research communications
S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate
of 1,2,3,4-tetrahydroisoquinolin-2-ium (2aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
The S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate, C9H12N+·C4H5O6−·H2O, at 115 K shows orthorhombic symmetry (space group P212121). The hydrogen tartrate anions and solvent water molecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetrahydroisoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydrocarbon tails of the tetrahydroisoquinolinium cations, resulting in hydrophobic and hydrophilic regions in the crystal structure.
of 1,2,3,4-tetrahydroisoquinolin-2-ium (2Keywords: isoquinoline; tartaric acid; salt formation; proton-transfer compound; hydrogen bonding; crystal structure.
CCDC reference: 2362561
1. Chemical context
1,2,3,4-Tetrahydroisoquinoline is a secondary amine derived from isoquinoline. Tetrahydroisoquinoline et al., 2023). The tetrahydroisoquinoline scaffold is also encountered in a number of approved drugs, for example in the angiotensin-converting-enzyme inhibitor quinapril and in the antimuscarinic solifenacin. Thus far, few salts of 1,2,3,4-tetrahydroisoquinoline have been structurally characterized (see Section 4). Herein, we describe the crystal and molecular structure of 1,2,3,4-tetrahydroisoquinolinium hydrogen tartrate monohydrate [systematic name: 1,2,3,4-tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate hydrate]. Hydrogen tartrate is a well-known anion in pharmaceutics (Bharate, 2021). The pKa of the conjugate acid of tetrahydroisoquinoline is 9.3 (at 310 K; Bojarski et al., 1995), and the pKa1 of tartaric acid is 2.9 (at 298 K; Dawson, 1959). According to the pKa rule (Cruz-Cabeza, 2012), we can estimate ΔpKa = pKa[protonated base] − pKa[acid] = 9.3 – 2.9 = 6.4. Hence, proton transfer is expected when tetrahydroisoquinoline is reacted with tartaric acid.
represent a large and structurally diverse group of natural products with a wide range of biological activity (Kim2. Structural commentary
Fig. 1 shows a displacement ellipsoid plot of the molecular components of the salt in the solid state. The comprises a 1,2,3,4-tetrahydroisoquinolin-2-ium cation, a (2S,3S)-hydrogen tartrate anion and a water molecule of crystallization. The axially chiral conformation of the tetrahydroisoquinolinium cation is left-handed, as revealed by the C4—C3—N2—C1 torsion angle of −65.8 (3)°. The carbon skeleton of the hydrogen tartrate anion adopts an antiperiplanar (anti) conformation [C9—C10—C11—C12 = 178.67 (15)°], which is known to be the predominant one in tartaric acid derivatives (Gawronski et al., 2005). The carboxy group of the anion exhibits the syn conformation.
3. Supramolecular features
The solid state supramolecular structure features an intricate network of N—H⋯O and O—H⋯O hydrogen bonds (Fig. 2). Table 1 lists the corresponding geometric parameters, which are within expected ranges (Thakuria et al., 2017). The hydrogen tartrate anions form hydrogen-bonded chains by translational symmetry in the b-axis direction through hydrogen bonding between the carboxy group and the carboxylate group of an adjacent molecule (O5—H5A⋯O1iii). In the a-axis direction, the hydrogen tartrate ions are connected along a 21 screw axis via two hydrogen bonds with the two hydroxy groups as donors and a hydroxy group (O3—H3⋯O4ii) and the carboxylate group (O4—H4⋯O2ii) of a neighbouring molecule as acceptors. These O—H⋯O hydrogen-bonding interactions that extend in the a- and b-axis directions result in diperiodic hydrogen-bonded sheets parallel to (001). The protonated amino group of the tetrahydroisoquinolinium cation forms a bifurcated hydrogen bond to the carboxy groups of two adjacent hydrogen tartrate anions (N2—H2B⋯O5 and N2—H2B⋯O6i) and another hydrogen bond to the solvent water molecule (N2—H2A⋯O7). The water molecule in turn acts as a hydrogen-bond donor towards the carboxylate group (O7—HA⋯O2) and a hydroxy group (O7—HB⋯O3iv) of two hydrogen tartrate anions. The hydrocarbon parts of the tetrahydroisoquinolinium cations are oriented approximately perpendicular to the diperiodic hydrogen-bonded sheets formed by the hydrogen tartrate anions. The crystal packing in the third dimension is achieved by stacking in the c-axis direction with interlocking of the hydrocarbon tails through van der Waals packing (Fig. 3). This affords hydrophobic and hydrophilic regions in the crystal structure.
4. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.43, update of September 2022; Groom et al., 2016) revealed that crystal structures of salts of tetrahydroisoquinolinium are scarce. Thus far, the crystal structures of a solvent-free hydrochloride (CSD refcode: GESVOR; Zia-ur-Rehman et al., 2012), hydrogen squarate (TIGKIE; Kolev et al., 2007), hexachloridostannate(IV) (AYAHAM; Dhanalakshmi et al., 2021) and hexabromidostannate(IV) (AYAHEQ; Dhanalakshmi et al., 2021) as well as a violurate monohydrate (FUFPOM; Kolev et al., 2009) have been reported. The solid-state structure of free-base tetrahydroisoquinolinium, which is liquid at ambient conditions, is hitherto unknown, as far as we are able to ascertain. In contrast, hundreds of crystal structures containing hydrogen tartrate anions can be found in the CSD. In the vast majority of these crystal structures, the carbon skeleton of the hydrogen tartrate anion exhibits the anti conformation. Exceptions are the of quininium (S,S)-hydrogen tartrate hemihydrate (PUVTUV; Ryttersgaard & Larsen, 1998), lithium meso-hydrogen tartrate monohydrate (COFGAF10; Stouten et al., 1988), potassium meso-hydrogen tartrate monohydrate (KHMTAR01; Currie et al., 1975) and 1-(4′-cyano-4′-cyclohexyl-4′-phenylbutyl)piperidinium (S,S)-hydrogen tartrate (EZOWUL; Jones, 2004) in which the hydrogen tartrate anions are found in the gauche conformation.
5. Synthesis and crystallization
Starting materials were obtained from commercial sources and used as received. A mixture of 1,2,3,4-tetrahydroisoquinoline (266 mg, 2 mmol) and excess (2S,3S)-tartaric acid (1.50 g, 10 mmol) in 60 mL of deionized water was stirred for four h at room temperature. Subsequently, the salt was isolated by filtration. Colourless crystals suitable for single-crystal X-ray diffraction were obtained from a water/methanol (3:1) solution of the salt, after the solvents were allowed to evaporate slowly at ambient conditions.
6. Refinement
Crystal data, data collection and structure . Carbon-bound hydrogen atoms were placed in geometrically calculated positions and refined using the appropriate riding model with C—Haromatic = 0.95 Å, C—Hmethylene = 0.99 Å, C—Hmethine = 1.00 Å and Uiso(H) = 1.2 Ueq(C). Nitrogen- and oxygen-bound hydrogen atoms were located in difference-Fourier maps and subsequently refined semi-freely with the N—H and the O—H distances restrained to target values of 0.88 (2) Å and 0.84 (2) Å, respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2362561
https://doi.org/10.1107/S2056989024005711/tx2087sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005711/tx2087Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005711/tx2087Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005711/tx2087Isup4.cml
C9H12N+·C4H5O6−·H2O | Dx = 1.403 Mg m−3 |
Mr = 301.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5780 reflections |
a = 7.0695 (3) Å | θ = 3.0–27.7° |
b = 7.4842 (3) Å | µ = 0.12 mm−1 |
c = 26.9573 (10) Å | T = 115 K |
V = 1426.30 (10) Å3 | Prism, colourless |
Z = 4 | 0.49 × 0.21 × 0.20 mm |
F(000) = 640 |
Oxford Diffraction Xcalibur2 diffractometer | 3307 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2900 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 8.4171 pixels mm-1 | θmax = 28.5°, θmin = 2.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSPACK in CrysAlisPro; Rigaku OD, 2023) | k = −9→9 |
Tmin = 0.967, Tmax = 1.000 | l = −35→35 |
16488 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.2898P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3307 reflections | Δρmax = 0.25 e Å−3 |
218 parameters | Δρmin = −0.19 e Å−3 |
7 restraints | Absolute structure: The absolute structure was inferred from the known absolute configuration of the starting material. |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4189 (3) | 0.1694 (3) | 0.34142 (7) | 0.0239 (5) | |
H1A | 0.464782 | 0.045500 | 0.345983 | 0.029* | |
H1B | 0.528981 | 0.250520 | 0.344259 | 0.029* | |
C3 | 0.0946 (3) | 0.1243 (4) | 0.37283 (8) | 0.0285 (5) | |
H3A | 0.011223 | 0.144808 | 0.401784 | 0.034* | |
H3B | 0.112372 | −0.006161 | 0.368861 | 0.034* | |
C4 | 0.0045 (3) | 0.2016 (4) | 0.32647 (8) | 0.0270 (6) | |
H4A | −0.108849 | 0.130433 | 0.317815 | 0.032* | |
H4B | −0.037111 | 0.325477 | 0.333300 | 0.032* | |
C4A | 0.1392 (3) | 0.2023 (3) | 0.28289 (7) | 0.0214 (5) | |
C5 | 0.0715 (3) | 0.2181 (4) | 0.23438 (8) | 0.0304 (6) | |
H5 | −0.060695 | 0.228797 | 0.228874 | 0.036* | |
C6 | 0.1933 (4) | 0.2184 (4) | 0.19427 (8) | 0.0315 (6) | |
H6 | 0.144780 | 0.230122 | 0.161566 | 0.038* | |
C7 | 0.3856 (4) | 0.2017 (4) | 0.20182 (8) | 0.0309 (6) | |
H7 | 0.469721 | 0.200425 | 0.174352 | 0.037* | |
C8 | 0.4550 (3) | 0.1869 (3) | 0.24957 (8) | 0.0282 (5) | |
H8 | 0.587475 | 0.176093 | 0.254702 | 0.034* | |
C8A | 0.3337 (3) | 0.1876 (3) | 0.29031 (7) | 0.0194 (5) | |
C9 | 0.6220 (3) | 0.8178 (3) | 0.43005 (7) | 0.0163 (4) | |
C10 | 0.6944 (3) | 0.6256 (3) | 0.43360 (7) | 0.0150 (4) | |
H10 | 0.659059 | 0.561013 | 0.402479 | 0.018* | |
C11 | 0.6005 (3) | 0.5311 (3) | 0.47767 (7) | 0.0149 (4) | |
H11 | 0.460966 | 0.528552 | 0.471655 | 0.018* | |
C12 | 0.6706 (3) | 0.3389 (3) | 0.47987 (7) | 0.0151 (4) | |
N2 | 0.2809 (3) | 0.2123 (3) | 0.38108 (7) | 0.0226 (4) | |
H2A | 0.263 (4) | 0.333 (3) | 0.3823 (9) | 0.029 (7)* | |
H2B | 0.326 (3) | 0.179 (3) | 0.4103 (7) | 0.024 (6)* | |
O1 | 0.7420 (2) | 0.93738 (19) | 0.43712 (6) | 0.0257 (4) | |
O2 | 0.4493 (2) | 0.8404 (2) | 0.42043 (5) | 0.0183 (3) | |
O3 | 0.8937 (2) | 0.6193 (2) | 0.43902 (6) | 0.0204 (3) | |
H3 | 0.933 (4) | 0.721 (3) | 0.4501 (9) | 0.039 (8)* | |
O4 | 0.6332 (2) | 0.6239 (2) | 0.52224 (5) | 0.0206 (3) | |
H4 | 0.743 (3) | 0.609 (4) | 0.5316 (10) | 0.041 (8)* | |
O6 | 0.7472 (2) | 0.2755 (2) | 0.51597 (5) | 0.0242 (4) | |
O5 | 0.6396 (2) | 0.25433 (19) | 0.43803 (5) | 0.0181 (3) | |
H5A | 0.675 (4) | 0.141 (3) | 0.4404 (11) | 0.055 (9)* | |
O7 | 0.2156 (3) | 0.5762 (2) | 0.38150 (6) | 0.0290 (4) | |
H7A | 0.296 (4) | 0.651 (4) | 0.3947 (11) | 0.050 (9)* | |
H7B | 0.108 (4) | 0.581 (5) | 0.3967 (11) | 0.063 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0193 (11) | 0.0331 (13) | 0.0192 (10) | 0.0045 (11) | −0.0019 (9) | 0.0004 (9) |
C3 | 0.0244 (13) | 0.0404 (15) | 0.0208 (10) | −0.0100 (12) | 0.0004 (10) | 0.0047 (10) |
C4 | 0.0197 (12) | 0.0395 (15) | 0.0218 (11) | −0.0036 (11) | 0.0000 (9) | 0.0009 (10) |
C4A | 0.0236 (12) | 0.0214 (11) | 0.0190 (10) | −0.0013 (10) | −0.0003 (9) | 0.0004 (8) |
C5 | 0.0227 (12) | 0.0440 (15) | 0.0244 (11) | 0.0006 (12) | −0.0051 (9) | 0.0025 (10) |
C6 | 0.0367 (14) | 0.0433 (16) | 0.0145 (10) | 0.0000 (13) | −0.0045 (10) | 0.0014 (10) |
C7 | 0.0317 (13) | 0.0413 (15) | 0.0197 (11) | −0.0019 (13) | 0.0062 (10) | −0.0009 (10) |
C8 | 0.0221 (12) | 0.0389 (15) | 0.0235 (11) | 0.0007 (11) | 0.0011 (9) | −0.0017 (10) |
C8A | 0.0225 (11) | 0.0188 (11) | 0.0168 (9) | 0.0003 (9) | −0.0021 (8) | −0.0012 (8) |
C9 | 0.0179 (10) | 0.0152 (10) | 0.0159 (9) | 0.0004 (9) | 0.0013 (8) | −0.0004 (8) |
C10 | 0.0124 (10) | 0.0144 (10) | 0.0182 (9) | 0.0000 (8) | −0.0001 (8) | −0.0016 (8) |
C11 | 0.0137 (10) | 0.0169 (10) | 0.0141 (9) | −0.0011 (8) | −0.0019 (8) | −0.0024 (8) |
C12 | 0.0130 (10) | 0.0175 (10) | 0.0148 (9) | −0.0022 (8) | 0.0011 (8) | 0.0013 (8) |
N2 | 0.0232 (10) | 0.0298 (12) | 0.0149 (8) | −0.0029 (9) | −0.0012 (8) | 0.0027 (8) |
O1 | 0.0202 (8) | 0.0126 (7) | 0.0443 (9) | 0.0000 (7) | −0.0035 (8) | −0.0019 (7) |
O2 | 0.0149 (7) | 0.0195 (8) | 0.0204 (7) | 0.0019 (6) | 0.0000 (6) | 0.0001 (6) |
O3 | 0.0141 (7) | 0.0140 (8) | 0.0331 (8) | 0.0007 (6) | 0.0014 (7) | −0.0021 (6) |
O4 | 0.0169 (8) | 0.0255 (8) | 0.0194 (7) | 0.0031 (7) | −0.0023 (7) | −0.0090 (6) |
O6 | 0.0279 (8) | 0.0260 (9) | 0.0187 (7) | 0.0051 (8) | −0.0050 (6) | 0.0031 (6) |
O5 | 0.0240 (8) | 0.0116 (8) | 0.0188 (7) | 0.0018 (6) | −0.0029 (6) | −0.0008 (6) |
O7 | 0.0222 (9) | 0.0336 (10) | 0.0312 (9) | −0.0026 (8) | 0.0034 (8) | −0.0108 (8) |
C1—N2 | 1.483 (3) | C8—H8 | 0.9500 |
C1—C8A | 1.510 (3) | C9—O1 | 1.247 (2) |
C1—H1A | 0.9900 | C9—O2 | 1.260 (3) |
C1—H1B | 0.9900 | C9—C10 | 1.529 (3) |
C3—N2 | 1.489 (3) | C10—O3 | 1.417 (2) |
C3—C4 | 1.518 (3) | C10—C11 | 1.534 (3) |
C3—H3A | 0.9900 | C10—H10 | 1.0000 |
C3—H3B | 0.9900 | C11—O4 | 1.407 (2) |
C4—C4A | 1.512 (3) | C11—C12 | 1.522 (3) |
C4—H4A | 0.9900 | C11—H11 | 1.0000 |
C4—H4B | 0.9900 | C12—O6 | 1.211 (2) |
C4A—C8A | 1.393 (3) | C12—O5 | 1.312 (2) |
C4A—C5 | 1.397 (3) | N2—H2A | 0.91 (2) |
C5—C6 | 1.382 (3) | N2—H2B | 0.883 (19) |
C5—H5 | 0.9500 | O3—H3 | 0.87 (2) |
C6—C7 | 1.380 (3) | O4—H4 | 0.82 (2) |
C6—H6 | 0.9500 | O5—H5A | 0.89 (2) |
C7—C8 | 1.382 (3) | O7—H7A | 0.87 (2) |
C7—H7 | 0.9500 | O7—H7B | 0.87 (2) |
C8—C8A | 1.393 (3) | ||
N2—C1—C8A | 112.07 (18) | C8A—C8—H8 | 119.5 |
N2—C1—H1A | 109.2 | C4A—C8A—C8 | 119.6 (2) |
C8A—C1—H1A | 109.2 | C4A—C8A—C1 | 122.13 (19) |
N2—C1—H1B | 109.2 | C8—C8A—C1 | 118.22 (19) |
C8A—C1—H1B | 109.2 | O1—C9—O2 | 126.43 (19) |
H1A—C1—H1B | 107.9 | O1—C9—C10 | 115.97 (17) |
N2—C3—C4 | 108.99 (18) | O2—C9—C10 | 117.60 (17) |
N2—C3—H3A | 109.9 | O3—C10—C9 | 111.74 (16) |
C4—C3—H3A | 109.9 | O3—C10—C11 | 109.57 (16) |
N2—C3—H3B | 109.9 | C9—C10—C11 | 109.73 (16) |
C4—C3—H3B | 109.9 | O3—C10—H10 | 108.6 |
H3A—C3—H3B | 108.3 | C9—C10—H10 | 108.6 |
C4A—C4—C3 | 112.13 (19) | C11—C10—H10 | 108.6 |
C4A—C4—H4A | 109.2 | O4—C11—C12 | 112.33 (16) |
C3—C4—H4A | 109.2 | O4—C11—C10 | 111.24 (16) |
C4A—C4—H4B | 109.2 | C12—C11—C10 | 108.98 (16) |
C3—C4—H4B | 109.2 | O4—C11—H11 | 108.1 |
H4A—C4—H4B | 107.9 | C12—C11—H11 | 108.1 |
C8A—C4A—C5 | 118.6 (2) | C10—C11—H11 | 108.1 |
C8A—C4A—C4 | 120.63 (19) | O6—C12—O5 | 125.21 (19) |
C5—C4A—C4 | 120.8 (2) | O6—C12—C11 | 123.19 (18) |
C6—C5—C4A | 121.3 (2) | O5—C12—C11 | 111.59 (16) |
C6—C5—H5 | 119.4 | C1—N2—C3 | 112.25 (17) |
C4A—C5—H5 | 119.4 | C1—N2—H2A | 109.3 (17) |
C7—C6—C5 | 119.9 (2) | C3—N2—H2A | 108.7 (18) |
C7—C6—H6 | 120.1 | C1—N2—H2B | 110.2 (16) |
C5—C6—H6 | 120.1 | C3—N2—H2B | 109.1 (16) |
C6—C7—C8 | 119.6 (2) | H2A—N2—H2B | 107 (2) |
C6—C7—H7 | 120.2 | C10—O3—H3 | 109.0 (19) |
C8—C7—H7 | 120.2 | C11—O4—H4 | 110 (2) |
C7—C8—C8A | 121.0 (2) | C12—O5—H5A | 111 (2) |
C7—C8—H8 | 119.5 | H7A—O7—H7B | 110 (3) |
N2—C3—C4—C4A | 49.8 (3) | N2—C1—C8A—C8 | 167.3 (2) |
C3—C4—C4A—C8A | −18.9 (3) | O1—C9—C10—O3 | −6.6 (2) |
C3—C4—C4A—C5 | 161.3 (2) | O2—C9—C10—O3 | 173.40 (17) |
C8A—C4A—C5—C6 | 0.3 (4) | O1—C9—C10—C11 | 115.09 (19) |
C4—C4A—C5—C6 | −179.8 (2) | O2—C9—C10—C11 | −64.9 (2) |
C4A—C5—C6—C7 | 0.4 (4) | O3—C10—C11—O4 | 66.1 (2) |
C5—C6—C7—C8 | −0.8 (4) | C9—C10—C11—O4 | −57.0 (2) |
C6—C7—C8—C8A | 0.3 (4) | O3—C10—C11—C12 | −58.3 (2) |
C5—C4A—C8A—C8 | −0.8 (4) | C9—C10—C11—C12 | 178.67 (15) |
C4—C4A—C8A—C8 | 179.4 (2) | O4—C11—C12—O6 | −0.7 (3) |
C5—C4A—C8A—C1 | −179.8 (2) | C10—C11—C12—O6 | 123.1 (2) |
C4—C4A—C8A—C1 | 0.4 (4) | O4—C11—C12—O5 | −179.82 (16) |
C7—C8—C8A—C4A | 0.4 (4) | C10—C11—C12—O5 | −56.1 (2) |
C7—C8—C8A—C1 | 179.5 (2) | C8A—C1—N2—C3 | 46.4 (3) |
N2—C1—C8A—C4A | −13.7 (3) | C4—C3—N2—C1 | −65.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.99 | 2.53 | 3.263 (3) | 131 |
C3—H3A···O1ii | 0.99 | 2.63 | 3.343 (3) | 129 |
N2—H2A···O7 | 0.91 (2) | 1.85 (2) | 2.762 (3) | 176 (2) |
N2—H2B···O6iii | 0.88 (2) | 2.09 (2) | 2.787 (2) | 135 (2) |
N2—H2B···O5 | 0.88 (2) | 2.41 (2) | 2.981 (2) | 123 (2) |
O3—H3···O1 | 0.87 (2) | 2.14 (3) | 2.612 (2) | 114 (2) |
O3—H3···O4iv | 0.87 (2) | 1.98 (2) | 2.766 (2) | 151 (3) |
O4—H4···O2iv | 0.82 (2) | 1.99 (2) | 2.730 (2) | 150 (3) |
O5—H5A···O1i | 0.89 (2) | 1.60 (2) | 2.480 (2) | 173 (3) |
O7—H7A···O2 | 0.87 (2) | 1.91 (2) | 2.782 (2) | 173 (3) |
O7—H7B···O3v | 0.87 (2) | 1.92 (2) | 2.772 (2) | 169 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z; (iii) x−1/2, −y+1/2, −z+1; (iv) x+1/2, −y+3/2, −z+1; (v) x−1, y, z. |
Acknowledgements
We are grateful to the late Professor William S. Sheldrick for his support of this research. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.
References
Bharate, S. S. (2021). Pharm. Res. 38, 1307–1326. Web of Science CrossRef CAS PubMed Google Scholar
Bojarski, A. J., Mokrosz, M. J. & Paluchowska, M. H. (1995). Pharmazie, 50, 569–570. CAS Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365. CAS Google Scholar
Currie, M., Speakman, J. C., Kanters, J. A. & Kroon, J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1549–1554. CSD CrossRef Google Scholar
Dawson, R. M. C. (1959). Data for Biochemical Research. Oxford: Clarendon Press. Google Scholar
Dhanalakshmi, M., Balakrishnan, C., Ahamed, S. R., Vinitha, G. & Parthiban, S. (2021). J. Mol. Struct. 1245, 131092. CSD CrossRef Google Scholar
Gawronski, J., Długokinska, A., Grajewski, J., Plutecka, A. & Rychlewska, U. (2005). Chirality, 17, 388–395. CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jones, P. G. (2004). CSD Communication (refcode EZOWUL). CCDC, Cambridge, England. https://doi.org/10.5517/cc819vf Google Scholar
Kim, A. N., Ngamnithiporn, A., Du, E. & Stoltz, B. M. (2023). Chem. Rev. 123, 9447–9496. CrossRef CAS PubMed Google Scholar
Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352. Web of Science CSD CrossRef CAS Google Scholar
Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis system. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ryttersgaard, C. & Larsen, S. (1998). Acta Cryst. C54, 1698–1701. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stouten, P. F. W., Verwer, P., van Eijck, B. P. & Kroon, J. (1988). Acta Cryst. C44, 1961–1963. CSD CrossRef CAS IUCr Journals Google Scholar
Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zia–ur–Rehman, Muhammad, N., Shah, A., Ali, S. & Khan, E. (2012). Heteroat. Chem. 23, 560–567. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.