the structure is the large excess of CsCl crystallizing – nine CsCl per [TlCl6]3− complex. The asymmetric unit only consists of two unique Cs atoms, Cs1 and Cs2 with Wyckoff sites of 48h and 24e, respectively. These caesium atoms can then thus be thought to coordinate to the other chlorides as well, Cl2, and Cl3. Nevertheless, the excess CsCl becomes significantly important when considering the relative arrangement of the two [PW12O40]3− and the [TlCl6]3− complex, Fig. 2[link]. All caesium counter-ions are nine-coordinated with Cs—O distances ranging 3.179 (10)–3.221 (7) Å and Cs—Cl ranging from 3.2081 (18)–4.139 (12) Å.

[Figure 1]
Figure 1
[Polyhedral representation of the Keggin ion, [α-PW12O40]3− (left), and [TlCl6]3− (right). W in maroon, O in red, P in blue, Cl in green and Tl in brown, with excess CsCl omitted for clarity]
[Figure 2]
Figure 2
Ball-and-stick representation of [α-PW12O40]3− and [TlCl6]3−, showcasing the connectivity with the excess CsCl. W in maroon, O in red, P in blue, Cl in green and Tl in brown.

3. Supra­molecular features

The supra­molecular assembly of the crystal is particularly inter­esting and departs from the typical structures observed with the Keggin ion. The [PW12O40]3− anion herein behaves like a super-atom. Super-atoms are nano-sized structures that mimic atomic behavior, in particular in the lattice formations (Colliard et al., 2020[Colliard, I., Morrison, G., Loye, H. Z. & Nyman, M. (2020). J. Am. Chem. Soc. 142, 9039-9047.]). In this structure, the [PW12O40]3− anion can be thought to arrange itself in a cubic close packing within the unit cell. The Wyckoff letter of P1 (8c) and the single phospho­rous per Keggin reveals there are eight Keggin ions per unit cell, which is consistent with the face-centered cubic space group Fm[\overline{3}]m. Caesium counter-ions link all the [PW12O40]3− anions together, forming an extended framework. As a result of this close cubic packing, the octa­hedral [TlCl6]3− ions can fill in the octa­hedral voids left by the cubic close packing of the Keggin ions. Since the synthesis conditions were limited to a 1:2 ratio of Tl3+ to [PW12O40]3−, the [TlCl6]3− only fills half of the octa­hedral voids, Fig. 3[link].

[Figure 3]
Figure 3
Ball-and-stick representation of the unit cell viewed along (111) showing the cubic close packing of [α-PW12O40]3− by additionally overlapping the blue spheres to see the ABC layers. The [TlCl6]3− ion thus fills half the octa­hedral voids. W in maroon, O in red, P in blue, Cl in green and Tl in brown.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD, accessed in April 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was performed for closely related thallium caesium phospho­tungstates. First, in a unit-cell search [a = b = c = 22.9999 (4) Å, and α = β = γ = 90°, with tolerance of 2% each], with face centering, 29 results were found, none of which contained any tungstates or thallium. With a primitive centering, 95 results were found, again none of which contained any tungstates or thallium. Therefore, a second search was conducted based on the general formula TlPW12O40 with the option to allow other elements in the mol­ecule and no results were obtained. As such, the search was expanded to another formula search for any structures with W, O, and Tl, none of which consisted of phospho­tungstates and/or thallium compounds. Only one compound containing K, W, O, and Tl was found, but this additionally contains uranium and is not comprised of the Keggin structure (Balboni & Burns, 2014[Balboni, E. & Burns, P. (2014). J. Solid State Chem. 213, 1-8.]).

5. Synthesis and crystallization

All materials herein were purchased and used as is, with no need for further purification: NaCl (≥99.9%), NaCH3COO (≥99.9%), caesium chloride (>99.99%), Na2WO4·2H2O (≥99%), phospho­ric acid, and thallium trichloride (>99.9%) were purchased from chemical providers (VWR and Millipore Sigma) and used as received. All solutions were prepared using deionized water purified by reverse osmosis cartridge system (>= 18.2 MΩ.cm). All experiments were performed in a temperature-controlled room (22°C). Na9PW9O34·7H2O was prepared by dissolving 12 g of Na2WO4·2H2O in 15 mL of H2O. 0.4 mL of 85% H3PO4 was added dropwise. Afterwards the pH was adjusted to 7–7.5 with glacial acetic acid (2.25 mL). During the addition, a white solid formed immediately. The solid-solution slurry was left to stir for an hour, after which the solid was filtered under vacuum. [PW9O34]9− converts to [PW11O39]7− instantaneously at pH 5.5 (Contant et al., 1990[Contant, R., Klemperer, W. G. & Yaghi, O. (1990). Inorganic Syntheses Vol 27 edited by A. P. Ginsberg, pp. 104-111. New York: John Wiley & Sons Inc..]). A thallium(III) nitrate solution was prepared by dissolving the corresponding Tl(NO3)3 in 0.1 M HCl. After this, the Tl3+ solution was added to a 1 mL 200 µM Na9PW9O34·7H2O solution in 0.1 M acetate buffer at pH 5.5 at a 1:2 stoichi­ometry. For crystallization, 6 M CsCl was titrated in 5–50 µL to 1:2 stochiometric solutions (10 to 100 µL, at pH 5.5, 100 mM acetate buffer) with a final pH of 5.5 during crystallization. After 1–5 days at ambient conditions, several cube-shaped single crystals of PW12-TlCsCl were visible to the naked eye. XRD-quality crystals were then mounted and characterized, while the rest were characterized through Raman microscopy. Raman spectra were collected using a Senterra II confocal Raman microscope (Bruker), equipped with high resolution gratings (1200 lines mm−1) and a 532 nm laser source (operated at 15 mW), and a TE-cooled CCD detector. Reported spectra are the average of at least 2–5 different spots per sample, each spot analysis consisting of 2 binned 16 scans. The integration time was set to 2000 ms per scan. No damage to the sample was observed due to the laser irradiation. Infrared spectra were collected using a Cary 630 FTIR instrument (Agilent Technologies) equipped with an attenuated total reflectance (diamond ATR) cell. Selected Raman data (cm−1): ν(W=Ot) 961, and ν(O—W—O) 246, 156, and 91; selected IR data (cm−1): 1157, 1118, 922, and 782 (Fig. 4[link]).

[Figure 4]
Figure 4
Solid-state Raman and IR (inset) spectra for Cs9(TlCl6)(PW12O40)2·9CsCl with H3PW12O40 as a comparison.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All atoms were refined anisotropically. The only issue resulting from the high Z for tungsten and Cs was that high residual Q-peaks of 10% of Z A−3 remained (Massa & Gould, 2004[Massa, W. & Gould, R. O. (2004). Crystal Structure Determination, 2nd ed., p. 123. Berlin, Heidelberg: Springer-Verlag.]); the highest residual Q-peak at 3.9 located at (½, ½, ½) could not reasonably be assigned to any of the elements already present (or those present during synthesis).

Table 1
Experimental details

Crystal data
Chemical formula Cs9(TlCl6)(PW12O40)2·9CsCl
Mr 17765.68
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 298
a (Å) 22.9963 (3)
V3) 12161.1 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 29.66
Crystal size (mm) 0.10 × 0.09 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom DW system, Pilatus 300K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.702, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6187, 977, 923
Rint 0.026
(sin θ/λ)max−1) 0.747
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.20
No. of reflections 977
No. of parameters 47
Δρmax, Δρmin (e Å−3) 3.92, −4.62
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Caesium thallium chloride phosphotungstate top
Crystal data top
Cs9(TlCl6)(PW12O40)2·9CsClMo Kα radiation, λ = 0.71073 Å
Mr = 17765.68Cell parameters from 3426 reflections
Cubic, Fm3mθ = 3.8–31.4°
a = 22.9963 (3) ŵ = 29.66 mm1
V = 12161.1 (4) Å3T = 298 K
Z = 2Cube, clear colourless
F(000) = 150880.10 × 0.09 × 0.07 mm
Dx = 4.852 Mg m3
Data collection top
Rigaku Oxford Diffraction, Synergy Custom DW system, Pilatus 300K
diffractometer
923 reflections with I > 2σ(I)
Detector resolution: 5.8140 pixels mm-1Rint = 0.026
ω scansθmax = 32.1°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1933
Tmin = 0.702, Tmax = 1.000k = 1831
6187 measured reflectionsl = 3033
977 independent reflections
Refinement top
Refinement on F247 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0429P)2 + 1815.4844P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.20Δρmax = 3.92 e Å3
977 reflectionsΔρmin = 4.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.35861 (2)0.64139 (2)0.74467 (2)0.01874 (18)
Tl10.5000000.5000001.0000000.0431 (8)
Cs10.34865 (6)0.5000000.84865 (6)0.0432 (4)
Cs20.5000000.5000000.70636 (17)0.0628 (8)
P10.2500000.7500000.7500000.0151 (19)
Cl20.2500000.5000000.7500000.049 (2)
Cl10.5000000.5000000.8864 (5)0.057 (3)
O20.3797 (4)0.7015 (3)0.7985 (3)0.0178 (16)
O30.3161 (3)0.6010 (4)0.6839 (3)0.0213 (18)
O10.4101 (3)0.5899 (3)0.7606 (4)0.028 (2)
O40.2910 (3)0.7090 (3)0.7090 (3)0.013 (3)
Cl30.3672 (9)0.5000000.6328 (9)0.061 (9)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0172 (2)0.0172 (2)0.0219 (3)0.00357 (17)0.00094 (12)0.00094 (12)
Tl10.0431 (8)0.0431 (8)0.0431 (8)0.0000.0000.000
Cs10.0501 (6)0.0295 (7)0.0501 (6)0.0000.0033 (7)0.000
Cs20.0426 (8)0.0426 (8)0.103 (3)0.0000.0000.000
P10.0151 (19)0.0151 (19)0.0151 (19)0.0000.0000.000
Cl20.065 (4)0.016 (3)0.065 (4)0.0000.013 (5)0.000
Cl10.060 (4)0.060 (4)0.051 (6)0.0000.0000.000
O20.016 (4)0.019 (2)0.019 (2)0.003 (2)0.003 (2)0.002 (3)
O30.024 (3)0.016 (4)0.024 (3)0.001 (2)0.004 (4)0.001 (2)
O10.027 (3)0.027 (3)0.029 (5)0.010 (4)0.001 (3)0.001 (3)
O40.013 (3)0.013 (3)0.013 (3)0.000 (3)0.000 (3)0.000 (3)
Cl30.078 (14)0.025 (11)0.078 (14)0.0000.034 (17)0.000
Geometric parameters (Å, º) top
W1—Cs14.0425 (8)Cs1—O2ii3.211 (9)
W1—Cs1i4.0425 (8)Cs1—O13.221 (7)
W1—O2ii1.918 (2)Cs1—O1ii3.221 (7)
W1—O21.918 (2)Cs1—O1x3.221 (7)
W1—O31.942 (4)Cs1—O1ix3.221 (7)
W1—O3iii1.942 (4)Cs2—Cl14.139 (12)
W1—O11.713 (10)Cs2—O1x3.179 (10)
W1—O42.347 (8)Cs2—O13.179 (10)
Tl1—Cl1iv2.613 (12)Cs2—O1xi3.179 (10)
Tl1—Cl1v2.613 (12)Cs2—O1xii3.179 (10)
Tl1—Cl1vi2.613 (12)Cs2—Cl3xiii3.492 (9)
Tl1—Cl12.613 (12)Cs2—Cl33.492 (9)
Tl1—Cl1vii2.613 (12)Cs2—Cl3xii3.492 (9)
Tl1—Cl1viii2.613 (12)Cs2—Cl3iii3.492 (9)
Cs1—Cl23.2081 (18)P1—O41.633 (14)
Cs1—Cl1v3.587 (3)P1—O4xiv1.633 (14)
Cs1—Cl13.587 (3)P1—O4xv1.633 (14)
Cs1—O2ix3.211 (9)P1—O4xvi1.633 (14)
Cs1i—W1—Cs175.01 (5)O1x—Cs1—O1ii164.5 (3)
O2ii—W1—Cs151.2 (3)O1ix—Cs1—O1ii79.9 (3)
O2ii—W1—Cs1i102.2 (3)Cs1xii—Cs2—Cs193.54 (8)
O2—W1—Cs1102.2 (3)Cs1i—Cs2—Cs1xii62.02 (5)
O2—W1—Cs1i51.2 (3)Cs1i—Cs2—Cs162.02 (5)
O2—W1—O2ii87.0 (5)Cl1—Cs2—Cs1xii46.77 (4)
O2—W1—O3159.5 (3)Cl1—Cs2—Cs1i46.77 (4)
O2—W1—O3iii88.9 (4)Cl1—Cs2—Cs146.77 (4)
O2ii—W1—O388.9 (4)O1—Cs2—Cs1xii101.85 (18)
O2ii—W1—O3iii159.5 (3)O1—Cs2—Cs1i42.05 (13)
O2—W1—O485.2 (3)O1xi—Cs2—Cs1101.84 (18)
O2ii—W1—O485.2 (3)O1xii—Cs2—Cs1101.84 (18)
O3iii—W1—Cs1i90.7 (3)O1—Cs2—Cs142.05 (13)
O3iii—W1—Cs1149.1 (2)O1xi—Cs2—Cs1i42.05 (13)
O3—W1—Cs190.7 (3)O1x—Cs2—Cs142.05 (12)
O3—W1—Cs1i149.1 (2)O1x—Cs2—Cs1i101.85 (18)
O3iii—W1—O387.9 (5)O1xii—Cs2—Cs1i101.85 (18)
O3—W1—O474.4 (3)O1xi—Cs2—Cs1xii42.05 (12)
O3iii—W1—O474.4 (3)O1xii—Cs2—Cs1xii42.05 (13)
O1—W1—Cs150.0 (2)O1x—Cs2—Cs1xii101.85 (18)
O1—W1—Cs1i50.0 (2)O1x—Cs2—Cl166.9 (2)
O1—W1—O2100.7 (4)O1xii—Cs2—Cl166.9 (2)
O1—W1—O2ii100.7 (4)O1—Cs2—Cl166.9 (2)
O1—W1—O399.9 (3)O1xi—Cs2—Cl166.9 (2)
O1—W1—O3iii99.9 (3)O1—Cs2—O1xi81.15 (15)
O1—W1—O4171.9 (4)O1xi—Cs2—O1xii81.15 (15)
O4—W1—Cs1134.59 (15)O1—Cs2—O1xii133.8 (4)
O4—W1—Cs1i134.59 (15)O1—Cs2—O1x81.15 (15)
Cl1vi—Tl1—Cl1vii180.0O1xi—Cs2—O1x133.8 (4)
Cl1v—Tl1—Cl1iv180.0O1x—Cs2—O1xii81.15 (15)
Cl1v—Tl1—Cl190.000 (1)O1xi—Cs2—Cl3xii67.7 (4)
Cl1vi—Tl1—Cl1viii90.000 (1)O1xi—Cs2—Cl3xiii139.38 (7)
Cl1vii—Tl1—Cl190.000 (1)O1xii—Cs2—Cl3139.38 (7)
Cl1vi—Tl1—Cl1v90.000 (1)O1x—Cs2—Cl3xii139.38 (6)
Cl1viii—Tl1—Cl1iv90.000 (2)O1xii—Cs2—Cl3xiii67.7 (4)
Cl1vii—Tl1—Cl1v90.000 (3)O1—Cs2—Cl3iii67.7 (4)
Cl1vi—Tl1—Cl190.000 (1)O1—Cs2—Cl3xiii139.38 (7)
Cl1viii—Tl1—Cl1v90.000 (3)O1xi—Cs2—Cl3iii67.7 (4)
Cl1viii—Tl1—Cl1180.0O1x—Cs2—Cl3xiii67.7 (4)
Cl1vi—Tl1—Cl1iv90.000 (3)O1—Cs2—Cl3xii139.38 (7)
Cl1iv—Tl1—Cl190.000 (1)O1xii—Cs2—Cl3xii67.7 (4)
Cl1vii—Tl1—Cl1iv90.000 (1)O1x—Cs2—Cl367.7 (4)
Cl1vii—Tl1—Cl1viii90.000 (1)O1x—Cs2—Cl3iii139.38 (7)
W1ix—Cs1—W1x54.562 (17)O1—Cs2—Cl367.7 (4)
W1—Cs1—W1ix135.56 (5)O1xi—Cs2—Cl3139.38 (7)
W1—Cs1—W1x107.09 (3)O1xii—Cs2—Cl3iii139.38 (7)
Cl2—Cs1—W1ix67.78 (2)Cl3—Cs2—Cs1xii165.7 (5)
Cl2—Cs1—W1x67.78 (2)Cl3xii—Cs2—Cs1165.7 (5)
Cl2—Cs1—W167.78 (2)Cl3—Cs2—Cs172.2 (5)
Cl2—Cs1—Cl1148.99 (18)Cl3xiii—Cs2—Cs1xii109.4 (3)
Cl2—Cs1—Cl1v148.99 (18)Cl3xii—Cs2—Cs1i109.4 (3)
Cl2—Cs1—O2ix59.49 (15)Cl3iii—Cs2—Cs1xii109.4 (3)
Cl2—Cs1—O2ii59.49 (15)Cl3iii—Cs2—Cs1109.4 (3)
Cl2—Cs1—O182.27 (15)Cl3xii—Cs2—Cs1xii72.2 (5)
Cl2—Cs1—O1x82.27 (15)Cl3iii—Cs2—Cs1i72.2 (5)
Cl2—Cs1—O1ii82.27 (15)Cl3—Cs2—Cs1i109.4 (3)
Cl2—Cs1—O1ix82.27 (15)Cl3xiii—Cs2—Cs1i165.7 (5)
Cl1v—Cs1—W1124.07 (5)Cl3xiii—Cs2—Cs1109.4 (3)
Cl1—Cs1—W1x95.05 (11)Cl3—Cs2—Cl1119.0 (5)
Cl1v—Cs1—W1ix95.05 (11)Cl3iii—Cs2—Cl1119.0 (5)
Cl1—Cs1—W1ix124.07 (5)Cl3xiii—Cs2—Cl1119.0 (5)
Cl1—Cs1—W195.05 (11)Cl3xii—Cs2—Cl1119.0 (5)
Cl1v—Cs1—W1x124.07 (5)Cl3iii—Cs2—Cl3xii76.4 (4)
Cl1—Cs1—Cl1v62.0 (4)Cl3—Cs2—Cl3iii76.4 (4)
O2ix—Cs1—W1x27.76 (3)Cl3—Cs2—Cl3xiii76.4 (4)
O2ii—Cs1—W1ix120.06 (13)Cl3xiii—Cs2—Cl3xii76.4 (4)
O2ix—Cs1—W1120.06 (13)Cl3—Cs2—Cl3xii122.1 (10)
O2ii—Cs1—W1x120.06 (13)Cl3xiii—Cs2—Cl3iii122.1 (10)
O2ii—Cs1—W127.76 (3)O4xvi—P1—O4xiv109.471 (3)
O2ix—Cs1—W1ix27.76 (3)O4—P1—O4xiv109.471 (1)
O2ix—Cs1—Cl1115.80 (13)O4xiv—P1—O4xv109.471 (2)
O2ix—Cs1—Cl1v115.80 (13)O4—P1—O4xv109.5
O2ii—Cs1—Cl1v115.80 (13)O4xvi—P1—O4xv109.5
O2ii—Cs1—Cl1115.80 (13)O4—P1—O4xvi109.471 (6)
O2ix—Cs1—O2ii119.0 (3)Cs1xvii—Cl2—Cs1180.0
O2ix—Cs1—O1ix51.58 (18)Tl1—Cl1—Cs1i103.99 (18)
O2ix—Cs1—O1119.00 (17)Tl1—Cl1—Cs1103.99 (18)
O2ii—Cs1—O1x119.00 (17)Tl1—Cl1—Cs1xii103.99 (18)
O2ix—Cs1—O1ii119.00 (17)Tl1—Cl1—Cs1vii103.99 (18)
O2ii—Cs1—O1ii51.58 (18)Tl1—Cl1—Cs2180.0
O2ii—Cs1—O151.58 (18)Cs1vii—Cl1—Cs1i152.0 (4)
O2ix—Cs1—O1x51.58 (18)Cs1i—Cl1—Cs1xii86.65 (8)
O2ii—Cs1—O1ix119.00 (17)Cs1—Cl1—Cs1i86.65 (8)
O1—Cs1—W1x96.87 (16)Cs1—Cl1—Cs1vii86.65 (8)
O1ix—Cs1—W1144.24 (15)Cs1—Cl1—Cs1xii152.0 (4)
O1x—Cs1—W1x24.05 (18)Cs1vii—Cl1—Cs1xii86.65 (8)
O1ix—Cs1—W1ix24.05 (18)Cs1—Cl1—Cs276.01 (18)
O1ix—Cs1—W1x77.22 (18)Cs1xii—Cl1—Cs276.01 (18)
O1ii—Cs1—W1x144.24 (15)Cs1vii—Cl1—Cs276.01 (18)
O1ii—Cs1—W1ix96.87 (16)Cs1i—Cl1—Cs276.01 (18)
O1—Cs1—W124.05 (18)W1—O2—W1xviii150.0 (5)
O1x—Cs1—W196.87 (16)W1—O2—Cs1i101.0 (3)
O1—Cs1—W1ix144.24 (15)W1xviii—O2—Cs1i101.0 (3)
O1x—Cs1—W1ix77.22 (18)W1xix—O3—W1119.7 (4)
O1ii—Cs1—W177.22 (18)W1—O1—Cs1i105.9 (3)
O1x—Cs1—Cl1v120.27 (19)W1—O1—Cs1105.9 (3)
O1—Cs1—Cl174.1 (2)W1—O1—Cs2144.6 (5)
O1x—Cs1—Cl174.1 (2)Cs1i—O1—Cs199.7 (3)
O1ii—Cs1—Cl1v74.1 (2)Cs2—O1—Cs196.6 (2)
O1ix—Cs1—Cl1120.27 (19)Cs2—O1—Cs1i96.6 (2)
O1ix—Cs1—Cl1v74.1 (2)W1—O4—W1iii91.4 (4)
O1ii—Cs1—Cl1120.27 (19)W1xix—O4—W1iii91.4 (4)
O1—Cs1—Cl1v120.27 (19)W1—O4—W1xix91.4 (4)
O1ii—Cs1—O198.0 (4)P1—O4—W1iii124.3 (3)
O1ix—Cs1—O1x98.0 (3)P1—O4—W1xix124.3 (3)
O1x—Cs1—O179.9 (3)P1—O4—W1124.3 (3)
O1ix—Cs1—O1164.5 (3)Cs2xx—Cl3—Cs2147.9 (10)
Cs1—W1—O1—Cs1i105.3 (5)O3—W1—O1—Cs182.6 (4)
Cs1i—W1—O1—Cs1105.3 (5)O3iii—W1—O1—Cs244.8 (3)
Cs1i—W1—O1—Cs2127.4 (2)O3—W1—O1—Cs244.8 (3)
Cs1—W1—O1—Cs2127.4 (2)O4xvi—P1—O4—W1xix180.000 (1)
O2—W1—O1—Cs1i8.2 (4)O4xv—P1—O4—W160.000 (1)
O2—W1—O1—Cs197.1 (3)O4xv—P1—O4—W1xix60.000 (1)
O2ii—W1—O1—Cs1i97.1 (3)O4xiv—P1—O4—W1xix60.000 (1)
O2ii—W1—O1—Cs18.2 (4)O4xvi—P1—O4—W1iii60.000 (1)
O2ii—W1—O1—Cs2135.5 (2)O4xiv—P1—O4—W1180.000 (1)
O2—W1—O1—Cs2135.5 (2)O4xiv—P1—O4—W1iii60.000 (1)
O3iii—W1—O1—Cs1172.1 (3)O4xv—P1—O4—W1iii180.000 (1)
O3—W1—O1—Cs1i172.1 (3)O4xvi—P1—O4—W160.000 (2)
O3iii—W1—O1—Cs1i82.6 (4)
Symmetry codes: (i) y, z+3/2, x+1/2; (ii) z1/2, x+1, y+3/2; (iii) y+1, z, x+1; (iv) z+3/2, x+1, y+3/2; (v) z1/2, x, y+1/2; (vi) y+1, z+3/2, x+3/2; (vii) y, z1/2, x+1/2; (viii) x+1, y+1, z+2; (ix) z1/2, x, y+3/2; (x) x, y+1, z; (xi) x+1, y, z; (xii) x+1, y+1, z; (xiii) y+1, z+1, x+1; (xiv) x+1/2, y+3/2, z; (xv) x+1/2, y, z+3/2; (xvi) x, y+3/2, z+3/2; (xvii) x+1/2, y+1, z+3/2; (xviii) y+1, z+3/2, x+1/2; (xix) z+1, x+1, y; (xx) z+1, x+1, y+1.
 

Acknowledgements

We are grateful to the Lawrence Livermore National Laboratory (LLNL) and the Seaborg Institute (GTSI) for their continued support. Release number: LLNL-JRNL-862928.

Funding information

Funding for this research was provided by: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry Program (contract No. DE-AC52-07NA27344).

References

First citationBalboni, E. & Burns, P. (2014). J. Solid State Chem. 213, 1–8.  Web of Science CrossRef ICSD CAS Google Scholar
First citationColliard, I., Lee, J. R. I., Colla, C. A., Mason, H. E., Sawvel, A. M., Zavarin, M., Nyman, M. & Deblonde, G. J.-P. (2022). Nat. Chem. 14, 1357–1366.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationColliard, I., Morrison, G., Loye, H. Z. & Nyman, M. (2020). J. Am. Chem. Soc. 142, 9039–9047.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationContant, R., Klemperer, W. G. & Yaghi, O. (1990). Inorganic Syntheses Vol 27 edited by A. P. Ginsberg, pp. 104–111. New York: John Wiley & Sons Inc..  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlaser, J. (1980). Acta Chem. Scand. 34a, 75–76.  CrossRef ICSD Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMassa, W. & Gould, R. O. (2004). Crystal Structure Determination, 2nd ed., p. 123. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates, 1st ed., p. 33. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, M., Pang, J., Wang, J. & Niu, J. (2024). Coord. Chem. Rev. 508, 215730–215757.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds