research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-4-yl penta­noate

crossmark logo

aDepartment of Chemistry, Doctoral School of Sciences and Technology, University Joseph KI-ZERBO, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Environmental Science and Technology, University Jean Lorougnon GUEDE of Daloa, BP 150 Daloa, Côte d'Ivoire, cDoctoral School of Sciences and Health, University Joseph KI-ZERBO, Laboratory of Drug Development Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), 03 BP 7021 Ouagadougou 03, Burkina Faso, and dCenter for Interdisciplinary Research on Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
*Correspondence e-mail: kamborene@gmail.com

Edited by Y. Ozawa, University of Hyogo, Japan (Received 26 April 2024; accepted 16 June 2024; online 21 June 2024)

In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the penta­noate ring is 36.26 (8)°. A short intra­molecular C—H⋯O contact of 2.40 Å is observed. Hirshfeld surface analysis reveals that 46.1% of the inter­molecular inter­actions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H.

1. Chemical context

Coumarins are naturally occurring mol­ecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology (Carneiro et al., 2021[Carneiro, A., Matos, M. J., Uriarte, E. & Santana, L. (2021). Mol­ecules, 26, 501.]). Historically, coumarins have been applied for the treatment of a variety of diseases due to their anti­coagulant, anti-inflammatory, anti­viral, anti­microbial, anti­cancer, anti­oxidant (Todorov et al., 2023[Todorov, L., Saso, L. & Kostova, I. (2023). Pharm. 16, 651.]) and anti-glaucoma (Ziki et al., 2023[Ziki, E., Akonan, L., Kouman, K. C., Dali, B., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10-33.]) activities. Their wide range of biological activities and the use of coumarin-containing drugs clinically have contributed to the growing inter­est in this class of heterocycles (Khandy et al., 2024[Khandy, M. T., Grigorchuk, V. P., Sofronova, A. K. & Gorpenchenko, T. Y. (2024). Plants, 13, 601.]). Given their importance, coumarin derivatives continue to be our field of research (Kambo et al., 2017[Kambo, K. R., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). IUCrData, 2, x170663.]; Hollauer et al., 2023[Hollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842-846.]). We report herein the synthesis, crystal structure, and Hirshfeld surface analysis of the title coumarin derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title coumarin derivative is illustrated in Fig. 1[link]. An S(6) ring motif arises from an intra­molecular C2—H2⋯O4 hydrogen bond (Table 1[link]). As expected, the coumarin ring system is almost planar, with a maximum deviation from the plane of 0.016 (3) Å for atom C7. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C1—C2 [1.336 (3) Å] and C2—C3 [1.437 (3) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electron density is preferentially located in the C1—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ouédraogo et al., 2018[Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530-534.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4 0.93 2.40 2.855 (3) 110
C5—H5⋯O1i 0.93 2.53 3.387 (3) 153
C11—H11B⋯O1ii 0.97 2.65 3.446 (3) 139
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the compound showing the atomic numbering system. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, C5—H5⋯O1 hydrogen bonds link mol­ecules into infinite chains along the [001] direction (Table 1[link], Fig. 2[link]) and the C11—H11B⋯O1 inter­actions contribute to the crystal cohesion. The inter­molecular inter­actions were qu­an­ti­fied using Hirshfeld surface analysis. This approach is a graphical tool for visualization and understanding of inter­molecular inter­actions. The Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer 17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the Hirshfeld surface plotted over dnorm (normalized contact distance) and Fig. 4[link] the 2D fingerprint plots..

[Figure 2]
Figure 2
Part of crystalline packing of the title compound showing a parallel chain in the [001] direction. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm for visualizing the inter­molecular contacts of the title compound.
[Figure 4]
Figure 4
Fingerprint plots for the title compound showing (a) C⋯C, (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The outline of the full fingerprint is shown in grey. di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

4. Database survey

A search of the Cambridge structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to April 2024) found seven coumarins structures with substituents at the 4-positions (XUFGOW, Kavitha et al., 2015[Kavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263-o264.]; NUZJOJ, Vinduvahini et al., 2016[Vinduvahini, M., Anitha, B. R., Kumar, K. M., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 1, x160015.]; UDOGIF01, Anitha et al., 2016[Anitha, B. R., Roopashree, K. R., Kumar, K. M., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.], HUYVEE, Anitha et al., 2015[Anitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928-o929.]; NAGWAW, Ravi et al., 2016[Ravi, A. J., Kumar, K. M. & Devarajegowda, H. C. (2016). IUCrData, 1, x160171.]; DIWPAE, Hollauer et al., 2023[Hollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842-846.]). All seven have structural parameters very similar to this one, including essentially planar chromene portions.

5. Synthesis and crystallization

To a solution of valeroyl chloride (6.17 mmol, ∼0.8 ml) in dried diethyl ether (16 ml) was added dried pyridine (2.31 ml; 4.7 molar equivalents) and 4-hy­droxy­coumarin (6.17 mmol, 1 g) in small portions over 30 min, with vigorous stirring. The reaction mixture was left stirring at room temperature for 3 h.

The mixture was then poured in a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The crude product was filtered off with suction, washed with n-hexane and recrystallized from acetone. Dirty white crystals of the title compound were obtained in a good yield (78%), m.p. 408–409 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command), Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H14O4
Mr 246.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.57455 (13), 9.29660 (17), 14.5761 (2)
β (°) 100.9517 (14)
V3) 1273.80 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Atlas 2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.869, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13663, 2492, 2107
Rint 0.024
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.175, 1.08
No. of reflections 2492
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), ORTEP-III Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2-Oxo-2H-chromen-4-yl pentanoate top
Crystal data top
C14H14O4F(000) = 520
Mr = 246.25Dx = 1.284 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.57455 (13) ÅCell parameters from 5988 reflections
b = 9.29660 (17) Åθ = 6.2–72.3°
c = 14.5761 (2) ŵ = 0.78 mm1
β = 100.9517 (14)°T = 295 K
V = 1273.80 (3) Å3Prism, colourless
Z = 40.26 × 0.22 × 0.18 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Atlas 2
diffractometer
2492 independent reflections
Radiation source: micro-focus sealed X-ray tube2107 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 5.3045 pixels mm-1θmax = 72.4°, θmin = 4.7°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 119
Tmin = 0.869, Tmax = 1.000l = 1817
13663 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.3573P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2492 reflectionsΔρmax = 0.30 e Å3
164 parametersΔρmin = 0.27 e Å3
Special details top

Experimental. CrysAlisPro 1.171.42.102a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8531 (2)0.18982 (18)0.34863 (13)0.0878 (6)
O20.89842 (16)0.42028 (16)0.33853 (10)0.0657 (4)
O30.73548 (14)0.51487 (15)0.57413 (9)0.0611 (4)
O40.5562 (2)0.3555 (2)0.56376 (12)0.0961 (7)
C10.78028 (18)0.4741 (2)0.49394 (12)0.0521 (4)
C20.7829 (2)0.3396 (2)0.46205 (14)0.0601 (5)
H20.74470.26540.49230.072*
C30.8442 (2)0.3080 (2)0.38166 (15)0.0637 (5)
C40.89359 (19)0.5596 (2)0.36974 (13)0.0552 (5)
C50.9492 (2)0.6653 (3)0.32029 (15)0.0686 (6)
H50.98910.64170.26890.082*
C60.9443 (3)0.8055 (3)0.34855 (18)0.0770 (7)
H60.98070.87760.31550.092*
C70.8862 (3)0.8417 (2)0.42546 (19)0.0769 (6)
H70.88370.93730.44390.092*
C80.8321 (2)0.7356 (2)0.47459 (15)0.0640 (5)
H80.79300.76000.52630.077*
C90.83527 (18)0.5928 (2)0.44771 (13)0.0514 (4)
C100.6263 (2)0.4471 (2)0.60627 (13)0.0588 (5)
C110.6104 (3)0.5117 (3)0.69639 (16)0.0763 (7)
H11A0.59050.61340.68620.092*
H11B0.70100.50390.73920.092*
C120.4994 (3)0.4499 (3)0.74266 (16)0.0776 (7)
H12A0.40910.45690.69950.093*
H12B0.51990.34840.75310.093*
C130.4818 (4)0.5132 (4)0.8311 (2)0.1043 (11)
H13A0.46360.61500.82030.125*
H13B0.57230.50500.87390.125*
C140.3720 (4)0.4574 (4)0.8790 (2)0.1154 (12)
H14A0.28330.45080.83550.173*
H14B0.36140.52110.92910.173*
H14C0.39920.36370.90380.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1124 (13)0.0674 (10)0.0945 (12)0.0079 (9)0.0470 (10)0.0231 (9)
O20.0772 (9)0.0669 (9)0.0606 (8)0.0033 (7)0.0327 (7)0.0066 (6)
O30.0666 (8)0.0655 (9)0.0593 (8)0.0121 (6)0.0321 (6)0.0060 (6)
O40.0994 (12)0.1166 (15)0.0855 (11)0.0483 (11)0.0512 (10)0.0319 (10)
C10.0498 (8)0.0594 (11)0.0511 (9)0.0023 (7)0.0197 (7)0.0002 (8)
C20.0676 (11)0.0539 (11)0.0645 (11)0.0058 (9)0.0274 (9)0.0005 (9)
C30.0685 (11)0.0610 (12)0.0661 (12)0.0034 (9)0.0237 (9)0.0052 (9)
C40.0546 (9)0.0614 (11)0.0523 (9)0.0002 (8)0.0174 (7)0.0041 (8)
C50.0726 (12)0.0783 (14)0.0605 (11)0.0048 (10)0.0269 (10)0.0116 (10)
C60.0829 (15)0.0721 (15)0.0812 (15)0.0046 (11)0.0286 (12)0.0243 (12)
C70.0876 (15)0.0513 (12)0.0967 (17)0.0010 (10)0.0302 (13)0.0088 (11)
C80.0666 (11)0.0582 (12)0.0728 (12)0.0017 (9)0.0276 (10)0.0010 (10)
C90.0479 (8)0.0549 (11)0.0545 (9)0.0003 (7)0.0175 (7)0.0036 (8)
C100.0585 (10)0.0657 (12)0.0568 (10)0.0064 (9)0.0224 (8)0.0035 (9)
C110.0903 (15)0.0834 (16)0.0652 (12)0.0196 (12)0.0402 (11)0.0079 (11)
C120.0740 (13)0.1044 (18)0.0614 (12)0.0191 (13)0.0304 (10)0.0062 (12)
C130.131 (2)0.116 (2)0.0846 (17)0.0419 (19)0.0664 (17)0.0261 (16)
C140.117 (2)0.167 (3)0.0780 (17)0.043 (2)0.0579 (17)0.0214 (19)
Geometric parameters (Å, º) top
O1—C31.209 (3)C7—H70.9300
O2—C31.371 (2)C8—C91.387 (3)
O2—C41.377 (2)C8—H80.9300
O3—C11.373 (2)C10—C111.478 (3)
O3—C101.377 (2)C11—C121.479 (3)
O4—C101.184 (3)C11—H11A0.9700
C1—C21.336 (3)C11—H11B0.9700
C1—C91.443 (2)C12—C131.455 (3)
C2—C31.437 (3)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C4—C51.384 (3)C13—C141.464 (3)
C4—C91.393 (3)C13—H13A0.9700
C5—C61.370 (3)C13—H13B0.9700
C5—H50.9300C14—H14A0.9600
C6—C71.384 (4)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.376 (3)
C3—O2—C4121.71 (15)C4—C9—C1116.78 (17)
C1—O3—C10122.95 (15)O4—C10—O3122.85 (18)
C2—C1—O3125.75 (17)O4—C10—C11127.85 (18)
C2—C1—C9121.34 (17)O3—C10—C11109.25 (17)
O3—C1—C9112.80 (16)C10—C11—C12116.9 (2)
C1—C2—C3120.85 (18)C10—C11—H11A108.1
C1—C2—H2119.6C12—C11—H11A108.1
C3—C2—H2119.6C10—C11—H11B108.1
O1—C3—O2116.60 (19)C12—C11—H11B108.1
O1—C3—C2125.5 (2)H11A—C11—H11B107.3
O2—C3—C2117.86 (18)C13—C12—C11117.4 (2)
O2—C4—C5117.11 (17)C13—C12—H12A107.9
O2—C4—C9121.44 (17)C11—C12—H12A107.9
C5—C4—C9121.45 (19)C13—C12—H12B107.9
C6—C5—C4118.7 (2)C11—C12—H12B107.9
C6—C5—H5120.6H12A—C12—H12B107.2
C4—C5—H5120.6C12—C13—C14119.6 (3)
C5—C6—C7121.1 (2)C12—C13—H13A107.4
C5—C6—H6119.5C14—C13—H13A107.4
C7—C6—H6119.5C12—C13—H13B107.4
C8—C7—C6119.8 (2)C14—C13—H13B107.4
C8—C7—H7120.1H13A—C13—H13B107.0
C6—C7—H7120.1C13—C14—H14A109.5
C7—C8—C9120.5 (2)C13—C14—H14B109.5
C7—C8—H8119.7H14A—C14—H14B109.5
C9—C8—H8119.7C13—C14—H14C109.5
C8—C9—C4118.44 (17)H14A—C14—H14C109.5
C8—C9—C1124.78 (17)H14B—C14—H14C109.5
C10—O3—C1—C234.4 (3)C7—C8—C9—C1179.4 (2)
C10—O3—C1—C9149.38 (17)O2—C4—C9—C8179.15 (17)
O3—C1—C2—C3174.29 (19)C5—C4—C9—C80.9 (3)
C9—C1—C2—C31.6 (3)O2—C4—C9—C10.0 (3)
C4—O2—C3—O1179.69 (19)C5—C4—C9—C1179.97 (17)
C4—O2—C3—C20.8 (3)C2—C1—C9—C8177.8 (2)
C1—C2—C3—O1178.9 (2)O3—C1—C9—C85.9 (3)
C1—C2—C3—O20.5 (3)C2—C1—C9—C41.3 (3)
C3—O2—C4—C5178.94 (18)O3—C1—C9—C4175.07 (16)
C3—O2—C4—C91.1 (3)C1—O3—C10—O45.5 (3)
O2—C4—C5—C6179.07 (19)C1—O3—C10—C11176.86 (19)
C9—C4—C5—C60.9 (3)O4—C10—C11—C123.8 (4)
C4—C5—C6—C70.5 (4)O3—C10—C11—C12178.7 (2)
C5—C6—C7—C80.1 (4)C10—C11—C12—C13179.5 (3)
C6—C7—C8—C90.0 (4)C11—C12—C13—C14179.1 (3)
C7—C8—C9—C40.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.932.402.855 (3)110
C5—H5···O1i0.932.533.387 (3)153
C11—H11B···O1ii0.972.653.446 (3)139
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques (Aix-Marseille, France) for the use of the diffractometer.

References

First citationAnitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928–o929.  CSD CrossRef IUCr Journals Google Scholar
First citationAnitha, B. R., Roopashree, K. R., Kumar, K. M., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCarneiro, A., Matos, M. J., Uriarte, E. & Santana, L. (2021). Mol­ecules, 26, 501.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842–846.  CSD CrossRef IUCr Journals Google Scholar
First citationKambo, K. R., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). IUCrData, 2, x170663.  Google Scholar
First citationKavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263–o264.  CSD CrossRef IUCr Journals Google Scholar
First citationKhandy, M. T., Grigorchuk, V. P., Sofronova, A. K. & Gorpenchenko, T. Y. (2024). Plants, 13, 601.  CrossRef PubMed Google Scholar
First citationOuédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534.  CSD CrossRef IUCr Journals Google Scholar
First citationRavi, A. J., Kumar, K. M. & Devarajegowda, H. C. (2016). IUCrData, 1, x160171.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTodorov, L., Saso, L. & Kostova, I. (2023). Pharm. 16, 651.  Google Scholar
First citationVinduvahini, M., Anitha, B. R., Kumar, K. M., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 1, x160015.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiki, E., Akonan, L., Kouman, K. C., Dali, B., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10–33.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds