research communications
Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-4-yl pentanoate
aDepartment of Chemistry, Doctoral School of Sciences and Technology, University Joseph KI-ZERBO, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Environmental Science and Technology, University Jean Lorougnon GUEDE of Daloa, BP 150 Daloa, Côte d'Ivoire, cDoctoral School of Sciences and Health, University Joseph KI-ZERBO, Laboratory of Drug Development Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), 03 BP 7021 Ouagadougou 03, Burkina Faso, and dCenter for Interdisciplinary Research on Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
*Correspondence e-mail: kamborene@gmail.com
In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the pentanoate ring is 36.26 (8)°. A short intramolecular C—H⋯O contact of 2.40 Å is observed. Hirshfeld surface analysis reveals that 46.1% of the intermolecular interactions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H.
Keywords: crystal structure; coumarin structure; Hirshfeld surface analysis; interactions; hydrogen bonds.
CCDC reference: 2363131
1. Chemical context
et al., 2021). Historically, have been applied for the treatment of a variety of diseases due to their anticoagulant, anti-inflammatory, antiviral, antimicrobial, anticancer, antioxidant (Todorov et al., 2023) and anti-glaucoma (Ziki et al., 2023) activities. Their wide range of biological activities and the use of coumarin-containing drugs clinically have contributed to the growing interest in this class of heterocycles (Khandy et al., 2024). Given their importance, coumarin derivatives continue to be our field of research (Kambo et al., 2017; Hollauer et al., 2023). We report herein the synthesis, and Hirshfeld surface analysis of the title coumarin derivative.
are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology (Carneiro2. Structural commentary
The molecular structure of the title coumarin derivative is illustrated in Fig. 1. An S(6) ring motif arises from an intramolecular C2—H2⋯O4 hydrogen bond (Table 1). As expected, the coumarin ring system is almost planar, with a maximum deviation from the plane of 0.016 (3) Å for atom C7. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C1—C2 [1.336 (3) Å] and C2—C3 [1.437 (3) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electron density is preferentially located in the C1—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ouédraogo et al., 2018).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, C5—H5⋯O1 hydrogen bonds link molecules into infinite chains along the [001] direction (Table 1, Fig. 2) and the C11—H11B⋯O1 interactions contribute to the crystal cohesion. The intermolecular interactions were quantified using Hirshfeld surface analysis. This approach is a graphical tool for visualization and understanding of intermolecular interactions. The Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer 17 (Spackman et al., 2021). Fig. 3 shows the Hirshfeld surface plotted over dnorm (normalized contact distance) and Fig. 4 the 2D fingerprint plots..
4. Database survey
A search of the Cambridge structural Database (CSD; Groom et al., 2016; updated to April 2024) found seven structures with substituents at the 4-positions (XUFGOW, Kavitha et al., 2015; NUZJOJ, Vinduvahini et al., 2016; UDOGIF01, Anitha et al., 2016, HUYVEE, Anitha et al., 2015; NAGWAW, Ravi et al., 2016; DIWPAE, Hollauer et al., 2023). All seven have structural parameters very similar to this one, including essentially planar chromene portions.
5. Synthesis and crystallization
To a solution of valeroyl chloride (6.17 mmol, ∼0.8 ml) in dried diethyl ether (16 ml) was added dried pyridine (2.31 ml; 4.7 molar equivalents) and 4-hydroxycoumarin (6.17 mmol, 1 g) in small portions over 30 min, with vigorous stirring. The reaction mixture was left stirring at room temperature for 3 h.
The mixture was then poured in a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The crude product was filtered off with suction, washed with n-hexane and recrystallized from acetone. Dirty white crystals of the title compound were obtained in a good yield (78%), m.p. 408–409 K.
6. details
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command), Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for all other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2363131
https://doi.org/10.1107/S205698902400584X/ox2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400584X/ox2005Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902400584X/ox2005Isup3.cml
C14H14O4 | F(000) = 520 |
Mr = 246.25 | Dx = 1.284 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.57455 (13) Å | Cell parameters from 5988 reflections |
b = 9.29660 (17) Å | θ = 6.2–72.3° |
c = 14.5761 (2) Å | µ = 0.78 mm−1 |
β = 100.9517 (14)° | T = 295 K |
V = 1273.80 (3) Å3 | Prism, colourless |
Z = 4 | 0.26 × 0.22 × 0.18 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Atlas 2 diffractometer | 2492 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2107 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 5.3045 pixels mm-1 | θmax = 72.4°, θmin = 4.7° |
ω scan | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −11→9 |
Tmin = 0.869, Tmax = 1.000 | l = −18→17 |
13663 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.0899P)2 + 0.3573P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2492 reflections | Δρmax = 0.30 e Å−3 |
164 parameters | Δρmin = −0.27 e Å−3 |
Experimental. CrysAlisPro 1.171.42.102a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8531 (2) | 0.18982 (18) | 0.34863 (13) | 0.0878 (6) | |
O2 | 0.89842 (16) | 0.42028 (16) | 0.33853 (10) | 0.0657 (4) | |
O3 | 0.73548 (14) | 0.51487 (15) | 0.57413 (9) | 0.0611 (4) | |
O4 | 0.5562 (2) | 0.3555 (2) | 0.56376 (12) | 0.0961 (7) | |
C1 | 0.78028 (18) | 0.4741 (2) | 0.49394 (12) | 0.0521 (4) | |
C2 | 0.7829 (2) | 0.3396 (2) | 0.46205 (14) | 0.0601 (5) | |
H2 | 0.7447 | 0.2654 | 0.4923 | 0.072* | |
C3 | 0.8442 (2) | 0.3080 (2) | 0.38166 (15) | 0.0637 (5) | |
C4 | 0.89359 (19) | 0.5596 (2) | 0.36974 (13) | 0.0552 (5) | |
C5 | 0.9492 (2) | 0.6653 (3) | 0.32029 (15) | 0.0686 (6) | |
H5 | 0.9891 | 0.6417 | 0.2689 | 0.082* | |
C6 | 0.9443 (3) | 0.8055 (3) | 0.34855 (18) | 0.0770 (7) | |
H6 | 0.9807 | 0.8776 | 0.3155 | 0.092* | |
C7 | 0.8862 (3) | 0.8417 (2) | 0.42546 (19) | 0.0769 (6) | |
H7 | 0.8837 | 0.9373 | 0.4439 | 0.092* | |
C8 | 0.8321 (2) | 0.7356 (2) | 0.47459 (15) | 0.0640 (5) | |
H8 | 0.7930 | 0.7600 | 0.5263 | 0.077* | |
C9 | 0.83527 (18) | 0.5928 (2) | 0.44771 (13) | 0.0514 (4) | |
C10 | 0.6263 (2) | 0.4471 (2) | 0.60627 (13) | 0.0588 (5) | |
C11 | 0.6104 (3) | 0.5117 (3) | 0.69639 (16) | 0.0763 (7) | |
H11A | 0.5905 | 0.6134 | 0.6862 | 0.092* | |
H11B | 0.7010 | 0.5039 | 0.7392 | 0.092* | |
C12 | 0.4994 (3) | 0.4499 (3) | 0.74266 (16) | 0.0776 (7) | |
H12A | 0.4091 | 0.4569 | 0.6995 | 0.093* | |
H12B | 0.5199 | 0.3484 | 0.7531 | 0.093* | |
C13 | 0.4818 (4) | 0.5132 (4) | 0.8311 (2) | 0.1043 (11) | |
H13A | 0.4636 | 0.6150 | 0.8203 | 0.125* | |
H13B | 0.5723 | 0.5050 | 0.8739 | 0.125* | |
C14 | 0.3720 (4) | 0.4574 (4) | 0.8790 (2) | 0.1154 (12) | |
H14A | 0.2833 | 0.4508 | 0.8355 | 0.173* | |
H14B | 0.3614 | 0.5211 | 0.9291 | 0.173* | |
H14C | 0.3992 | 0.3637 | 0.9038 | 0.173* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1124 (13) | 0.0674 (10) | 0.0945 (12) | −0.0079 (9) | 0.0470 (10) | −0.0231 (9) |
O2 | 0.0772 (9) | 0.0669 (9) | 0.0606 (8) | −0.0033 (7) | 0.0327 (7) | −0.0066 (6) |
O3 | 0.0666 (8) | 0.0655 (9) | 0.0593 (8) | −0.0121 (6) | 0.0321 (6) | −0.0060 (6) |
O4 | 0.0994 (12) | 0.1166 (15) | 0.0855 (11) | −0.0483 (11) | 0.0512 (10) | −0.0319 (10) |
C1 | 0.0498 (8) | 0.0594 (11) | 0.0511 (9) | −0.0023 (7) | 0.0197 (7) | 0.0002 (8) |
C2 | 0.0676 (11) | 0.0539 (11) | 0.0645 (11) | −0.0058 (9) | 0.0274 (9) | 0.0005 (9) |
C3 | 0.0685 (11) | 0.0610 (12) | 0.0661 (12) | −0.0034 (9) | 0.0237 (9) | −0.0052 (9) |
C4 | 0.0546 (9) | 0.0614 (11) | 0.0523 (9) | 0.0002 (8) | 0.0174 (7) | 0.0041 (8) |
C5 | 0.0726 (12) | 0.0783 (14) | 0.0605 (11) | −0.0048 (10) | 0.0269 (10) | 0.0116 (10) |
C6 | 0.0829 (15) | 0.0721 (15) | 0.0812 (15) | −0.0046 (11) | 0.0286 (12) | 0.0243 (12) |
C7 | 0.0876 (15) | 0.0513 (12) | 0.0967 (17) | −0.0010 (10) | 0.0302 (13) | 0.0088 (11) |
C8 | 0.0666 (11) | 0.0582 (12) | 0.0728 (12) | 0.0017 (9) | 0.0276 (10) | 0.0010 (10) |
C9 | 0.0479 (8) | 0.0549 (11) | 0.0545 (9) | 0.0003 (7) | 0.0175 (7) | 0.0036 (8) |
C10 | 0.0585 (10) | 0.0657 (12) | 0.0568 (10) | −0.0064 (9) | 0.0224 (8) | 0.0035 (9) |
C11 | 0.0903 (15) | 0.0834 (16) | 0.0652 (12) | −0.0196 (12) | 0.0402 (11) | −0.0079 (11) |
C12 | 0.0740 (13) | 0.1044 (18) | 0.0614 (12) | −0.0191 (13) | 0.0304 (10) | −0.0062 (12) |
C13 | 0.131 (2) | 0.116 (2) | 0.0846 (17) | −0.0419 (19) | 0.0664 (17) | −0.0261 (16) |
C14 | 0.117 (2) | 0.167 (3) | 0.0780 (17) | −0.043 (2) | 0.0579 (17) | −0.0214 (19) |
O1—C3 | 1.209 (3) | C7—H7 | 0.9300 |
O2—C3 | 1.371 (2) | C8—C9 | 1.387 (3) |
O2—C4 | 1.377 (2) | C8—H8 | 0.9300 |
O3—C1 | 1.373 (2) | C10—C11 | 1.478 (3) |
O3—C10 | 1.377 (2) | C11—C12 | 1.479 (3) |
O4—C10 | 1.184 (3) | C11—H11A | 0.9700 |
C1—C2 | 1.336 (3) | C11—H11B | 0.9700 |
C1—C9 | 1.443 (2) | C12—C13 | 1.455 (3) |
C2—C3 | 1.437 (3) | C12—H12A | 0.9700 |
C2—H2 | 0.9300 | C12—H12B | 0.9700 |
C4—C5 | 1.384 (3) | C13—C14 | 1.464 (3) |
C4—C9 | 1.393 (3) | C13—H13A | 0.9700 |
C5—C6 | 1.370 (3) | C13—H13B | 0.9700 |
C5—H5 | 0.9300 | C14—H14A | 0.9600 |
C6—C7 | 1.384 (4) | C14—H14B | 0.9600 |
C6—H6 | 0.9300 | C14—H14C | 0.9600 |
C7—C8 | 1.376 (3) | ||
C3—O2—C4 | 121.71 (15) | C4—C9—C1 | 116.78 (17) |
C1—O3—C10 | 122.95 (15) | O4—C10—O3 | 122.85 (18) |
C2—C1—O3 | 125.75 (17) | O4—C10—C11 | 127.85 (18) |
C2—C1—C9 | 121.34 (17) | O3—C10—C11 | 109.25 (17) |
O3—C1—C9 | 112.80 (16) | C10—C11—C12 | 116.9 (2) |
C1—C2—C3 | 120.85 (18) | C10—C11—H11A | 108.1 |
C1—C2—H2 | 119.6 | C12—C11—H11A | 108.1 |
C3—C2—H2 | 119.6 | C10—C11—H11B | 108.1 |
O1—C3—O2 | 116.60 (19) | C12—C11—H11B | 108.1 |
O1—C3—C2 | 125.5 (2) | H11A—C11—H11B | 107.3 |
O2—C3—C2 | 117.86 (18) | C13—C12—C11 | 117.4 (2) |
O2—C4—C5 | 117.11 (17) | C13—C12—H12A | 107.9 |
O2—C4—C9 | 121.44 (17) | C11—C12—H12A | 107.9 |
C5—C4—C9 | 121.45 (19) | C13—C12—H12B | 107.9 |
C6—C5—C4 | 118.7 (2) | C11—C12—H12B | 107.9 |
C6—C5—H5 | 120.6 | H12A—C12—H12B | 107.2 |
C4—C5—H5 | 120.6 | C12—C13—C14 | 119.6 (3) |
C5—C6—C7 | 121.1 (2) | C12—C13—H13A | 107.4 |
C5—C6—H6 | 119.5 | C14—C13—H13A | 107.4 |
C7—C6—H6 | 119.5 | C12—C13—H13B | 107.4 |
C8—C7—C6 | 119.8 (2) | C14—C13—H13B | 107.4 |
C8—C7—H7 | 120.1 | H13A—C13—H13B | 107.0 |
C6—C7—H7 | 120.1 | C13—C14—H14A | 109.5 |
C7—C8—C9 | 120.5 (2) | C13—C14—H14B | 109.5 |
C7—C8—H8 | 119.7 | H14A—C14—H14B | 109.5 |
C9—C8—H8 | 119.7 | C13—C14—H14C | 109.5 |
C8—C9—C4 | 118.44 (17) | H14A—C14—H14C | 109.5 |
C8—C9—C1 | 124.78 (17) | H14B—C14—H14C | 109.5 |
C10—O3—C1—C2 | −34.4 (3) | C7—C8—C9—C1 | −179.4 (2) |
C10—O3—C1—C9 | 149.38 (17) | O2—C4—C9—C8 | −179.15 (17) |
O3—C1—C2—C3 | −174.29 (19) | C5—C4—C9—C8 | 0.9 (3) |
C9—C1—C2—C3 | 1.6 (3) | O2—C4—C9—C1 | 0.0 (3) |
C4—O2—C3—O1 | 179.69 (19) | C5—C4—C9—C1 | 179.97 (17) |
C4—O2—C3—C2 | −0.8 (3) | C2—C1—C9—C8 | 177.8 (2) |
C1—C2—C3—O1 | 178.9 (2) | O3—C1—C9—C8 | −5.9 (3) |
C1—C2—C3—O2 | −0.5 (3) | C2—C1—C9—C4 | −1.3 (3) |
C3—O2—C4—C5 | −178.94 (18) | O3—C1—C9—C4 | 175.07 (16) |
C3—O2—C4—C9 | 1.1 (3) | C1—O3—C10—O4 | −5.5 (3) |
O2—C4—C5—C6 | 179.07 (19) | C1—O3—C10—C11 | 176.86 (19) |
C9—C4—C5—C6 | −0.9 (3) | O4—C10—C11—C12 | 3.8 (4) |
C4—C5—C6—C7 | 0.5 (4) | O3—C10—C11—C12 | −178.7 (2) |
C5—C6—C7—C8 | −0.1 (4) | C10—C11—C12—C13 | −179.5 (3) |
C6—C7—C8—C9 | 0.0 (4) | C11—C12—C13—C14 | 179.1 (3) |
C7—C8—C9—C4 | −0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4 | 0.93 | 2.40 | 2.855 (3) | 110 |
C5—H5···O1i | 0.93 | 2.53 | 3.387 (3) | 153 |
C11—H11B···O1ii | 0.97 | 2.65 | 3.446 (3) | 139 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques (Aix-Marseille, France) for the use of the diffractometer.
References
Anitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928–o929. CSD CrossRef IUCr Journals Google Scholar
Anitha, B. R., Roopashree, K. R., Kumar, K. M., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Carneiro, A., Matos, M. J., Uriarte, E. & Santana, L. (2021). Molecules, 26, 501. CrossRef PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842–846. CSD CrossRef IUCr Journals Google Scholar
Kambo, K. R., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). IUCrData, 2, x170663. Google Scholar
Kavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263–o264. CSD CrossRef IUCr Journals Google Scholar
Khandy, M. T., Grigorchuk, V. P., Sofronova, A. K. & Gorpenchenko, T. Y. (2024). Plants, 13, 601. CrossRef PubMed Google Scholar
Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534. CSD CrossRef IUCr Journals Google Scholar
Ravi, A. J., Kumar, K. M. & Devarajegowda, H. C. (2016). IUCrData, 1, x160171. Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Todorov, L., Saso, L. & Kostova, I. (2023). Pharm. 16, 651. Google Scholar
Vinduvahini, M., Anitha, B. R., Kumar, K. M., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 1, x160015. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ziki, E., Akonan, L., Kouman, K. C., Dali, B., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10–33. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.