research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of two racemic 2-hetero­aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones

crossmark logo

aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA, cMendel Science Center, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA, and dPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 May 2024; accepted 29 May 2024; online 4 June 2024)

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol­ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti­omers occupying the neighboring asymmetric units. Structure 2 also has water mol­ecules (partial occupancies) that form continuous channels along the b-axis direction. The thia­zine rings in both structures exhibit an envelope conformation. Inter­molecular inter­actions in 1 are defined only by C—H⋯O and C—H⋯N hydrogen bonds between crystallographically independent mol­ecules. In 2, hydrogen bonds of the type N—H⋯O between independent mol­ecules and C—H⋯N(π) type, and ππ stacking inter­actions between the pyridine rings of symmetry-related mol­ecules are observed.

1. Chemical context

The 2,3-disubstituted-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one scaffold features a pyridine ring fused to a thia­zine ring at the 5 and 6 positions. Compounds with this scaffold have previously shown anti­bacterial (Nayak et al., 2022[Nayak, J., Bhat, R. S. & Chethan, D. M. (2022). ChemistrySelect, 7, e202103543.]) anti­cancer (Arya et al., 2014[Arya, K., Tomar, P. & Singh, J. (2014). RSC Adv. 4, 3060-3064.]; Wang et al., 2015[Wang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem. 58, 6678-6696.]), glycosidase inhibitory (Li et al., 2012[Li, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712-2716.]), and anti­fungal bioactivity (Liporagi-Lopes et al., 2020[Liporagi-Lopes, L., Sobhi, H. F., Silverberg, L. J., Cordero, R. J. B. & Casadevall, A. (2020). BioRxiv. https://doi.org/10.1101/2020.06.27.175711]). A compound previously reported by us, 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Silverberg et al., 2015[Silverberg, L. J., Pacheco, C. N., Lagalante, A., Cannon, K. C., Bachert, J. T., Xie, Y., Baker, L. & Bayliff, J. A. (2015). Int. J. Chem. 7, 150-162.]; Yennawar et al., 2014[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638.]), inhibited growth of two kinetoplastid parasites, Trypanosoma brucei and Crithidia fasciculata (Malfara et al., 2021[Malfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). Mol. Biochem. Parasitol. 245, 111396.]). The effect was especially inter­esting for T. brucei, which causes African Sleeping Sickness (Human African Trypanosomiasis, HAT). A series of 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones was then synthesized, with various substituents on the C-aryl ring. Five of these compounds (p- and m-CF3, p- and m-Br, p-CH3) showed much stronger activity against T. brucei than 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Silverberg et al., 2021[Silverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.]). A series of 3-aryl-2-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones has since been synthesized with various substituents on the N-aryl ring and is currently undergoing testing.

Using our simple 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phos­pho­rinane-2,4,6-trioxide (T3P)-promoted method (Silverberg et al., 2021[Silverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.]), a series of heteroaryl-substituted 2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones are now being synthesized. In this communication, we report the synthesis and crystal structures of two compounds (1 and 2) in which there is a heteroaromatic ring on C2. Compound 1 has a 3-thio­phene and compound 2 has a 3-(1H)-indole. Thio­phene and indole derivatives are each known for their biological activity (da Cruz et al., 2021[Cruz, R. M. D. da, Mendonça-Junior, F. J. B., de Mélo, N. B., Scotti, L., de Araújo, R. S. A., de Almeida, R. N. & de Moura, R. O. (2021). Pharmaceuticals 14, 692.]; Konus et al., 2022[Konus, M., Çetin, D., Kızılkan, N. D., Yılmaz, C., Fidan, C., Algso, M., Kavak, E., Kivrak, A., Kurt-Kızıldoğan, A., Otur, C., Mutlu, D., Abdelsalam, A. H. & Arslan, S. (2022). J. Mol. Struct. 1263, 133168.]) and could have inter­esting effects on the activity of the 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones. The new compounds each have a total of three heterocycles.

[Scheme 1]

2. Structural commentary

The title compounds crystallize in monoclinic lattices with two independent mol­ecules (A containing C1 in 1 and 2, and B containing C18 in 1 and C22 in 2; Figs. 1[link] and 2[link]) in their respective asymmetric units. In 1, mol­ecules of both chiralities are seen, while in 2 both mol­ecules of similar chirality occupy the asymmetric unit. In each structure the independent mol­ecules (with appropriate inversion applied in 1) have almost identical configuration, as was confirmed by the alignment RMSD values falling within 0.013 Å when superposing chirally similar mol­ecules and matching the three non-H atoms surrounding the 2-carbon. In 2, four disordered water mol­ecule sites were identified in difference-Fourier maps and refined well with manually adjusted quarter occupancy each. However, one of those oxygen atoms sits on a special position (multiplicity 2) resulting in a total contribution of 0.875 water mol­ecules per asymmetric unit (or about 0.438 water mol­ecules per parent mol­ecule). The core thia­zine ring in both structures exhibits an envelope conformation with the 2-carbon forming the flap [puckering amplitude Q ranging between 0.5545 (15) and 0.631 (2) Å, and the θ and φ values, after accounting for the absolute configuration transformations, are between 61.47 (17) and 66.50 (18)°, and 35.6 (2) and 47.14 (2)°, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Mol­ecules of both chirality are seen. The thio­phene ring of mol­ecule B exhibits a rotational disorder.
[Figure 2]
Figure 2
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level. Both mol­ecules have the same chirality. The water O atoms (O3 to O6) at quarter occupancy each were refined without protons.

3. Supra­molecular features

In 1, the inter­molecular inter­actions are defined solely by hydrogen bonds (Table 1[link], Fig. 3[link]) of two types – the C—H⋯O type where a carbon atom of the thio­phene ring in mol­ecule A donates a proton to the only oxygen of its translational neighbour [C4—H4⋯O1 = 3.168 (2) Å, 164.5°] and the C—H⋯N type where the 2-carbon of the thia­zine in mol­ecule B donates a proton to the lone pair on the nitro­gen of fused pyridine ring of its independent neighbor i.e. mol­ecule A [C18—H18⋯N2 = 3.494 (2) Å, 167.1°]. The C—H⋯N type inter­actions are considered weak, but Webber et al. (2020[Webber, A. L., Yates, J. R., Zilka, M., Sturniolo, S., Uldry, A. C., Corlett, E. K., Pickard, C. J., Pérez-Torralba, M., Angeles Garcia, M., Santa Maria, D., Claramunt, R. M. & Brown, S. P. (2020). J. Phys. Chem. A, 124, 560-572.]) have studied their strengths. No ππ stacking inter­actions between rings of the neighboring mol­ecules were observed in this structure.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.26 3.168 (2) 165
C18—H18⋯N2ii 0.98 2.53 3.494 (2) 167
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Packing diagram for 1 showing C—H⋯O and C—H⋯N type hydrogen bonds between mol­ecules.

In 2, there are two types of hydrogen-bond inter­actions as well (Table 2[link], Fig. 4[link]). One is an N—H⋯O type hydrogen bond [N3—H3⋯O2 = 2.828 (3) Å, 160.7°] where the nitro­gen of the indole ring of mol­ecule A donates a proton to the oxygen of enanti­omeric mol­ecule B. The other is a reciprocal pair of C—H⋯N(π) hydrogen bonds where a carbon from the fused pyridine ring donates a proton to the π electron cloud over the nitro­gen atom in the indole ring, connecting two enanti­omers of mol­ecule B in a give-and-take fashion [C26—H26⋯N6 = 3.463 (3) Å, 155.1°]. In the extended structure, the hydrogen bonds of both types result in the assembly of continuous mol­ecular chains in the [101] direction. Unlike the crystal of 1, this one is further stabilized by ππ stacking inter­actions between pyridine rings of symmetry-related mol­ecules [the centroid–centroid distance and slippage are 3.5677 (16) and 1.017 Å, respectively]. These ring overlaps resemble the teeth of a zipper, binding the adjacent parallel mol­ecular chains. Continuous water channels along the b-axis direction punctuate the `teeth', in an alternating fashion.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 2.00 2.828 (3) 161
C26—H26⋯N6ii 0.93 2.60 3.463 (3) 155
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
Packing diagram for 2 viewing down the b-axis, showing N—H⋯O and C—H⋯N hydrogen bonds between mol­ecules. The ππ stacking inter­actions that hold adjacent parallel chains akin to the teeth of a zipper and partially occupied water mol­ecules forming continuous channels down the b-axis are also seen.

4. Database survey

We have previously reported crystal structures of 2,3-di­henyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Yennawar et al., 2014[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638.]), its sulfoxide (Yennawar et al., 2017[Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.]), and its sulfone (Yennawar et al., 2023[Yennawar, H. P., Mal, T. K., Pacheco, C. N., Lagalante, A. F., Olsen, M. A., Russell, M. W., Muench, G. C., Moyer, Q. J. & Silverberg, L. J. (2023). Acta Cryst. E79, 221-225.]). We have also reported structures of two 2-aryl-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-ones, 2-(4-fluoro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one and 2-(4-nitro­phen­yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (Yennawar et al., 2019[Yennawar, H. P., Thompson, E. N., Li, J. & Silverberg, L. J. (2019). Acta Cryst. E75, 1689-1693.]).

5. Synthesis and crystallization

General: TLC plates (silica gel GF, 250-micron, 10 x 20 cm, cat. No. P21521) were purchased from Miles Scientific. TLCs were visualized under short wave UV, and then with I2, and then by spraying with ceric ammonium nitrate/sulfuric acid and heating. Infrared spectra were run on a Thermo-Fisher NICOLET iS50 FT-IR using a diamond-ATR attachment for direct powder analysis (Penn State Schuylkill). 1H and 13C NMR experiments (Penn State's shared NMR facility, University Park) were carried out on a Bruker Avance-III-HD 500.20-MHz (1H frequency) instrument using a 5 mm Prodigy (liquid nitro­gen cooled) BBOBB-1H/19F/D Z-GRD cryo­probe. Samples were dissolved in pyridine-d5 and analyzed at RT. Typical conditions for 1H acquisition were 1 s relaxation delay, acquisition time of 3.28 s, and spectral width of 10 kHz, 32 scans. Spectra were zero-filled to 128k points, and multiplied by exponential multiplication (EM with LB = 0.3 Hz) prior to FT. For 13C experiments, data were acquired with power-gated 1H decoupling using a 2 s relaxation delay, with an acquisition time of 1.1 s, spectral width of 29.8 kHz, and 256 scans. Spectra were zero-filled once, and multiplied by EM with LB = 2 Hz prior to FT. MS samples were analyzed for purity and accurate mass by LCMS on a SCIEX Exion LC with a SCIEX 5600+ TripleTOF MS. Separation was achieved on an Agilent Infinity LabPoroshell column 120 EC-C18, 2.1 X 50mm, 2.7-micron particle (p/n 699775-902), column maintained at 313 K. Elution using a reversed phase gradient of 100% (water with 0.1% formic acid)ramped to 100% (aceto­nitrile with 0.1% formic acid) over 10 min at a flowrate of 0.4m L min−1. The MS was scanned over 50-1200 Da and calibrated with the SCIEX APCI positive calibrant solution (Part 4460131) prior to sample analysis. Samples were analyzed in ESI positive mode with a DP = 100 V, CE = 10, GAS1 = GAS2 = 60 psi, curtain = 30 psi, ISV = 5500 V, and source temperature of 773 K (Villanova University). Melting points were performed on a Vernier Melt Station (Penn State Schuylkill). Suitable crystals were selected and sequentially mounted using a nylon loop and a dab of paratone oil on a Rigaku Oxford diffraction, Synergy Custom system, HyPix-Arc 150 diffractometer at Penn State, University Park. The crystals were frozen to 173 (2) K during data collection. Using OLEX2, the structures were solved with the SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) structure solution program using Intrinsic Phasing and refined with the SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) refinement package using least-squares minimization.

General Synthetic Procedure: A two-necked 25 mL round-bottom flask was oven-dried, cooled under N2, and charged with a stirring bar. Aniline (0.559 g, 6 mmol) and a heteroaromatic aldehyde (3-thio­phencarboxaldehyde for 1 or 1H-indole-3-carbaldehyde for 2; 6 mmol) was added. 2-Methyl­tetra­hydro­furan (2.3 mL) was added and the solution was stirred for five minutes. Thio­nicotinic acid (0.931 g, 6 mmol) was added. Pyridine (2.9 mL, 36 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-tri­oxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight percent; 11 mL, 18 mmol) was added. The reaction was stirred at room temperature for 1–2 weeks and followed by TLC, then poured into a separatory funnel with di­chloro­methane (20 mL). The mixture was washed with water (10 mL). The aqueous solution was then extracted twice with di­chloro­methane (10 mL each). The organics were combined and washed with saturated sodium bicarbonate (10 mL) and then saturated sodium chloride (10 mL) solutions. The organic phase was dried over sodium sulfate and concentrated under vacuum to give a crude mixture. Further purification was carried out as indicated below for each compound.

3-Phenyl-2-(thio­phen-3-yl)-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one, 1: After chromatography on 30 g silica gel with a gradient from 30% ethyl acetate / 70% hexa­nes to 70% ethyl acetate / 30% hexa­nes, recrystallization from 2-propanol, and then from ethyl acetate and hexa­nes gave an off-white powder (0.3456 g, 19% yield), m.p. 426.0-426.6 K. Crystals for crystallography were grown by slow evaporation from 2-propanol. 1H NMR (d5-pyridine) δ 8.56 (d, J = 7.9 Hz, 1H), 8.47 (d, J = 4.8 Hz, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.56 (s or d overlapping a solvent peak, 1H), 7.37 (t, J = 7.9 Hz, 2H), 7.34–7.29 (m, 1H), 7.28–7.21 (m, 2H), 7.06 (dd, J = 7.9, 4.7 Hz, 1H), 6.78 (s, 1H, S—CH—N). 13C NMR (d5-pyridine) δ 162.88 (C=O), 157.49, 152.88, 142.47, 141.50, 137.80, 129.28, 127.32, 127.20, 126.85, 126.33, 126.25, 124.01, 121.26, 61.85 (S—C—N). HRMS (m/z): [M + H+] of 325.0460 is consistent with calculated [M + H]+ of 325.0463. IR (neat, cm−1): 1641 (C=O).

2-(1H-Indol-3-yl)-3-phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 0.438 hydrate, 2: After chromatography on 30 g silica gel with a gradient from 30% ethyl acetate / 70% hexa­nes to 70% ethyl acetate / 30% hexa­nes, recrystallization from ethyl acetate and hexa­nes gave an off-white powder (0.855 g). 1H NMR showed this was an ethyl acetate solvate (mole ratio of 69.8% 2: 30.2% ethyl acetate). Accounting for that, the yield of 2 was 0.772 g (36%), m.p. 416–418 K. Crystals for crystallography were grown by slow evaporation from ethanol. 1H NMR (d5-pyridine) δ 12.30 (s, 1H, NH), 8.60 (dd, J = 7.8, 2.0 Hz, 1H), 8.43 (dd, J = 4.7, 1.9 Hz, 1H), 8.08 (d, J = 7.0 Hz, 1H), 7.73 (d, J = 3.3 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 6.2, 2.1 Hz, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.28–7.20 (m, 3H), 7.16 (s, 1H, S—CH—N), 7.02 (dd, J = 7.9, 4.7 Hz, 1H). 13C NMR (d5-pyridine) δ 163.30 (C=O), 158.41, 152.76, 142.64, 137.91, 137.83, 129.09, 126.95, 126.48, 126.26, 125.38, 125.22, 122.49, 120.96, 120.06, 119.86, 114.12, 112.21, 60.66 (S—C—N). [M + H+] of 358.1002 is consistent with calculated [M + H]+ of 358.1008. IR (neat, cm−1): 3245 (N—H), 1641 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C17H12N2OS2 C21H15N3OS·0.438H2O
Mr 324.41 364.85
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 173 173
a, b, c (Å) 9.22549 (10), 20.8037 (2), 15.87594 (19) 28.2424 (4), 11.0307 (1), 28.6936 (4)
β (°) 92.7309 (11) 111.952 (2)
V3) 3043.52 (6) 8290.9 (2)
Z 8 16
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.19 1.51
Crystal size (mm) 0.15 × 0.13 × 0.08 0.2 × 0.2 × 0.17
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150 ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.628, 1.000 0.652, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20274, 6042, 4922 26357, 8118, 6592
Rint 0.032 0.027
(sin θ/λ)max−1) 0.630 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.07 0.068, 0.218, 1.09
No. of reflections 6042 8118
No. of parameters 435 492
No. of restraints 139 560
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.32 0.93, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

For refining structure 1 that has the rotational-flip of the thio­phene ring, rigid-group disorder, geometric and atomic-displacement restraints (RIGU, DFIX, SADI, SIMU, DELU and ISOR) were used to achieve the convergence.

The refinement of structure 2 involved four partially occupied water mol­ecules identified from the difference-Fourier map and their occupancies manually adjusted to 0.25 each. Placing the hydrogen atoms on the water mol­ecules resulted in high shift/esd values and so were excluded. ISOR restraint for all the four water oxygens and for C10, C11 atoms of phenyl ring in mol­ecule A and C38 and C39 atoms in the indole ring of mol­ecule B, as well as SIMU and DELU for all atoms in the structure, helped converge the refinement. In both above structures, hydrogen atoms were placed at calculated positions and refined using a riding model.

Supporting information


Computing details top

3-Phenyl-2-(thiophen-3-yl)-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one (1) top
Crystal data top
C17H12N2OS2F(000) = 1344
Mr = 324.41Dx = 1.416 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.22549 (10) ÅCell parameters from 9971 reflections
b = 20.8037 (2) Åθ = 3.5–76.2°
c = 15.87594 (19) ŵ = 3.19 mm1
β = 92.7309 (11)°T = 173 K
V = 3043.52 (6) Å3Block, clear colourless
Z = 80.15 × 0.13 × 0.08 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
6042 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source4922 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 76.4°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2425
Tmin = 0.628, Tmax = 1.000l = 1916
20274 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5556P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.20 e Å3
6042 reflectionsΔρmin = 0.32 e Å3
435 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
139 restraintsExtinction coefficient: 0.00078 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.77155 (5)0.62406 (2)0.51130 (3)0.04325 (12)
S20.56507 (6)0.85356 (2)0.47059 (3)0.05474 (14)
O11.12238 (14)0.76514 (8)0.50000 (9)0.0611 (4)
N10.93720 (14)0.71164 (7)0.43232 (9)0.0383 (3)
N20.83219 (17)0.63711 (8)0.67292 (10)0.0514 (4)
C10.78696 (17)0.69009 (8)0.43630 (11)0.0365 (4)
H10.7588210.6726880.3805310.044*
C20.68234 (17)0.74370 (8)0.45268 (10)0.0350 (3)
C30.53153 (18)0.73296 (9)0.46130 (12)0.0445 (4)
H30.4889940.6924200.4596910.053*
C40.4561 (2)0.78833 (10)0.47216 (13)0.0503 (5)
H40.3567620.7900480.4795380.060*
C50.71511 (19)0.80735 (9)0.45651 (12)0.0440 (4)
H50.8081500.8238030.4520030.053*
C60.86214 (18)0.66143 (8)0.59760 (11)0.0395 (4)
C70.9010 (2)0.66294 (12)0.74017 (13)0.0619 (6)
H70.8832010.6458580.7928140.074*
C80.9969 (2)0.71339 (13)0.73668 (13)0.0650 (6)
H81.0397980.7307830.7857480.078*
C91.0278 (2)0.73741 (11)0.65925 (13)0.0553 (5)
H91.0928990.7712520.6551620.066*
C100.96128 (17)0.71101 (9)0.58664 (11)0.0410 (4)
C111.01260 (18)0.73236 (9)0.50360 (11)0.0420 (4)
C120.99721 (18)0.71782 (8)0.35064 (11)0.0399 (4)
C130.9161 (2)0.74399 (9)0.28410 (12)0.0490 (4)
H130.8236820.7598970.2924060.059*
C140.9723 (3)0.74662 (10)0.20480 (13)0.0602 (5)
H140.9171040.7639880.1598290.072*
C151.1088 (3)0.72372 (11)0.19240 (14)0.0633 (6)
H151.1464610.7257680.1391540.076*
C161.1901 (3)0.69772 (11)0.25872 (15)0.0625 (6)
H161.2825690.6820330.2499550.075*
C171.1359 (2)0.69463 (9)0.33842 (13)0.0501 (5)
H171.1914970.6772570.3832080.060*
S30.62400 (6)0.41208 (2)0.26334 (3)0.05086 (14)
S4B0.2995 (2)0.50603 (6)0.02355 (7)0.0711 (3)0.874 (3)
O20.56355 (15)0.61714 (6)0.30744 (9)0.0556 (4)
N30.46385 (15)0.51735 (7)0.30055 (9)0.0412 (3)
N40.85514 (18)0.45429 (9)0.19311 (11)0.0585 (4)
C180.45275 (19)0.45587 (8)0.25591 (11)0.0414 (4)
H180.3817630.4298290.2847270.050*
C190.39720 (18)0.46234 (9)0.16534 (11)0.0428 (4)
C20B0.3787 (10)0.4084 (3)0.1097 (3)0.0535 (12)0.874 (3)
H20B0.4009980.3661690.1243160.064*0.874 (3)
C21B0.3241 (12)0.4275 (5)0.0325 (6)0.075 (3)0.874 (3)
H21B0.3025620.3988580.0113820.090*0.874 (3)
C22B0.3586 (10)0.5181 (2)0.1271 (3)0.0529 (10)0.874 (3)
H22B0.3632190.5581110.1533420.063*0.874 (3)
C230.73266 (19)0.47405 (9)0.22665 (11)0.0431 (4)
C240.9417 (2)0.49976 (13)0.16421 (14)0.0644 (6)
H241.0271720.4868210.1404960.077*
C250.9128 (2)0.56440 (12)0.16714 (13)0.0616 (6)
H250.9760640.5941850.1452280.074*
C260.7870 (2)0.58404 (10)0.20361 (12)0.0521 (5)
H260.7650990.6275640.2071610.062*
C270.69361 (18)0.53857 (8)0.23486 (11)0.0407 (4)
C280.56838 (18)0.56141 (8)0.28296 (11)0.0417 (4)
C290.35521 (18)0.53267 (8)0.35951 (11)0.0398 (4)
C300.3959 (2)0.55445 (9)0.43908 (12)0.0480 (4)
H300.4934260.5607680.4543130.058*
C310.2907 (3)0.56686 (10)0.49621 (13)0.0587 (5)
H310.3180030.5819160.5498040.070*
C320.1466 (3)0.55717 (11)0.47459 (15)0.0631 (6)
H320.0764540.5656090.5133150.076*
C330.1067 (2)0.53507 (11)0.39593 (16)0.0629 (6)
H330.0091410.5280300.3814160.076*
C340.2101 (2)0.52305 (10)0.33751 (13)0.0522 (5)
H340.1820620.5085640.2837610.063*
C20A0.357 (7)0.5169 (16)0.112 (2)0.057 (6)0.126 (3)
H20A0.3709540.5593470.1282540.068*0.126 (3)
C21A0.298 (6)0.5006 (12)0.037 (2)0.064 (5)0.126 (3)
H21A0.2505990.5288110.0000100.077*0.126 (3)
S4A0.322 (2)0.4206 (8)0.0199 (10)0.063 (3)0.126 (3)
C22A0.367 (7)0.4094 (17)0.123 (2)0.051 (5)0.126 (3)
H22A0.3692690.3689190.1481370.061*0.126 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0401 (2)0.0375 (2)0.0518 (3)0.00712 (17)0.00127 (19)0.00235 (19)
S20.0566 (3)0.0460 (3)0.0630 (3)0.0070 (2)0.0158 (2)0.0029 (2)
O10.0429 (7)0.0816 (10)0.0591 (8)0.0285 (7)0.0060 (6)0.0032 (8)
N10.0306 (7)0.0475 (8)0.0372 (7)0.0045 (6)0.0050 (6)0.0003 (6)
N20.0507 (9)0.0552 (9)0.0485 (9)0.0004 (7)0.0036 (8)0.0120 (8)
C10.0301 (8)0.0422 (9)0.0371 (9)0.0047 (7)0.0006 (7)0.0024 (7)
C20.0324 (8)0.0418 (9)0.0307 (8)0.0023 (7)0.0011 (6)0.0005 (7)
C30.0338 (8)0.0488 (10)0.0507 (11)0.0053 (7)0.0015 (8)0.0032 (8)
C40.0344 (9)0.0624 (12)0.0544 (11)0.0026 (8)0.0069 (8)0.0050 (10)
C50.0377 (9)0.0452 (10)0.0499 (11)0.0028 (7)0.0100 (8)0.0004 (8)
C60.0334 (8)0.0414 (9)0.0435 (10)0.0018 (7)0.0006 (7)0.0030 (8)
C70.0629 (13)0.0808 (15)0.0416 (11)0.0014 (11)0.0010 (10)0.0123 (11)
C80.0564 (12)0.0964 (18)0.0414 (11)0.0060 (12)0.0071 (10)0.0028 (11)
C90.0423 (10)0.0729 (14)0.0504 (11)0.0132 (9)0.0021 (9)0.0055 (10)
C100.0315 (8)0.0502 (10)0.0410 (9)0.0035 (7)0.0013 (7)0.0013 (8)
C110.0329 (8)0.0482 (10)0.0447 (10)0.0062 (7)0.0004 (7)0.0013 (8)
C120.0412 (9)0.0379 (9)0.0415 (9)0.0030 (7)0.0103 (8)0.0003 (7)
C130.0539 (11)0.0501 (10)0.0435 (10)0.0049 (9)0.0068 (9)0.0002 (8)
C140.0810 (15)0.0568 (12)0.0433 (11)0.0016 (11)0.0082 (10)0.0041 (9)
C150.0816 (16)0.0588 (13)0.0522 (12)0.0119 (11)0.0304 (12)0.0044 (10)
C160.0570 (12)0.0608 (13)0.0721 (15)0.0019 (10)0.0295 (11)0.0034 (11)
C170.0435 (10)0.0504 (11)0.0575 (12)0.0000 (8)0.0129 (9)0.0043 (9)
S30.0598 (3)0.0378 (2)0.0546 (3)0.0023 (2)0.0010 (2)0.0007 (2)
S4B0.0671 (5)0.0914 (6)0.0535 (5)0.0006 (4)0.0101 (5)0.0081 (4)
O20.0558 (8)0.0390 (7)0.0727 (9)0.0084 (6)0.0106 (7)0.0143 (6)
N30.0405 (8)0.0389 (7)0.0448 (8)0.0080 (6)0.0068 (6)0.0090 (6)
N40.0457 (9)0.0692 (11)0.0606 (11)0.0073 (8)0.0024 (8)0.0125 (9)
C180.0451 (9)0.0367 (9)0.0428 (10)0.0091 (7)0.0057 (8)0.0060 (7)
C190.0369 (9)0.0457 (9)0.0461 (10)0.0082 (7)0.0039 (8)0.0049 (8)
C20B0.058 (3)0.0543 (15)0.0480 (19)0.0117 (14)0.003 (2)0.0131 (14)
C21B0.072 (4)0.091 (4)0.061 (3)0.014 (3)0.001 (2)0.025 (2)
C22B0.0563 (18)0.0554 (16)0.046 (2)0.0025 (14)0.005 (2)0.0014 (14)
C230.0417 (9)0.0484 (10)0.0389 (9)0.0007 (8)0.0021 (8)0.0041 (8)
C240.0413 (11)0.0929 (18)0.0591 (13)0.0019 (11)0.0047 (10)0.0168 (13)
C250.0471 (11)0.0833 (16)0.0551 (12)0.0183 (11)0.0089 (10)0.0064 (11)
C260.0514 (11)0.0541 (11)0.0508 (11)0.0117 (9)0.0026 (9)0.0019 (9)
C270.0383 (9)0.0440 (9)0.0396 (9)0.0062 (7)0.0006 (7)0.0038 (8)
C280.0403 (9)0.0407 (9)0.0439 (10)0.0054 (7)0.0003 (8)0.0058 (8)
C290.0389 (9)0.0385 (9)0.0421 (9)0.0010 (7)0.0041 (7)0.0011 (7)
C300.0496 (10)0.0489 (10)0.0454 (10)0.0013 (8)0.0011 (9)0.0025 (9)
C310.0770 (15)0.0571 (12)0.0430 (11)0.0057 (11)0.0123 (10)0.0012 (9)
C320.0664 (14)0.0541 (12)0.0713 (15)0.0109 (10)0.0291 (12)0.0103 (11)
C330.0416 (11)0.0655 (14)0.0824 (16)0.0014 (9)0.0111 (11)0.0096 (12)
C340.0440 (10)0.0577 (12)0.0547 (12)0.0049 (9)0.0005 (9)0.0014 (10)
C20A0.061 (11)0.047 (7)0.063 (8)0.001 (7)0.007 (7)0.004 (5)
C21A0.064 (5)0.064 (5)0.064 (5)0.0001 (10)0.0031 (10)0.0004 (10)
S4A0.062 (5)0.067 (4)0.062 (5)0.015 (3)0.002 (3)0.008 (4)
C22A0.051 (10)0.052 (6)0.050 (7)0.006 (6)0.007 (8)0.002 (5)
Geometric parameters (Å, º) top
S1—C11.8280 (17)O2—C281.224 (2)
S1—C61.7524 (18)N3—C181.463 (2)
S2—C41.690 (2)N3—C281.369 (2)
S2—C51.7086 (18)N3—C291.439 (2)
O1—C111.225 (2)N4—C231.337 (2)
N1—C11.461 (2)N4—C241.333 (3)
N1—C111.369 (2)C18—H180.9800
N1—C121.440 (2)C18—C191.509 (2)
N2—C61.339 (2)C19—C20B1.433 (5)
N2—C71.329 (3)C19—C22B1.350 (5)
C1—H10.9800C19—C20A1.46 (3)
C1—C21.506 (2)C19—C22A1.31 (3)
C2—C31.422 (2)C20B—H20B0.9300
C2—C51.359 (2)C20B—C21B1.362 (10)
C3—H30.9300C21B—H21B0.9300
C3—C41.361 (3)C22B—H22B0.9300
C4—H40.9300C23—C271.398 (2)
C5—H50.9300C24—H240.9300
C6—C101.395 (2)C24—C251.372 (3)
C7—H70.9300C25—H250.9300
C7—C81.376 (3)C25—C261.383 (3)
C8—H80.9300C26—H260.9300
C8—C91.369 (3)C26—C271.387 (2)
C9—H90.9300C27—C281.492 (2)
C9—C101.393 (3)C29—C301.377 (2)
C10—C111.490 (2)C29—C341.382 (2)
C12—C131.377 (3)C30—H300.9300
C12—C171.389 (2)C30—C311.384 (3)
C13—H130.9300C31—H310.9300
C13—C141.385 (3)C31—C321.373 (3)
C14—H140.9300C32—H320.9300
C14—C151.370 (3)C32—C331.365 (3)
C15—H150.9300C33—H330.9300
C15—C161.374 (3)C33—C341.385 (3)
C16—H160.9300C34—H340.9300
C16—C171.384 (3)C20A—H20A0.9300
C17—H170.9300C20A—C21A1.32 (3)
S3—C181.8226 (19)C21A—H21A0.9300
S3—C231.7498 (19)C21A—S4A1.703 (17)
S4B—C21B1.655 (9)S4A—C22A1.69 (3)
S4B—C22B1.726 (4)C22A—H22A0.9300
C6—S1—C197.29 (8)N3—C18—S3111.41 (12)
C4—S2—C592.08 (9)N3—C18—H18106.9
C11—N1—C1120.42 (14)N3—C18—C19113.34 (15)
C11—N1—C12120.95 (14)C19—C18—S3111.11 (12)
C12—N1—C1118.21 (13)C19—C18—H18106.9
C7—N2—C6116.96 (18)C20B—C19—C18122.9 (3)
S1—C1—H1106.6C22B—C19—C18125.1 (2)
N1—C1—S1111.23 (11)C22B—C19—C20B112.0 (3)
N1—C1—H1106.6C20A—C19—C18133.9 (13)
N1—C1—C2113.43 (13)C22A—C19—C18117.8 (14)
C2—C1—S1111.94 (11)C22A—C19—C20A108.2 (19)
C2—C1—H1106.6C19—C20B—H20B124.6
C3—C2—C1122.58 (15)C21B—C20B—C19110.8 (6)
C5—C2—C1125.90 (15)C21B—C20B—H20B124.6
C5—C2—C3111.43 (16)S4B—C21B—H21B123.0
C2—C3—H3123.6C20B—C21B—S4B114.0 (6)
C4—C3—C2112.82 (16)C20B—C21B—H21B123.0
C4—C3—H3123.6S4B—C22B—H22B124.2
S2—C4—H4124.2C19—C22B—S4B111.6 (3)
C3—C4—S2111.69 (14)C19—C22B—H22B124.2
C3—C4—H4124.2N4—C23—S3114.50 (15)
S2—C5—H5124.0N4—C23—C27124.00 (18)
C2—C5—S2111.97 (13)C27—C23—S3121.48 (14)
C2—C5—H5124.0N4—C24—H24117.9
N2—C6—S1114.80 (13)N4—C24—C25124.3 (2)
N2—C6—C10123.72 (16)C25—C24—H24117.9
C10—C6—S1121.44 (13)C24—C25—H25120.9
N2—C7—H7118.0C24—C25—C26118.1 (2)
N2—C7—C8124.0 (2)C26—C25—H25120.9
C8—C7—H7118.0C25—C26—H26120.1
C7—C8—H8120.8C25—C26—C27119.7 (2)
C9—C8—C7118.4 (2)C27—C26—H26120.1
C9—C8—H8120.8C23—C27—C28124.25 (16)
C8—C9—H9120.1C26—C27—C23117.02 (17)
C8—C9—C10119.81 (19)C26—C27—C28118.36 (17)
C10—C9—H9120.1O2—C28—N3122.19 (17)
C6—C10—C11124.67 (16)O2—C28—C27120.31 (16)
C9—C10—C6116.99 (17)N3—C28—C27117.47 (15)
C9—C10—C11117.97 (16)C30—C29—N3120.11 (15)
O1—C11—N1121.69 (17)C30—C29—C34119.85 (17)
O1—C11—C10120.39 (16)C34—C29—N3119.98 (16)
N1—C11—C10117.86 (14)C29—C30—H30120.2
C13—C12—N1120.53 (15)C29—C30—C31119.59 (18)
C13—C12—C17120.02 (17)C31—C30—H30120.2
C17—C12—N1119.39 (16)C30—C31—H31119.7
C12—C13—H13120.0C32—C31—C30120.7 (2)
C12—C13—C14119.98 (19)C32—C31—H31119.7
C14—C13—H13120.0C31—C32—H32120.2
C13—C14—H14119.9C33—C32—C31119.6 (2)
C15—C14—C13120.2 (2)C33—C32—H32120.2
C15—C14—H14119.9C32—C33—H33119.7
C14—C15—H15120.0C32—C33—C34120.6 (2)
C14—C15—C16119.9 (2)C34—C33—H33119.7
C16—C15—H15120.0C29—C34—C33119.65 (19)
C15—C16—H16119.6C29—C34—H34120.2
C15—C16—C17120.7 (2)C33—C34—H34120.2
C17—C16—H16119.6C19—C20A—H20A123.0
C12—C17—H17120.4C21A—C20A—C19114 (2)
C16—C17—C12119.1 (2)C21A—C20A—H20A123.0
C16—C17—H17120.4C20A—C21A—H21A124.8
C23—S3—C1896.82 (8)C20A—C21A—S4A110 (2)
C21B—S4B—C22B91.5 (3)S4A—C21A—H21A124.8
C28—N3—C18121.34 (14)C22A—S4A—C21A90.2 (16)
C28—N3—C29120.23 (14)C19—C22A—S4A115 (2)
C29—N3—C18118.28 (13)C19—C22A—H22A122.7
C24—N4—C23116.76 (19)S4A—C22A—H22A122.7
S3—C18—H18106.9
S1—C1—C2—C351.29 (19)N3—C18—C19—C20B179.5 (5)
S1—C1—C2—C5132.55 (16)N3—C18—C19—C22B0.8 (5)
S1—C6—C10—C9179.84 (14)N3—C18—C19—C20A2 (4)
S1—C6—C10—C117.0 (2)N3—C18—C19—C22A172 (3)
N1—C1—C2—C3178.17 (15)N3—C29—C30—C31177.72 (17)
N1—C1—C2—C55.7 (2)N3—C29—C34—C33177.01 (18)
N1—C12—C13—C14176.64 (17)N4—C23—C27—C262.0 (3)
N1—C12—C17—C16176.71 (17)N4—C23—C27—C28170.91 (17)
N2—C6—C10—C92.3 (3)N4—C24—C25—C261.1 (3)
N2—C6—C10—C11170.58 (17)C18—S3—C23—N4155.97 (14)
N2—C7—C8—C92.3 (4)C18—S3—C23—C2725.76 (16)
C1—S1—C6—N2158.55 (14)C18—N3—C28—O2166.06 (17)
C1—S1—C6—C1023.70 (16)C18—N3—C28—C2716.2 (2)
C1—N1—C11—O1161.38 (17)C18—N3—C29—C30131.40 (18)
C1—N1—C11—C1021.7 (2)C18—N3—C29—C3446.0 (2)
C1—N1—C12—C1341.6 (2)C18—C19—C20B—C21B178.6 (6)
C1—N1—C12—C17135.66 (17)C18—C19—C22B—S4B179.7 (3)
C1—C2—C3—C4177.30 (16)C18—C19—C20A—C21A173 (3)
C1—C2—C5—S2176.65 (13)C18—C19—C22A—S4A174 (2)
C2—C3—C4—S20.9 (2)C19—C20B—C21B—S4B1.7 (11)
C3—C2—C5—S20.1 (2)C19—C20A—C21A—S4A12 (7)
C4—S2—C5—C20.31 (15)C20B—C19—C22B—S4B0.0 (8)
C5—S2—C4—C30.68 (16)C21B—S4B—C22B—C190.8 (7)
C5—C2—C3—C40.6 (2)C22B—S4B—C21B—C20B1.5 (9)
C6—S1—C1—N152.23 (13)C22B—C19—C20B—C21B1.1 (10)
C6—S1—C1—C275.83 (12)C23—S3—C18—N353.18 (13)
C6—N2—C7—C81.6 (3)C23—S3—C18—C1974.24 (13)
C6—C10—C11—O1163.02 (18)C23—N4—C24—C250.2 (3)
C6—C10—C11—N114.0 (3)C23—C27—C28—O2159.54 (18)
C7—N2—C6—S1178.47 (15)C23—C27—C28—N318.3 (3)
C7—N2—C6—C100.8 (3)C24—N4—C23—S3179.98 (15)
C7—C8—C9—C100.6 (3)C24—N4—C23—C271.8 (3)
C8—C9—C10—C61.5 (3)C24—C25—C26—C270.8 (3)
C8—C9—C10—C11171.83 (19)C25—C26—C27—C230.6 (3)
C9—C10—C11—O19.8 (3)C25—C26—C27—C28172.74 (17)
C9—C10—C11—N1173.22 (17)C26—C27—C28—O213.3 (3)
C11—N1—C1—S157.40 (18)C26—C27—C28—N3168.89 (16)
C11—N1—C1—C269.8 (2)C28—N3—C18—S354.8 (2)
C11—N1—C12—C13130.96 (18)C28—N3—C18—C1971.4 (2)
C11—N1—C12—C1751.8 (2)C28—N3—C29—C3053.0 (2)
C12—N1—C1—S1129.98 (13)C28—N3—C29—C34129.62 (19)
C12—N1—C1—C2102.77 (17)C29—N3—C18—S3129.72 (14)
C12—N1—C11—O111.0 (3)C29—N3—C18—C19104.08 (17)
C12—N1—C11—C10165.93 (15)C29—N3—C28—O29.4 (3)
C12—C13—C14—C150.5 (3)C29—N3—C28—C27168.40 (15)
C13—C12—C17—C160.6 (3)C29—C30—C31—C320.6 (3)
C13—C14—C15—C160.4 (3)C30—C29—C34—C330.3 (3)
C14—C15—C16—C170.3 (3)C30—C31—C32—C330.0 (3)
C15—C16—C17—C120.4 (3)C31—C32—C33—C340.7 (3)
C17—C12—C13—C140.6 (3)C32—C33—C34—C290.9 (3)
S3—C18—C19—C20B53.2 (5)C34—C29—C30—C310.4 (3)
S3—C18—C19—C22B127.2 (5)C20A—C19—C22A—S4A10 (6)
S3—C18—C19—C20A124 (4)C20A—C21A—S4A—C22A15 (5)
S3—C18—C19—C22A62 (3)C21A—S4A—C22A—C1915 (5)
S3—C23—C27—C26179.89 (13)C22A—C19—C20A—C21A2 (7)
S3—C23—C27—C287.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.263.168 (2)165
C18—H18···N2ii0.982.533.494 (2)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
2-(1H-Indol-3-yl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 0.438-hydrate (2) top
Crystal data top
C21H15N3OS·0.438H2OF(000) = 3032
Mr = 364.85Dx = 1.168 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 28.2424 (4) ÅCell parameters from 15647 reflections
b = 11.0307 (1) Åθ = 3.3–74.6°
c = 28.6936 (4) ŵ = 1.51 mm1
β = 111.952 (2)°T = 173 K
V = 8290.9 (2) Å3Block, clear colourless
Z = 160.2 × 0.2 × 0.17 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
8118 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source6592 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 76.1°, θmin = 3.3°
ω scansh = 3435
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1311
Tmin = 0.652, Tmax = 1.000l = 3434
26357 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1597P)2 + 0.3431P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.218(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.93 e Å3
8118 reflectionsΔρmin = 0.25 e Å3
492 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
560 restraintsExtinction coefficient: 0.00059 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.26724 (2)1.02257 (5)0.46586 (2)0.0607 (2)
O10.29327 (7)0.67587 (14)0.40917 (7)0.0681 (4)
N10.30301 (7)0.87957 (16)0.40907 (7)0.0550 (4)
N20.18973 (8)0.9065 (2)0.47392 (8)0.0682 (5)
N30.17476 (8)1.01209 (17)0.28666 (7)0.0651 (5)
H30.1546150.9809000.2588410.078*
C10.28198 (8)1.00078 (19)0.40921 (8)0.0526 (5)
H10.3089201.0588720.4111990.063*
C20.27894 (9)0.77749 (19)0.41489 (8)0.0551 (5)
C30.23430 (8)0.7943 (2)0.43077 (8)0.0570 (5)
C40.22659 (8)0.8966 (2)0.45517 (8)0.0563 (5)
C50.15820 (11)0.8124 (3)0.46694 (12)0.0790 (7)
H50.1322880.8177300.4794780.095*
C60.16178 (11)0.7077 (3)0.44220 (12)0.0819 (8)
H60.1384300.6450490.4376070.098*
C70.20094 (10)0.6979 (2)0.42435 (10)0.0699 (6)
H70.2047960.6274910.4082700.084*
C80.34927 (8)0.87271 (19)0.39858 (8)0.0540 (5)
C90.34817 (11)0.9027 (2)0.35146 (9)0.0679 (6)
H90.3175180.9215380.3255090.081*
C100.39417 (13)0.9043 (3)0.34361 (11)0.0783 (7)
H100.3941800.9239740.3121000.094*
C110.43956 (11)0.8768 (2)0.38238 (12)0.0758 (7)
H110.4700410.8789570.3770040.091*
C120.43979 (11)0.8469 (3)0.42784 (12)0.0799 (7)
H120.4704600.8276010.4536520.096*
C130.39456 (9)0.8446 (2)0.43673 (10)0.0670 (6)
H130.3950560.8240790.4683450.080*
C140.23751 (8)1.02915 (18)0.36249 (8)0.0514 (5)
C150.21385 (9)0.9531 (2)0.32312 (8)0.0587 (5)
H150.2229790.8727380.3213170.070*
C160.17313 (10)1.1292 (2)0.30193 (9)0.0612 (5)
C170.14068 (13)1.2233 (3)0.27683 (11)0.0810 (8)
H170.1148251.2115200.2455800.097*
C180.14847 (15)1.3332 (3)0.30004 (13)0.0939 (10)
H180.1277901.3982710.2841490.113*
C190.18725 (15)1.3503 (2)0.34765 (12)0.0860 (9)
H190.1916101.4266510.3623750.103*
C200.21896 (11)1.2571 (2)0.37311 (9)0.0649 (6)
H200.2440571.2693200.4047910.078*
C210.21210 (9)1.14314 (18)0.34960 (8)0.0533 (5)
S20.53208 (2)0.80892 (5)0.57938 (2)0.0617 (2)
O20.60256 (8)0.53259 (16)0.68886 (7)0.0789 (6)
N40.61311 (8)0.70766 (16)0.65308 (6)0.0579 (5)
N50.46962 (7)0.6310 (2)0.53623 (8)0.0701 (5)
N60.66329 (8)0.6096 (2)0.53522 (9)0.0724 (6)
H6A0.6816830.5517790.5309670.087*
C220.60106 (8)0.78069 (19)0.60738 (7)0.0535 (5)
H220.6176590.8595380.6177450.064*
C230.58928 (9)0.6000 (2)0.65250 (8)0.0590 (5)
C240.54443 (8)0.5693 (2)0.60636 (8)0.0566 (5)
C250.51395 (8)0.6560 (2)0.57346 (8)0.0558 (5)
C260.45593 (10)0.5135 (3)0.53047 (11)0.0796 (8)
H260.4254670.4936220.5044720.095*
C270.48337 (11)0.4214 (3)0.55987 (11)0.0812 (8)
H270.4719700.3417050.5537160.097*
C280.52867 (10)0.4490 (2)0.59919 (10)0.0696 (6)
H280.5480710.3884350.6202860.084*
C290.64864 (9)0.7565 (2)0.69909 (8)0.0603 (6)
C300.62963 (12)0.7931 (2)0.73587 (10)0.0736 (7)
H300.5954340.7819190.7308790.088*
C310.66289 (15)0.8460 (3)0.77949 (10)0.0847 (8)
H310.6511880.8680890.8045900.102*
C320.71196 (15)0.8660 (3)0.78611 (11)0.0872 (9)
H320.7334820.9046430.8151030.105*
C330.73048 (14)0.8301 (3)0.75058 (13)0.0976 (10)
H330.7646860.8422400.7558440.117*
C340.69784 (12)0.7750 (3)0.70623 (10)0.0830 (8)
H340.7102220.7512690.6818040.100*
C350.62190 (8)0.7274 (2)0.57069 (8)0.0540 (5)
C360.65085 (9)0.6248 (2)0.57640 (9)0.0627 (6)
H360.6605230.5734440.6040980.075*
C370.64177 (9)0.7015 (3)0.50155 (9)0.0671 (6)
C380.64240 (12)0.7204 (3)0.45374 (11)0.0857 (8)
H380.6598170.6685450.4401340.103*
C390.61610 (14)0.8191 (4)0.42777 (12)0.0997 (10)
H390.6162310.8348700.3959840.120*
C400.58901 (13)0.8970 (3)0.44741 (11)0.0864 (8)
H400.5709730.9622600.4285140.104*
C410.58924 (10)0.8765 (2)0.49478 (9)0.0682 (6)
H410.5718430.9288470.5082200.082*
C420.61552 (8)0.7774 (2)0.52264 (8)0.0570 (5)
O30.4357290.4974090.6689910.203 (7)0.25
O40.4740290.6935900.7011200.222 (8)0.25
O60.4205290.5605300.6555400.175 (6)0.25
O50.5000000.0501900.7500000.231 (12)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0596 (4)0.0634 (4)0.0523 (3)0.0050 (2)0.0130 (2)0.0096 (2)
O10.0792 (11)0.0544 (9)0.0689 (10)0.0008 (8)0.0255 (9)0.0055 (7)
N10.0507 (10)0.0517 (9)0.0593 (10)0.0003 (7)0.0169 (8)0.0002 (8)
N20.0568 (11)0.0810 (13)0.0657 (11)0.0064 (10)0.0217 (9)0.0143 (10)
N30.0691 (12)0.0567 (10)0.0541 (10)0.0052 (9)0.0053 (9)0.0016 (8)
C10.0479 (11)0.0505 (10)0.0551 (11)0.0069 (8)0.0145 (9)0.0044 (9)
C20.0559 (12)0.0529 (11)0.0485 (10)0.0029 (9)0.0101 (9)0.0025 (9)
C30.0501 (11)0.0606 (12)0.0516 (11)0.0046 (9)0.0089 (9)0.0029 (9)
C40.0494 (11)0.0639 (12)0.0477 (10)0.0010 (9)0.0092 (8)0.0060 (9)
C50.0585 (14)0.0924 (19)0.0853 (18)0.0063 (13)0.0260 (13)0.0249 (15)
C60.0577 (14)0.0852 (18)0.0928 (19)0.0136 (13)0.0165 (13)0.0217 (15)
C70.0657 (14)0.0644 (14)0.0688 (14)0.0113 (11)0.0129 (11)0.0072 (11)
C80.0540 (11)0.0495 (10)0.0566 (11)0.0006 (9)0.0183 (9)0.0026 (9)
C90.0726 (15)0.0703 (14)0.0599 (13)0.0040 (12)0.0238 (11)0.0010 (11)
C100.0999 (19)0.0736 (15)0.0756 (15)0.0018 (14)0.0489 (14)0.0050 (13)
C110.0685 (15)0.0715 (15)0.0983 (18)0.0020 (12)0.0436 (14)0.0098 (13)
C120.0576 (14)0.0897 (19)0.0889 (18)0.0108 (13)0.0236 (13)0.0037 (15)
C130.0573 (13)0.0782 (15)0.0621 (13)0.0048 (11)0.0184 (10)0.0021 (11)
C140.0523 (11)0.0464 (10)0.0516 (10)0.0042 (8)0.0149 (9)0.0013 (8)
C150.0634 (13)0.0461 (10)0.0577 (12)0.0026 (9)0.0124 (10)0.0031 (9)
C160.0668 (14)0.0544 (12)0.0571 (12)0.0005 (10)0.0168 (10)0.0063 (9)
C170.091 (2)0.0725 (16)0.0681 (15)0.0140 (14)0.0166 (14)0.0171 (12)
C180.126 (3)0.0602 (15)0.0856 (19)0.0237 (17)0.0287 (18)0.0215 (14)
C190.130 (3)0.0457 (12)0.0895 (19)0.0061 (14)0.0501 (19)0.0036 (12)
C200.0849 (17)0.0483 (11)0.0652 (13)0.0093 (11)0.0322 (12)0.0015 (10)
C210.0590 (12)0.0462 (10)0.0560 (11)0.0059 (9)0.0229 (9)0.0012 (8)
S20.0612 (4)0.0578 (3)0.0657 (4)0.0043 (2)0.0234 (3)0.0001 (2)
O20.0867 (13)0.0657 (10)0.0587 (9)0.0204 (9)0.0021 (9)0.0080 (8)
N40.0648 (11)0.0555 (10)0.0444 (8)0.0153 (8)0.0100 (8)0.0063 (7)
N50.0468 (10)0.0849 (14)0.0693 (12)0.0012 (9)0.0111 (9)0.0054 (10)
N60.0487 (10)0.0872 (14)0.0779 (13)0.0076 (10)0.0200 (9)0.0315 (11)
C220.0580 (12)0.0528 (11)0.0454 (10)0.0100 (9)0.0144 (9)0.0081 (8)
C230.0604 (13)0.0559 (11)0.0509 (11)0.0120 (10)0.0093 (9)0.0062 (9)
C240.0514 (11)0.0574 (11)0.0533 (11)0.0089 (9)0.0108 (9)0.0079 (9)
C250.0470 (11)0.0649 (12)0.0531 (11)0.0014 (9)0.0157 (9)0.0067 (9)
C260.0504 (13)0.0942 (19)0.0770 (17)0.0174 (13)0.0041 (12)0.0155 (14)
C270.0620 (15)0.0706 (15)0.0933 (19)0.0201 (13)0.0088 (13)0.0215 (14)
C280.0621 (14)0.0581 (12)0.0735 (15)0.0118 (11)0.0078 (11)0.0079 (11)
C290.0691 (14)0.0546 (12)0.0462 (10)0.0156 (10)0.0087 (9)0.0064 (9)
C300.0821 (17)0.0706 (15)0.0602 (13)0.0044 (13)0.0175 (12)0.0113 (11)
C310.116 (2)0.0689 (16)0.0579 (14)0.0003 (16)0.0200 (15)0.0152 (12)
C320.115 (2)0.0640 (15)0.0599 (14)0.0278 (15)0.0061 (15)0.0065 (12)
C330.084 (2)0.114 (3)0.0811 (19)0.0478 (19)0.0149 (15)0.0072 (17)
C340.0751 (17)0.111 (2)0.0605 (14)0.0343 (16)0.0224 (12)0.0107 (14)
C350.0450 (10)0.0602 (12)0.0512 (10)0.0135 (9)0.0116 (8)0.0146 (9)
C360.0482 (11)0.0699 (14)0.0628 (12)0.0092 (10)0.0123 (10)0.0151 (10)
C370.0498 (12)0.0871 (16)0.0625 (13)0.0246 (11)0.0190 (10)0.0252 (12)
C380.0764 (17)0.118 (2)0.0719 (15)0.0254 (16)0.0384 (14)0.0273 (15)
C390.097 (2)0.139 (3)0.0708 (16)0.0375 (19)0.0406 (16)0.0105 (17)
C400.091 (2)0.097 (2)0.0706 (16)0.0297 (16)0.0293 (15)0.0030 (15)
C410.0668 (14)0.0730 (15)0.0626 (13)0.0222 (12)0.0217 (11)0.0049 (11)
C420.0508 (11)0.0656 (12)0.0523 (10)0.0211 (10)0.0165 (9)0.0158 (9)
O30.205 (10)0.219 (11)0.213 (11)0.027 (8)0.108 (8)0.011 (8)
O40.231 (12)0.216 (11)0.203 (11)0.018 (9)0.062 (9)0.024 (8)
O60.181 (9)0.184 (9)0.166 (9)0.024 (8)0.071 (7)0.047 (7)
O50.211 (15)0.237 (15)0.240 (15)0.0000.081 (10)0.000
Geometric parameters (Å, º) top
S1—C11.838 (2)S2—C221.835 (2)
S1—C41.755 (2)S2—C251.753 (2)
O1—C21.223 (3)O2—C231.220 (3)
N1—C11.464 (3)N4—C221.467 (3)
N1—C21.357 (3)N4—C231.362 (3)
N1—C81.448 (3)N4—C291.432 (3)
N2—C41.343 (3)N5—C251.336 (3)
N2—C51.333 (4)N5—C261.345 (4)
N3—C151.369 (3)N6—C361.363 (3)
N3—C161.371 (3)N6—C371.375 (4)
C1—C141.488 (3)C22—C351.504 (3)
C2—C31.504 (3)C23—C241.489 (3)
C3—C41.387 (3)C24—C251.392 (3)
C3—C71.387 (3)C24—C281.391 (3)
C5—C61.379 (5)C26—C271.362 (4)
C6—C71.386 (4)C27—C281.387 (3)
C8—C91.381 (3)C29—C301.410 (4)
C8—C131.372 (3)C29—C341.342 (4)
C9—C101.399 (4)C30—C311.382 (4)
C10—C111.381 (4)C31—C321.345 (5)
C11—C121.343 (4)C32—C331.367 (5)
C12—C131.393 (4)C33—C341.401 (4)
C14—C151.365 (3)C35—C361.370 (3)
C14—C211.426 (3)C35—C421.432 (3)
C16—C171.394 (3)C37—C381.394 (4)
C16—C211.407 (3)C37—C421.397 (3)
C17—C181.361 (4)C38—C391.370 (5)
C18—C191.408 (5)C39—C401.402 (5)
C19—C201.379 (4)C40—C411.375 (4)
C20—C211.406 (3)C41—C421.394 (4)
C4—S1—C195.25 (10)C25—S2—C2295.91 (10)
C2—N1—C1122.35 (18)C23—N4—C22121.32 (17)
C2—N1—C8120.96 (17)C23—N4—C29120.80 (18)
C8—N1—C1116.54 (16)C29—N4—C22117.79 (17)
C5—N2—C4116.8 (2)C25—N5—C26116.0 (2)
C15—N3—C16108.53 (19)C36—N6—C37109.2 (2)
N1—C1—S1110.37 (14)N4—C22—S2109.75 (15)
N1—C1—C14113.36 (17)N4—C22—C35112.98 (19)
C14—C1—S1112.06 (15)C35—C22—S2112.90 (14)
O1—C2—N1122.5 (2)O2—C23—N4121.9 (2)
O1—C2—C3120.7 (2)O2—C23—C24120.6 (2)
N1—C2—C3116.73 (19)N4—C23—C24117.4 (2)
C4—C3—C2124.1 (2)C25—C24—C23123.5 (2)
C7—C3—C2118.0 (2)C28—C24—C23117.8 (2)
C7—C3—C4117.6 (2)C28—C24—C25118.2 (2)
N2—C4—S1114.87 (18)N5—C25—S2115.41 (18)
N2—C4—C3124.0 (2)N5—C25—C24123.9 (2)
C3—C4—S1121.08 (17)C24—C25—S2120.72 (16)
N2—C5—C6123.8 (3)N5—C26—C27124.9 (2)
C5—C6—C7118.6 (3)C26—C27—C28118.6 (3)
C6—C7—C3119.1 (3)C27—C28—C24118.5 (2)
C9—C8—N1119.9 (2)C30—C29—N4117.8 (2)
C13—C8—N1119.4 (2)C34—C29—N4121.8 (2)
C13—C8—C9120.5 (2)C34—C29—C30120.3 (2)
C8—C9—C10118.6 (2)C31—C30—C29118.6 (3)
C11—C10—C9120.4 (3)C32—C31—C30120.8 (3)
C12—C11—C10120.2 (3)C31—C32—C33120.6 (3)
C11—C12—C13120.7 (3)C32—C33—C34119.9 (3)
C8—C13—C12119.6 (2)C29—C34—C33119.8 (3)
C15—C14—C1127.15 (19)C36—C35—C22127.7 (2)
C15—C14—C21106.50 (19)C36—C35—C42106.7 (2)
C21—C14—C1126.33 (19)C42—C35—C22125.6 (2)
C14—C15—N3110.2 (2)N6—C36—C35109.5 (2)
N3—C16—C17129.1 (2)N6—C37—C38129.5 (3)
N3—C16—C21107.8 (2)N6—C37—C42107.7 (2)
C17—C16—C21123.0 (2)C38—C37—C42122.8 (3)
C18—C17—C16117.1 (3)C39—C38—C37116.7 (3)
C17—C18—C19121.2 (3)C38—C39—C40122.4 (3)
C20—C19—C18122.0 (3)C41—C40—C39119.7 (3)
C19—C20—C21117.8 (3)C40—C41—C42120.0 (3)
C16—C21—C14106.90 (19)C37—C42—C35106.9 (2)
C20—C21—C14134.3 (2)C41—C42—C35134.6 (2)
C20—C21—C16118.8 (2)C41—C42—C37118.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.002.828 (3)161
C26—H26···N6ii0.932.603.463 (3)155
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

Our gratitude to Oakwood Chemical for the gifts of 3-thio­phene­carboxaldehyde and 1H-indole-3-carbaldehyde.

Funding information

Funding for this research was provided by: Fred J. Wiest Faculty Research Award at Penn State Schuylkill (award to Lee J. Silverberg); National Institutes of Health (grant No. (1S10OD028589-01 to Pennsylvania State University; grant No. 1S10RR023439-01 to Pennsylvania State University); National Science Foundation (grant No. CHE-1827930 to Villanova University).

References

First citationArya, K., Tomar, P. & Singh, J. (2014). RSC Adv. 4, 3060–3064.  Web of Science CrossRef CAS Google Scholar
First citationCruz, R. M. D. da, Mendonça-Junior, F. J. B., de Mélo, N. B., Scotti, L., de Araújo, R. S. A., de Almeida, R. N. & de Moura, R. O. (2021). Pharmaceuticals 14, 692.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKonus, M., Çetin, D., Kızılkan, N. D., Yılmaz, C., Fidan, C., Algso, M., Kavak, E., Kivrak, A., Kurt-Kızıldoğan, A., Otur, C., Mutlu, D., Abdelsalam, A. H. & Arslan, S. (2022). J. Mol. Struct. 1263, 133168.  Web of Science CrossRef Google Scholar
First citationLi, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712–2716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiporagi-Lopes, L., Sobhi, H. F., Silverberg, L. J., Cordero, R. J. B. & Casadevall, A. (2020). BioRxiv. https://doi.org/10.1101/2020.06.27.175711  Google Scholar
First citationMalfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). Mol. Biochem. Parasitol. 245, 111396.  Web of Science CrossRef PubMed Google Scholar
First citationNayak, J., Bhat, R. S. & Chethan, D. M. (2022). ChemistrySelect, 7, e202103543.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2023). Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSilverberg, L. J., Pacheco, C. N., Lagalante, A., Cannon, K. C., Bachert, J. T., Xie, Y., Baker, L. & Bayliff, J. A. (2015). Int. J. Chem. 7, 150–162.  CrossRef CAS Google Scholar
First citationWang, S., Fang, K., Dong, G., Chen, S., Liu, N., Miao, Z., Yao, J., Li, J., Zhang, W. & Sheng, C. (2015). J. Med. Chem. 58, 6678–6696.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWebber, A. L., Yates, J. R., Zilka, M., Sturniolo, S., Uldry, A. C., Corlett, E. K., Pickard, C. J., Pérez-Torralba, M., Angeles Garcia, M., Santa Maria, D., Claramunt, R. M. & Brown, S. P. (2020). J. Phys. Chem. A, 124, 560–572.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYennawar, H. P., Mal, T. K., Pacheco, C. N., Lagalante, A. F., Olsen, M. A., Russell, M. W., Muench, G. C., Moyer, Q. J. & Silverberg, L. J. (2023). Acta Cryst. E79, 221–225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.  Google Scholar
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Thompson, E. N., Li, J. & Silverberg, L. J. (2019). Acta Cryst. E75, 1689–1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds