research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­­oxy-2,3-di­hy­droxy­propano­ate monohydrate

crossmark logo

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 10 June 2024; accepted 13 June 2024; online 21 June 2024)

The crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate, C9H12N+·C4H5O6·H2O, at 115 K shows ortho­rhom­bic symmetry (space group P212121). The hydrogen tartrate anions and solvent water mol­ecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetra­hydro­isoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydro­carbon tails of the tetra­hydro­isoquinolinium cations, resulting in hydro­phobic and hydro­philic regions in the crystal structure.

1. Chemical context

1,2,3,4-Tetra­hydro­iso­quinoline is a secondary amine derived from iso­quinoline. Tetra­hydro­iso­quinoline alkaloids represent a large and structurally diverse group of natural products with a wide range of biological activity (Kim et al., 2023[Kim, A. N., Ngamnithiporn, A., Du, E. & Stoltz, B. M. (2023). Chem. Rev. 123, 9447-9496.]). The tetra­hydro­iso­quinoline scaffold is also encountered in a number of approved drugs, for example in the angiotensin-converting-enzyme inhibitor quinapril and in the anti­muscarinic solifenacin. Thus far, few salts of 1,2,3,4-tetra­hydro­iso­quinoline have been structurally characterized (see Section 4). Herein, we describe the crystal and mol­ecular structure of 1,2,3,4-tetra­hydro­isoquinolinium hydrogen tartrate monohydrate [systematic name: 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate hydrate]. Hydrogen tartrate is a well-known anion in pharmaceutics (Bharate, 2021[Bharate, S. S. (2021). Pharm. Res. 38, 1307-1326.]). The pKa of the conjugate acid of tetra­hydro­iso­quinoline is 9.3 (at 310 K; Bojarski et al., 1995[Bojarski, A. J., Mokrosz, M. J. & Paluchowska, M. H. (1995). Pharmazie, 50, 569-570.]), and the pKa1 of tartaric acid is 2.9 (at 298 K; Dawson, 1959[Dawson, R. M. C. (1959). Data for Biochemical Research. Oxford: Clarendon Press.]). According to the pKa rule (Cruz-Cabeza, 2012[Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.]), we can estimate ΔpKa = pKa[protonated base] − pKa[acid] = 9.3 – 2.9 = 6.4. Hence, proton transfer is expected when tetra­hydro­iso­quinoline is reacted with tartaric acid.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows a displacement ellipsoid plot of the mol­ecular components of the salt in the solid state. The asymmetric unit comprises a 1,2,3,4-tetra­hydro­isoquinolin-2-ium cation, a (2S,3S)-hydrogen tartrate anion and a water mol­ecule of crystallization. The axially chiral conformation of the tetra­hydro­isoquinolinium cation is left-handed, as revealed by the C4—C3—N2—C1 torsion angle of −65.8 (3)°. The carbon skeleton of the hydrogen tartrate anion adopts an anti­periplanar (anti) conformation [C9—C10—C11—C12 = 178.67 (15)°], which is known to be the predominant one in tartaric acid derivatives (Gawronski et al., 2005[Gawronski, J., Długokinska, A., Grajewski, J., Plutecka, A. & Rychlewska, U. (2005). Chirality, 17, 388-395.]). The carb­oxy group of the anion exhibits the syn conformation.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are presented by small spheres of arbitrary radius. Dashed lines illustrate hydrogen bonds.

3. Supra­molecular features

The solid state supra­molecular structure features an intricate network of N—H⋯O and O—H⋯O hydrogen bonds (Fig. 2[link]). Table 1[link] lists the corresponding geometric parameters, which are within expected ranges (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25-48. Oxford: Elsevier.]). The hydrogen tartrate anions form hydrogen-bonded chains by translational symmetry in the b-axis direction through hydrogen bonding between the carb­oxy group and the carboxyl­ate group of an adjacent mol­ecule (O5—H5A⋯O1iii). In the a-axis direction, the hydrogen tartrate ions are connected along a 21 screw axis via two hydrogen bonds with the two hy­droxy groups as donors and a hy­droxy group (O3—H3⋯O4ii) and the carboxyl­ate group (O4—H4⋯O2ii) of a neighbouring mol­ecule as acceptors. These O—H⋯O hydrogen-bonding inter­actions that extend in the a- and b-axis directions result in diperiodic hydrogen-bonded sheets parallel to (001). The protonated amino group of the tetra­hydro­isoquinolinium cation forms a bifurcated hydrogen bond to the carb­oxy groups of two adjacent hydrogen tartrate anions (N2—H2B⋯O5 and N2—H2B⋯O6i) and another hydrogen bond to the solvent water mol­ecule (N2—H2A⋯O7). The water mol­ecule in turn acts as a hydrogen-bond donor towards the carboxyl­ate group (O7—HA⋯O2) and a hy­droxy group (O7—HB⋯O3iv) of two hydrogen tartrate anions. The hydro­carbon parts of the tetra­hydro­isoquinolinium cations are oriented approximately perpendicular to the diperiodic hydrogen-bonded sheets formed by the hydrogen tartrate anions. The crystal packing in the third dimension is achieved by stacking in the c-axis direction with inter­locking of the hydro­carbon tails through van der Waals packing (Fig. 3[link]). This affords hydro­phobic and hydro­philic regions in the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7 0.91 (2) 1.85 (2) 2.762 (3) 176 (2)
N2—H2B⋯O6i 0.88 (2) 2.09 (2) 2.787 (2) 135 (2)
N2—H2B⋯O5 0.88 (2) 2.41 (2) 2.981 (2) 123 (2)
O3—H3⋯O4ii 0.87 (2) 1.98 (2) 2.766 (2) 151 (3)
O4—H4⋯O2ii 0.82 (2) 1.99 (2) 2.730 (2) 150 (3)
O5—H5A⋯O1iii 0.89 (2) 1.60 (2) 2.480 (2) 173 (3)
O7—H7A⋯O2 0.87 (2) 1.91 (2) 2.782 (2) 173 (3)
O7—H7B⋯O3iv 0.87 (2) 1.92 (2) 2.772 (2) 169 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x, y-1, z]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
Section of the crystal structure, viewed along the [011] direction, showing the unique hydrogen bonds (dashed lines). Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) x, y − 1, z; (iv) x − 1, y, z.
[Figure 3]
Figure 3
Space-filling representation of the crystal structure, viewed along the a-axis direction. Colour scheme: C, grey; H, white; N, blue; O, red.

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures of salts of tetra­hydro­isoquinolinium are scarce. Thus far, the crystal structures of a solvent-free hydro­chloride (CSD refcode: GESVOR; Zia-ur-Rehman et al., 2012[Zia-ur-Rehman, Muhammad, N., Shah, A., Ali, S. & Khan, E. (2012). Heteroat. Chem. 23, 560-567.]), hydrogen squarate (TIGKIE; Kolev et al., 2007[Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353-o3354.]), hexa­chlorido­stannate(IV) (AYAHAM; Dhanalakshmi et al., 2021[Dhanalakshmi, M., Balakrishnan, C., Ahamed, S. R., Vinitha, G. & Parthiban, S. (2021). J. Mol. Struct. 1245, 131092.]) and hexa­bromido­stannate(IV) (AYAHEQ; Dhanalakshmi et al., 2021[Dhanalakshmi, M., Balakrishnan, C., Ahamed, S. R., Vinitha, G. & Parthiban, S. (2021). J. Mol. Struct. 1245, 131092.]) as well as a violurate monohydrate (FUFPOM; Kolev et al., 2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348-3352.]) have been reported. The solid-state structure of free-base tetra­hydro­isoquinolinium, which is liquid at ambient conditions, is hitherto unknown, as far as we are able to ascertain. In contrast, hundreds of crystal structures containing hydrogen tartrate anions can be found in the CSD. In the vast majority of these crystal structures, the carbon skeleton of the hydrogen tartrate anion exhibits the anti conformation. Exceptions are the crystal structure of quininium (S,S)-hydrogen tartrate hemihydrate (PUVTUV; Ryttersgaard & Larsen, 1998[Ryttersgaard, C. & Larsen, S. (1998). Acta Cryst. C54, 1698-1701.]), lithium meso-hydrogen tartrate monohydrate (COFGAF10; Stouten et al., 1988[Stouten, P. F. W., Verwer, P., van Eijck, B. P. & Kroon, J. (1988). Acta Cryst. C44, 1961-1963.]), potassium meso-hydrogen tartrate monohydrate (KHMTAR01; Currie et al., 1975[Currie, M., Speakman, J. C., Kanters, J. A. & Kroon, J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1549-1554.]) and 1-(4′-cyano-4′-cyclo­hexyl-4′-phenyl­but­yl)piperidinium (S,S)-hydrogen tartrate (EZOWUL; Jones, 2004[Jones, P. G. (2004). CSD Communication (refcode EZOWUL). CCDC, Cambridge, England. https://doi.org/10.5517/cc819vf]) in which the hydrogen tartrate anions are found in the gauche conformation.

5. Synthesis and crystallization

Starting materials were obtained from commercial sources and used as received. A mixture of 1,2,3,4-tetra­hydro­iso­quinoline (266 mg, 2 mmol) and excess (2S,3S)-tartaric acid (1.50 g, 10 mmol) in 60 mL of deionized water was stirred for four h at room temperature. Subsequently, the salt was isolated by filtration. Colourless crystals suitable for single-crystal X-ray diffraction were obtained from a water/methanol (3:1) solution of the salt, after the solvents were allowed to evaporate slowly at ambient conditions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound hydrogen atoms were placed in geometrically calculated positions and refined using the appropriate riding model with C—Haromatic = 0.95 Å, C—Hmethyl­ene = 0.99 Å, C—Hmethine = 1.00 Å and Uiso(H) = 1.2 Ueq(C). Nitro­gen- and oxygen-bound hydrogen atoms were located in difference-Fourier maps and subsequently refined semi-freely with the N—H and the O—H distances restrained to target values of 0.88 (2) Å and 0.84 (2) Å, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C9H12N+·C4H5O6·H2O
Mr 301.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 115
a, b, c (Å) 7.0695 (3), 7.4842 (3), 26.9573 (10)
V3) 1426.30 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.49 × 0.21 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur2
Absorption correction Multi-scan (ABSPACK in CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16488, 3307, 2900
Rint 0.038
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.04
No. of reflections 3307
No. of parameters 218
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.19
Absolute structure The absolute structure was inferred from the known absolute configuration of the starting material.
Computer programs: CrysAlis system (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis system. Oxford Diffraction Ltd, Yarnton, England.]), CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1,2,3,4-Tetrahydroisoquinolin-2-ium (2S,3S)-3-carboxy-2,3-dihydroxypropanoate monohydrate top
Crystal data top
C9H12N+·C4H5O6·H2ODx = 1.403 Mg m3
Mr = 301.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5780 reflections
a = 7.0695 (3) Åθ = 3.0–27.7°
b = 7.4842 (3) ŵ = 0.12 mm1
c = 26.9573 (10) ÅT = 115 K
V = 1426.30 (10) Å3Prism, colourless
Z = 40.49 × 0.21 × 0.20 mm
F(000) = 640
Data collection top
Oxford Diffraction Xcalibur2
diffractometer
3307 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.4171 pixels mm-1θmax = 28.5°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(ABSPACK in CrysAlisPro; Rigaku OD, 2023)
k = 99
Tmin = 0.967, Tmax = 1.000l = 3535
16488 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.2898P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3307 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.19 e Å3
7 restraintsAbsolute structure: The absolute structure was inferred from the known absolute configuration of the starting material.
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4189 (3)0.1694 (3)0.34142 (7)0.0239 (5)
H1A0.4647820.0455000.3459830.029*
H1B0.5289810.2505200.3442590.029*
C30.0946 (3)0.1243 (4)0.37283 (8)0.0285 (5)
H3A0.0112230.1448080.4017840.034*
H3B0.1123720.0061610.3688610.034*
C40.0045 (3)0.2016 (4)0.32647 (8)0.0270 (6)
H4A0.1088490.1304330.3178150.032*
H4B0.0371110.3254770.3333000.032*
C4A0.1392 (3)0.2023 (3)0.28289 (7)0.0214 (5)
C50.0715 (3)0.2181 (4)0.23438 (8)0.0304 (6)
H50.0606950.2287970.2288740.036*
C60.1933 (4)0.2184 (4)0.19427 (8)0.0315 (6)
H60.1447800.2301220.1615660.038*
C70.3856 (4)0.2017 (4)0.20182 (8)0.0309 (6)
H70.4697210.2004250.1743520.037*
C80.4550 (3)0.1869 (3)0.24957 (8)0.0282 (5)
H80.5874750.1760930.2547020.034*
C8A0.3337 (3)0.1876 (3)0.29031 (7)0.0194 (5)
C90.6220 (3)0.8178 (3)0.43005 (7)0.0163 (4)
C100.6944 (3)0.6256 (3)0.43360 (7)0.0150 (4)
H100.6590590.5610130.4024790.018*
C110.6005 (3)0.5311 (3)0.47767 (7)0.0149 (4)
H110.4609660.5285520.4716550.018*
C120.6706 (3)0.3389 (3)0.47987 (7)0.0151 (4)
N20.2809 (3)0.2123 (3)0.38108 (7)0.0226 (4)
H2A0.263 (4)0.333 (3)0.3823 (9)0.029 (7)*
H2B0.326 (3)0.179 (3)0.4103 (7)0.024 (6)*
O10.7420 (2)0.93738 (19)0.43712 (6)0.0257 (4)
O20.4493 (2)0.8404 (2)0.42043 (5)0.0183 (3)
O30.8937 (2)0.6193 (2)0.43902 (6)0.0204 (3)
H30.933 (4)0.721 (3)0.4501 (9)0.039 (8)*
O40.6332 (2)0.6239 (2)0.52224 (5)0.0206 (3)
H40.743 (3)0.609 (4)0.5316 (10)0.041 (8)*
O60.7472 (2)0.2755 (2)0.51597 (5)0.0242 (4)
O50.6396 (2)0.25433 (19)0.43803 (5)0.0181 (3)
H5A0.675 (4)0.141 (3)0.4404 (11)0.055 (9)*
O70.2156 (3)0.5762 (2)0.38150 (6)0.0290 (4)
H7A0.296 (4)0.651 (4)0.3947 (11)0.050 (9)*
H7B0.108 (4)0.581 (5)0.3967 (11)0.063 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (11)0.0331 (13)0.0192 (10)0.0045 (11)0.0019 (9)0.0004 (9)
C30.0244 (13)0.0404 (15)0.0208 (10)0.0100 (12)0.0004 (10)0.0047 (10)
C40.0197 (12)0.0395 (15)0.0218 (11)0.0036 (11)0.0000 (9)0.0009 (10)
C4A0.0236 (12)0.0214 (11)0.0190 (10)0.0013 (10)0.0003 (9)0.0004 (8)
C50.0227 (12)0.0440 (15)0.0244 (11)0.0006 (12)0.0051 (9)0.0025 (10)
C60.0367 (14)0.0433 (16)0.0145 (10)0.0000 (13)0.0045 (10)0.0014 (10)
C70.0317 (13)0.0413 (15)0.0197 (11)0.0019 (13)0.0062 (10)0.0009 (10)
C80.0221 (12)0.0389 (15)0.0235 (11)0.0007 (11)0.0011 (9)0.0017 (10)
C8A0.0225 (11)0.0188 (11)0.0168 (9)0.0003 (9)0.0021 (8)0.0012 (8)
C90.0179 (10)0.0152 (10)0.0159 (9)0.0004 (9)0.0013 (8)0.0004 (8)
C100.0124 (10)0.0144 (10)0.0182 (9)0.0000 (8)0.0001 (8)0.0016 (8)
C110.0137 (10)0.0169 (10)0.0141 (9)0.0011 (8)0.0019 (8)0.0024 (8)
C120.0130 (10)0.0175 (10)0.0148 (9)0.0022 (8)0.0011 (8)0.0013 (8)
N20.0232 (10)0.0298 (12)0.0149 (8)0.0029 (9)0.0012 (8)0.0027 (8)
O10.0202 (8)0.0126 (7)0.0443 (9)0.0000 (7)0.0035 (8)0.0019 (7)
O20.0149 (7)0.0195 (8)0.0204 (7)0.0019 (6)0.0000 (6)0.0001 (6)
O30.0141 (7)0.0140 (8)0.0331 (8)0.0007 (6)0.0014 (7)0.0021 (6)
O40.0169 (8)0.0255 (8)0.0194 (7)0.0031 (7)0.0023 (7)0.0090 (6)
O60.0279 (8)0.0260 (9)0.0187 (7)0.0051 (8)0.0050 (6)0.0031 (6)
O50.0240 (8)0.0116 (8)0.0188 (7)0.0018 (6)0.0029 (6)0.0008 (6)
O70.0222 (9)0.0336 (10)0.0312 (9)0.0026 (8)0.0034 (8)0.0108 (8)
Geometric parameters (Å, º) top
C1—N21.483 (3)C8—H80.9500
C1—C8A1.510 (3)C9—O11.247 (2)
C1—H1A0.9900C9—O21.260 (3)
C1—H1B0.9900C9—C101.529 (3)
C3—N21.489 (3)C10—O31.417 (2)
C3—C41.518 (3)C10—C111.534 (3)
C3—H3A0.9900C10—H101.0000
C3—H3B0.9900C11—O41.407 (2)
C4—C4A1.512 (3)C11—C121.522 (3)
C4—H4A0.9900C11—H111.0000
C4—H4B0.9900C12—O61.211 (2)
C4A—C8A1.393 (3)C12—O51.312 (2)
C4A—C51.397 (3)N2—H2A0.91 (2)
C5—C61.382 (3)N2—H2B0.883 (19)
C5—H50.9500O3—H30.87 (2)
C6—C71.380 (3)O4—H40.82 (2)
C6—H60.9500O5—H5A0.89 (2)
C7—C81.382 (3)O7—H7A0.87 (2)
C7—H70.9500O7—H7B0.87 (2)
C8—C8A1.393 (3)
N2—C1—C8A112.07 (18)C8A—C8—H8119.5
N2—C1—H1A109.2C4A—C8A—C8119.6 (2)
C8A—C1—H1A109.2C4A—C8A—C1122.13 (19)
N2—C1—H1B109.2C8—C8A—C1118.22 (19)
C8A—C1—H1B109.2O1—C9—O2126.43 (19)
H1A—C1—H1B107.9O1—C9—C10115.97 (17)
N2—C3—C4108.99 (18)O2—C9—C10117.60 (17)
N2—C3—H3A109.9O3—C10—C9111.74 (16)
C4—C3—H3A109.9O3—C10—C11109.57 (16)
N2—C3—H3B109.9C9—C10—C11109.73 (16)
C4—C3—H3B109.9O3—C10—H10108.6
H3A—C3—H3B108.3C9—C10—H10108.6
C4A—C4—C3112.13 (19)C11—C10—H10108.6
C4A—C4—H4A109.2O4—C11—C12112.33 (16)
C3—C4—H4A109.2O4—C11—C10111.24 (16)
C4A—C4—H4B109.2C12—C11—C10108.98 (16)
C3—C4—H4B109.2O4—C11—H11108.1
H4A—C4—H4B107.9C12—C11—H11108.1
C8A—C4A—C5118.6 (2)C10—C11—H11108.1
C8A—C4A—C4120.63 (19)O6—C12—O5125.21 (19)
C5—C4A—C4120.8 (2)O6—C12—C11123.19 (18)
C6—C5—C4A121.3 (2)O5—C12—C11111.59 (16)
C6—C5—H5119.4C1—N2—C3112.25 (17)
C4A—C5—H5119.4C1—N2—H2A109.3 (17)
C7—C6—C5119.9 (2)C3—N2—H2A108.7 (18)
C7—C6—H6120.1C1—N2—H2B110.2 (16)
C5—C6—H6120.1C3—N2—H2B109.1 (16)
C6—C7—C8119.6 (2)H2A—N2—H2B107 (2)
C6—C7—H7120.2C10—O3—H3109.0 (19)
C8—C7—H7120.2C11—O4—H4110 (2)
C7—C8—C8A121.0 (2)C12—O5—H5A111 (2)
C7—C8—H8119.5H7A—O7—H7B110 (3)
N2—C3—C4—C4A49.8 (3)N2—C1—C8A—C8167.3 (2)
C3—C4—C4A—C8A18.9 (3)O1—C9—C10—O36.6 (2)
C3—C4—C4A—C5161.3 (2)O2—C9—C10—O3173.40 (17)
C8A—C4A—C5—C60.3 (4)O1—C9—C10—C11115.09 (19)
C4—C4A—C5—C6179.8 (2)O2—C9—C10—C1164.9 (2)
C4A—C5—C6—C70.4 (4)O3—C10—C11—O466.1 (2)
C5—C6—C7—C80.8 (4)C9—C10—C11—O457.0 (2)
C6—C7—C8—C8A0.3 (4)O3—C10—C11—C1258.3 (2)
C5—C4A—C8A—C80.8 (4)C9—C10—C11—C12178.67 (15)
C4—C4A—C8A—C8179.4 (2)O4—C11—C12—O60.7 (3)
C5—C4A—C8A—C1179.8 (2)C10—C11—C12—O6123.1 (2)
C4—C4A—C8A—C10.4 (4)O4—C11—C12—O5179.82 (16)
C7—C8—C8A—C4A0.4 (4)C10—C11—C12—O556.1 (2)
C7—C8—C8A—C1179.5 (2)C8A—C1—N2—C346.4 (3)
N2—C1—C8A—C4A13.7 (3)C4—C3—N2—C165.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.992.533.263 (3)131
C3—H3A···O1ii0.992.633.343 (3)129
N2—H2A···O70.91 (2)1.85 (2)2.762 (3)176 (2)
N2—H2B···O6iii0.88 (2)2.09 (2)2.787 (2)135 (2)
N2—H2B···O50.88 (2)2.41 (2)2.981 (2)123 (2)
O3—H3···O10.87 (2)2.14 (3)2.612 (2)114 (2)
O3—H3···O4iv0.87 (2)1.98 (2)2.766 (2)151 (3)
O4—H4···O2iv0.82 (2)1.99 (2)2.730 (2)150 (3)
O5—H5A···O1i0.89 (2)1.60 (2)2.480 (2)173 (3)
O7—H7A···O20.87 (2)1.91 (2)2.782 (2)173 (3)
O7—H7B···O3v0.87 (2)1.92 (2)2.772 (2)169 (3)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x1, y, z.
 

Acknowledgements

We are grateful to the late Professor William S. Sheldrick for his support of this research. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.

References

First citationBharate, S. S. (2021). Pharm. Res. 38, 1307–1326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBojarski, A. J., Mokrosz, M. J. & Paluchowska, M. H. (1995). Pharmazie, 50, 569–570.  CAS Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.  CAS Google Scholar
First citationCurrie, M., Speakman, J. C., Kanters, J. A. & Kroon, J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1549–1554.  CSD CrossRef Google Scholar
First citationDawson, R. M. C. (1959). Data for Biochemical Research. Oxford: Clarendon Press.  Google Scholar
First citationDhanalakshmi, M., Balakrishnan, C., Ahamed, S. R., Vinitha, G. & Parthiban, S. (2021). J. Mol. Struct. 1245, 131092.  CSD CrossRef Google Scholar
First citationGawronski, J., Długokinska, A., Grajewski, J., Plutecka, A. & Rychlewska, U. (2005). Chirality, 17, 388–395.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, P. G. (2004). CSD Communication (refcode EZOWUL). CCDC, Cambridge, England. https://doi.org/10.5517/cc819vf  Google Scholar
First citationKim, A. N., Ngamnithiporn, A., Du, E. & Stoltz, B. M. (2023). Chem. Rev. 123, 9447–9496.  CrossRef CAS PubMed Google Scholar
First citationKolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis system. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyttersgaard, C. & Larsen, S. (1998). Acta Cryst. C54, 1698–1701.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStouten, P. F. W., Verwer, P., van Eijck, B. P. & Kroon, J. (1988). Acta Cryst. C44, 1961–1963.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia–ur–Rehman, Muhammad, N., Shah, A., Ali, S. & Khan, E. (2012). Heteroat. Chem. 23, 560–567.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds