research communications
Synthesis, spectroscopic analysis and N-{2-[(2-aminoethyl)amino]ethyl}-4′-methyl-[1,1′-biphenyl]-4-sulfonamidato)tricarbonylrhenium(I)
of (aDepartment of Chemistry, University of Sri Jayewardenepura, Sri Lanka, bDepartment of Pharmacy and Pharmaceutical Sciences, University of Sri Jayewardenepura, Sri Lanka, and cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: theshi@sjp.ac.lk
The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methylbiphenyl sulfonamide derivatized diethylenetriamine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octahedral geometry where one face of the octahedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitrogen atom of the sulfonamide group and two sp3 nitrogen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).
Keywords: rhenium complexes; diethylenetriamine; biphenyl; sulfonamide; crystal structure.
CCDC reference: 2362252
1. Chemical context
Organometallic compounds have garnered significant interest due to their notable properties in cell imaging and anticancer applications. Particularly, Re complexes are noted for their kinetic inertness and large et al., 2004; Guo et al., 1997). Research has shown that tridentate ligand systems are more robust and possess better pharmacokinetics than those bearing bidentate ligands, leading to reduced side effects (Schibli et al., 2000). Our focus involves a sulfonamide ligand, which has a diethylenetriamine (dien) backbone and 4-methylbiphenyl (4-Mebip) as the The N(SO2)(4-Mebip)dienH ligand, along with its bidentate PtII complex have both been reported to exhibit remarkable anticancer properties against non-small lung cancer (Kaluthanthiri et al., 2023). Motivated by its potential as a cytotoxic drug lead, here we have focused on rhenium, in its lowest because it exhibits less reactivity toward species in the cellular environment (Schibli & Schubiger, 2002). Given rhenium's soft metal center characteristics, a preference for soft donors, particularly nitrogen, is observed and tridentate metal complexes featuring nitrogen donors are commonly employed (Christoforou et al., 2007; Kaushalya et al., 2022; Darshani et al., 2020). In this study, the Re(CO)3[N(SO2)(4-Mebip)dien] complex was successfully synthesized and its molecular structure was confirmed by single-crystal X-ray and 1H NMR spectroscopy. Furthermore, comprehensive characterization was conducted using FTIR, UV–vis, and fluorescence spectroscopic techniques.
(Stephenson2. Structural commentary
The Re(CO)3[N(SO2)(4-Mebip)dien] complex is shown in Fig. 1. The Re—C distances in Re—CO bonds are in the range of 1.895 (8)–1.914 (6) Å, which is consistent with related data reported (Christoforou et al., 2007; Darshani et al., 2020). The longest Re—C distance is trans to the sp2 nitrogen atom N3. The C11—C14 bond distance between the two phenyl rings of the anionic ligand in the biphenyl group in Re(CO)3[N(SO2)(4-Mebip)dien] is 1.484 (8) Å. The biphenyl moiety is twisted out of planarity, the dihedral angle between the two planes being 36.5 (3)°. The average Re—N bond length in our Re complex is 2.206 Å, which is consistent with the distances found in related Re(CO)3 complexes containing a dien backbone (Christoforou et al., 2007). The Re—N3 bond (sp2 nitrogen) distance [2.173 (4) Å] in the complex is significantly shorter than the other Re—N (sp3 N) bonds [2.217 (5) and 2.228 (6) Å], which explains the anionic nature of the N3 amino nitrogen. The S—N bond length for the deprotonated sulfonamido group is 1.579 (4) Å for the complex and is within the accepted range for S—N bonds available in deprotonated coordinated to Re, Cu and Zn metals (Christoforou et al., 2007; Goodwin et al., 2004; Congreve et al., 2003).
3. Supramolecular features
The . The intermolecular interactions are predominantly N—H⋯O hydrogen bonds as listed in Table 1 and shown in Fig. 3. The N1⋯O2 separations in these hydrogen bonds are in the range 2.941 (5)–3.053 (7) Å. The graph sets (Etter et al., 1990) are centrosymmetric R22(10) rings and C11(6) chains, forming double-stranded chains in the [001] direction. One of the NH2 H atoms is not involved in the hydrogen bonding. Interleaved between the double-stranded hydrogen-bonded chains are hydrophobic layers of stacked biphenyl moieties, as can be seen in Fig. 2. The closest distance [4.079 (4) Å] between centers of gravity (Cg) of these rings is between the phenyl ring C14–C19 carrying the methyl group and its centrosymmetric equivalent at 1 − x, 2 − y, 2 − z. There are no other Cg⋯Cg distances closer than 5.5 Å. The phenyl ring C8–C13 has no close intermolecular contacts to other phenyl rings, but has a close contact to carbonyl C5—O1 at x, − y, − + z, with Cg⋯O1 3.758 (7) Å.
is shown in Fig. 24. Database survey
A search of the Cambridge Structural Database (CSD, version 5.45, update of March 2024; Groom et al., 2016) for the diethylenetriamine SO2Re(CO)3 fragment yielded four hits, LIMDIV and LIMDOB (Christoforou et al., 2007); SUNFUF and SUNGAM (Darshani et al., 2020). These structures have been mentioned above. A similar search for [N-(2-aminoethyl)ethane-1,2-diamine]Re(CO)3 salts yielded seven hits: BUPXAO, BUPXES, BUPYIX, and BUPYOD (Abhayawardhana et al., 2020), IWENAZ (Mundwiler et al., 2004), TIYVIH and TIYVON (Christoforou et al., 2007). In these structures, the Re—N distances are in the range 2.203 (7)–2.244 (3) Å, with a mean value 2.219 Å for 21 individual measurements. The Re—C distances are in the range 1.878 (12)–1.956 (15) Å with a mean value 1.917 Å. There is no indication that the Re—N or Re—C distances to the central ligand atoms differ from those to the terminal atoms.
5. Synthesis, crystallization and spectroscopic data
The ligand N(SO2)(4-Mebip)dienH was synthesized by following a reported procedure (Fig. 4; Kaluthanthiri et al., 2023). A solution of the ligand N(SO2)(4-Mebip)dienH (0.0272 g, 0.0816 mmol) in 2 ml of methanol was added to a solution of [Re(CO)3(H2O)3]Br (0.033 g, 0.0816 mmol) in 3 ml of water. The solution was then adjusted to pH 7–8 with aqueous NaOH and refluxed for 16 h (Fig. 4). The complex formed was collected by filtration as a white powder (0.025 g, 51% yield). Crystals suitable for X-ray crystallography were grown by slow evaporation of an acetonitrile/ methanol solution. UV–vis (MeOH) [λmax (nm)]: 203, 266; FT–IR (ATR) (cm−1): 969 ([(S—N)], 1342, 1128 [ν(S=O)], 2008, 1865 [ν(CO)]. 1H NMR (400 MHz, DMSO-d6) δ(ppm): 7.81 (m, 2H, Ha/a′), 7.74 (m, 2H, Hb/b′), 7.62 (m, 2H, Hc/c′) 7.29 (m, 2H, Hd/d′), 6.69 (b, 1H, N2H), 5.15 (m, 1H, endo N1H), 3.47 (m, 1H, exo N1H), 3.34–3.38 (m, 1H, CH), 2.64–2.90 (m, 7H, CH2), 2.35 (s, 3H, CH3). Although the ligand shows excellent fluorescence properties even at low concentrations, its Re complex offers quenched fluorescence properties attributed to the direct binding of sulfonamide nitrogen to Re center in the complex (Fig. 5). Furthermore, a slight blue shift (about 9 nm) was observed in the complex.
6. Refinement
Crystal data, data collection and structure . All H atoms were located in difference maps and treated as riding in geometrically idealized positions with C—H distances of 0.94 Å and with Uiso(H) = 1.2Ueq for the attached C atom (0.97 Å and 1.5Ueq for the methyl group). The H atoms on nitrogen had N—H distances of 0.89 Å for NH2 and 0.98 Å for NH, and Uiso values were assigned as 1.2Ueq for the N atom.
details are summarized in Table 2Supporting information
CCDC reference: 2362252
https://doi.org/10.1107/S2056989024005656/vm2303sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005656/vm2303Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005656/vm2303Isup3.cdx
[Re(C17H22N3O2S)(CO)3] | F(000) = 1176 |
Mr = 602.66 | Dx = 1.825 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.5651 (9) Å | Cell parameters from 2346 reflections |
b = 7.6604 (4) Å | θ = 2.6–24.1° |
c = 15.4897 (11) Å | µ = 5.67 mm−1 |
β = 95.472 (2)° | T = 296 K |
V = 2192.8 (2) Å3 | Needle, colorless |
Z = 4 | 0.22 × 0.13 × 0.05 mm |
Bruker Kappa APEXII CCD diffractometer | 4849 independent reflections |
Radiation source: fine-focus sealed tube | 3513 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.102 |
φ and ω scans | θmax = 27.2°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −23→23 |
Tmin = 0.572, Tmax = 0.765 | k = −9→9 |
119413 measured reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0179P)2 + 6.5423P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 2.00 e Å−3 |
4849 reflections | Δρmin = −1.80 e Å−3 |
273 parameters | Extinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00017 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.86146 (2) | 0.45261 (3) | 0.61070 (2) | 0.04344 (9) | |
S1 | 0.82122 (8) | 0.3572 (2) | 0.81148 (8) | 0.0456 (4) | |
O1 | 0.7335 (3) | 0.7018 (7) | 0.5732 (4) | 0.0875 (16) | |
O2 | 0.9354 (3) | 0.7562 (8) | 0.7131 (3) | 0.104 (2) | |
O3 | 0.9230 (3) | 0.6052 (8) | 0.4508 (3) | 0.0879 (17) | |
O4 | 0.8016 (2) | 0.2083 (5) | 0.8619 (2) | 0.0563 (11) | |
O5 | 0.8906 (2) | 0.4354 (6) | 0.8338 (2) | 0.0568 (11) | |
N1 | 0.9482 (3) | 0.2530 (9) | 0.6360 (3) | 0.0769 (19) | |
H11N | 0.991541 | 0.302049 | 0.634639 | 0.092* | |
H12N | 0.945892 | 0.205082 | 0.688023 | 0.092* | |
N2 | 0.8135 (3) | 0.2133 (6) | 0.5486 (3) | 0.0487 (12) | |
H2N | 0.801808 | 0.237533 | 0.486680 | 0.058* | |
N3 | 0.8132 (2) | 0.3099 (6) | 0.7118 (2) | 0.0440 (12) | |
C1 | 0.9364 (5) | 0.1159 (12) | 0.5660 (6) | 0.099 (3) | |
H1C | 0.949062 | 0.163356 | 0.511455 | 0.119* | |
H1D | 0.967551 | 0.016551 | 0.580794 | 0.119* | |
C2 | 0.8629 (5) | 0.0603 (10) | 0.5568 (4) | 0.080 (2) | |
H2A | 0.852992 | −0.008484 | 0.606844 | 0.096* | |
H2B | 0.854413 | −0.012739 | 0.505655 | 0.096* | |
C3 | 0.7445 (4) | 0.1752 (9) | 0.5872 (4) | 0.0598 (18) | |
H3A | 0.727485 | 0.059835 | 0.569374 | 0.072* | |
H3B | 0.707984 | 0.259311 | 0.565914 | 0.072* | |
C4 | 0.7553 (4) | 0.1838 (10) | 0.6838 (4) | 0.0655 (19) | |
H4A | 0.710554 | 0.219162 | 0.706318 | 0.079* | |
H4B | 0.768274 | 0.069138 | 0.706919 | 0.079* | |
C5 | 0.7818 (4) | 0.6059 (8) | 0.5873 (4) | 0.0525 (16) | |
C6 | 0.9077 (4) | 0.6386 (11) | 0.6748 (4) | 0.069 (2) | |
C7 | 0.9009 (3) | 0.5469 (10) | 0.5110 (4) | 0.0607 (17) | |
C8 | 0.7558 (3) | 0.5190 (8) | 0.8291 (3) | 0.0457 (14) | |
C9 | 0.6854 (3) | 0.4687 (8) | 0.8401 (4) | 0.0550 (16) | |
H9 | 0.672952 | 0.351064 | 0.838917 | 0.066* | |
C10 | 0.6339 (3) | 0.5938 (8) | 0.8529 (4) | 0.0561 (17) | |
H10 | 0.586941 | 0.558250 | 0.860192 | 0.067* | |
C11 | 0.6498 (3) | 0.7698 (8) | 0.8553 (3) | 0.0492 (15) | |
C12 | 0.7211 (3) | 0.8167 (8) | 0.8449 (4) | 0.0534 (16) | |
H12 | 0.733858 | 0.934122 | 0.846868 | 0.064* | |
C13 | 0.7730 (3) | 0.6936 (8) | 0.8319 (4) | 0.0506 (15) | |
H13 | 0.820003 | 0.728879 | 0.824931 | 0.061* | |
C14 | 0.5948 (3) | 0.9040 (8) | 0.8704 (4) | 0.0517 (16) | |
C15 | 0.5233 (4) | 0.8895 (10) | 0.8371 (4) | 0.070 (2) | |
H15 | 0.508519 | 0.791583 | 0.804678 | 0.084* | |
C16 | 0.4733 (4) | 1.0176 (11) | 0.8511 (5) | 0.075 (2) | |
H16 | 0.425596 | 1.003962 | 0.827930 | 0.090* | |
C17 | 0.4927 (4) | 1.1647 (10) | 0.8984 (5) | 0.0662 (19) | |
C18 | 0.5630 (4) | 1.1776 (9) | 0.9336 (5) | 0.0654 (18) | |
H18 | 0.577106 | 1.273921 | 0.967606 | 0.079* | |
C19 | 0.6130 (4) | 1.0513 (9) | 0.9197 (4) | 0.0613 (16) | |
H19 | 0.660456 | 1.064908 | 0.944103 | 0.074* | |
C20 | 0.4383 (4) | 1.3088 (11) | 0.9120 (5) | 0.092 (3) | |
H20A | 0.461891 | 1.420204 | 0.911398 | 0.138* | |
H20B | 0.419068 | 1.292329 | 0.966780 | 0.138* | |
H20C | 0.399557 | 1.304649 | 0.866244 | 0.138* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.04118 (13) | 0.06022 (16) | 0.02905 (11) | −0.00246 (13) | 0.00405 (8) | 0.00870 (12) |
S1 | 0.0592 (9) | 0.0527 (9) | 0.0250 (6) | −0.0062 (8) | 0.0056 (6) | 0.0006 (6) |
O1 | 0.070 (3) | 0.073 (4) | 0.118 (4) | 0.023 (3) | 0.002 (3) | −0.001 (3) |
O2 | 0.113 (5) | 0.112 (5) | 0.079 (4) | −0.062 (4) | −0.029 (3) | 0.013 (3) |
O3 | 0.071 (3) | 0.134 (5) | 0.062 (3) | −0.002 (3) | 0.023 (2) | 0.050 (3) |
O4 | 0.090 (3) | 0.052 (3) | 0.0283 (19) | −0.006 (2) | 0.012 (2) | 0.0072 (18) |
O5 | 0.056 (2) | 0.074 (3) | 0.039 (2) | −0.009 (2) | −0.0056 (18) | −0.002 (2) |
N1 | 0.044 (3) | 0.138 (6) | 0.049 (3) | 0.022 (3) | 0.008 (3) | 0.029 (4) |
N2 | 0.071 (3) | 0.047 (3) | 0.028 (2) | 0.012 (3) | 0.006 (2) | 0.004 (2) |
N3 | 0.055 (3) | 0.055 (3) | 0.023 (2) | −0.009 (2) | 0.0078 (19) | −0.002 (2) |
C1 | 0.085 (6) | 0.093 (7) | 0.126 (8) | 0.017 (5) | 0.041 (6) | 0.006 (6) |
C2 | 0.112 (7) | 0.076 (5) | 0.052 (4) | 0.042 (5) | 0.008 (4) | −0.002 (4) |
C3 | 0.080 (5) | 0.056 (4) | 0.044 (3) | −0.025 (4) | 0.010 (3) | −0.003 (3) |
C4 | 0.070 (4) | 0.087 (5) | 0.041 (3) | −0.027 (4) | 0.016 (3) | −0.015 (3) |
C5 | 0.059 (4) | 0.049 (4) | 0.051 (4) | −0.009 (3) | 0.013 (3) | −0.004 (3) |
C6 | 0.056 (4) | 0.100 (6) | 0.050 (4) | −0.017 (4) | −0.004 (3) | 0.027 (4) |
C7 | 0.053 (4) | 0.084 (5) | 0.045 (3) | 0.005 (4) | 0.006 (3) | 0.016 (4) |
C8 | 0.057 (4) | 0.050 (4) | 0.031 (3) | −0.012 (3) | 0.010 (2) | −0.005 (2) |
C9 | 0.070 (4) | 0.043 (3) | 0.053 (3) | −0.019 (4) | 0.016 (3) | −0.011 (3) |
C10 | 0.050 (4) | 0.055 (4) | 0.065 (4) | −0.028 (3) | 0.014 (3) | −0.015 (3) |
C11 | 0.060 (4) | 0.052 (4) | 0.036 (3) | −0.007 (3) | 0.008 (3) | −0.001 (3) |
C12 | 0.064 (4) | 0.044 (4) | 0.053 (4) | −0.012 (3) | 0.011 (3) | 0.001 (3) |
C13 | 0.053 (4) | 0.054 (4) | 0.047 (3) | −0.015 (3) | 0.012 (3) | −0.001 (3) |
C14 | 0.053 (4) | 0.062 (4) | 0.040 (3) | −0.006 (3) | 0.008 (3) | 0.009 (3) |
C15 | 0.065 (5) | 0.087 (6) | 0.057 (4) | −0.003 (4) | 0.001 (3) | −0.011 (4) |
C16 | 0.053 (4) | 0.109 (7) | 0.063 (4) | 0.001 (4) | 0.002 (3) | 0.005 (4) |
C17 | 0.069 (5) | 0.069 (5) | 0.065 (4) | 0.011 (4) | 0.025 (4) | 0.016 (4) |
C18 | 0.068 (5) | 0.046 (4) | 0.083 (5) | 0.002 (4) | 0.013 (4) | −0.002 (4) |
C19 | 0.056 (4) | 0.055 (4) | 0.072 (4) | −0.001 (4) | 0.002 (3) | −0.003 (4) |
C20 | 0.075 (5) | 0.100 (7) | 0.106 (6) | 0.019 (5) | 0.030 (5) | 0.012 (5) |
Re1—C6 | 1.895 (8) | C4—H4A | 0.9700 |
Re1—C5 | 1.896 (7) | C4—H4B | 0.9700 |
Re1—C7 | 1.914 (6) | C8—C13 | 1.375 (8) |
Re1—N3 | 2.173 (4) | C8—C9 | 1.389 (8) |
Re1—N2 | 2.217 (5) | C9—C10 | 1.381 (9) |
Re1—N1 | 2.228 (6) | C9—H9 | 0.9300 |
S1—O5 | 1.433 (4) | C10—C11 | 1.381 (8) |
S1—O4 | 1.448 (4) | C10—H10 | 0.9300 |
S1—N3 | 1.579 (4) | C11—C12 | 1.394 (8) |
S1—C8 | 1.775 (6) | C11—C14 | 1.484 (8) |
O1—C5 | 1.163 (7) | C12—C13 | 1.376 (8) |
O2—C6 | 1.170 (9) | C12—H12 | 0.9300 |
O3—C7 | 1.143 (7) | C13—H13 | 0.9300 |
N1—C1 | 1.510 (10) | C14—C15 | 1.381 (9) |
N1—H11N | 0.8900 | C14—C19 | 1.387 (9) |
N1—H12N | 0.8900 | C15—C16 | 1.381 (10) |
N2—C2 | 1.486 (8) | C15—H15 | 0.9300 |
N2—C3 | 1.493 (7) | C16—C17 | 1.372 (10) |
N2—H2N | 0.9800 | C16—H16 | 0.9300 |
N3—C4 | 1.479 (7) | C17—C18 | 1.370 (9) |
C1—C2 | 1.423 (10) | C17—C20 | 1.524 (9) |
C1—H1C | 0.9700 | C18—C19 | 1.372 (9) |
C1—H1D | 0.9700 | C18—H18 | 0.9300 |
C2—H2A | 0.9700 | C19—H19 | 0.9300 |
C2—H2B | 0.9700 | C20—H20A | 0.9600 |
C3—C4 | 1.493 (8) | C20—H20B | 0.9600 |
C3—H3A | 0.9700 | C20—H20C | 0.9600 |
C3—H3B | 0.9700 | ||
C6—Re1—C5 | 86.6 (3) | H3A—C3—H3B | 108.1 |
C6—Re1—C7 | 87.1 (3) | N3—C4—C3 | 110.3 (5) |
C5—Re1—C7 | 87.9 (3) | N3—C4—H4A | 109.6 |
C6—Re1—N3 | 101.4 (2) | C3—C4—H4A | 109.6 |
C5—Re1—N3 | 94.7 (2) | N3—C4—H4B | 109.6 |
C7—Re1—N3 | 171.2 (2) | C3—C4—H4B | 109.6 |
C6—Re1—N2 | 172.9 (2) | H4A—C4—H4B | 108.1 |
C5—Re1—N2 | 99.0 (2) | O1—C5—Re1 | 179.1 (6) |
C7—Re1—N2 | 97.5 (2) | O2—C6—Re1 | 178.4 (7) |
N3—Re1—N2 | 73.78 (16) | O3—C7—Re1 | 178.4 (6) |
C6—Re1—N1 | 98.1 (3) | C13—C8—C9 | 119.0 (6) |
C5—Re1—N1 | 174.9 (3) | C13—C8—S1 | 121.6 (5) |
C7—Re1—N1 | 94.3 (2) | C9—C8—S1 | 119.4 (5) |
N3—Re1—N1 | 82.45 (18) | C10—C9—C8 | 119.9 (6) |
N2—Re1—N1 | 76.3 (2) | C10—C9—H9 | 120.1 |
O5—S1—O4 | 117.7 (3) | C8—C9—H9 | 120.1 |
O5—S1—N3 | 109.4 (2) | C11—C10—C9 | 122.1 (6) |
O4—S1—N3 | 110.0 (2) | C11—C10—H10 | 118.9 |
O5—S1—C8 | 106.5 (3) | C9—C10—H10 | 118.9 |
O4—S1—C8 | 104.8 (3) | C10—C11—C12 | 116.9 (6) |
N3—S1—C8 | 108.0 (3) | C10—C11—C14 | 122.1 (6) |
C1—N1—Re1 | 107.3 (4) | C12—C11—C14 | 121.0 (6) |
C1—N1—H11N | 110.2 | C13—C12—C11 | 121.7 (6) |
Re1—N1—H11N | 110.2 | C13—C12—H12 | 119.2 |
C1—N1—H12N | 110.2 | C11—C12—H12 | 119.2 |
Re1—N1—H12N | 110.2 | C8—C13—C12 | 120.5 (6) |
H11N—N1—H12N | 108.5 | C8—C13—H13 | 119.8 |
C2—N2—C3 | 111.0 (5) | C12—C13—H13 | 119.8 |
C2—N2—Re1 | 113.3 (4) | C15—C14—C19 | 116.5 (6) |
C3—N2—Re1 | 108.2 (3) | C15—C14—C11 | 122.5 (6) |
C2—N2—H2N | 108.1 | C19—C14—C11 | 120.9 (6) |
C3—N2—H2N | 108.1 | C14—C15—C16 | 121.4 (7) |
Re1—N2—H2N | 108.1 | C14—C15—H15 | 119.3 |
C4—N3—S1 | 115.8 (3) | C16—C15—H15 | 119.3 |
C4—N3—Re1 | 117.1 (3) | C17—C16—C15 | 121.4 (7) |
S1—N3—Re1 | 125.6 (3) | C17—C16—H16 | 119.3 |
C2—C1—N1 | 110.7 (6) | C15—C16—H16 | 119.3 |
C2—C1—H1C | 109.5 | C18—C17—C16 | 117.5 (7) |
N1—C1—H1C | 109.5 | C18—C17—C20 | 120.8 (7) |
C2—C1—H1D | 109.5 | C16—C17—C20 | 121.7 (7) |
N1—C1—H1D | 109.5 | C17—C18—C19 | 121.4 (7) |
H1C—C1—H1D | 108.1 | C17—C18—H18 | 119.3 |
C1—C2—N2 | 110.5 (7) | C19—C18—H18 | 119.3 |
C1—C2—H2A | 109.5 | C18—C19—C14 | 121.7 (6) |
N2—C2—H2A | 109.5 | C18—C19—H19 | 119.1 |
C1—C2—H2B | 109.5 | C14—C19—H19 | 119.1 |
N2—C2—H2B | 109.5 | C17—C20—H20A | 109.5 |
H2A—C2—H2B | 108.1 | C17—C20—H20B | 109.5 |
N2—C3—C4 | 110.8 (5) | H20A—C20—H20B | 109.5 |
N2—C3—H3A | 109.5 | C17—C20—H20C | 109.5 |
C4—C3—H3A | 109.5 | H20A—C20—H20C | 109.5 |
N2—C3—H3B | 109.5 | H20B—C20—H20C | 109.5 |
C4—C3—H3B | 109.5 | ||
O5—S1—N3—C4 | 162.7 (5) | C8—C9—C10—C11 | 0.0 (9) |
O4—S1—N3—C4 | 32.0 (5) | C9—C10—C11—C12 | −0.6 (9) |
C8—S1—N3—C4 | −81.8 (5) | C9—C10—C11—C14 | −179.1 (6) |
O5—S1—N3—Re1 | −31.7 (4) | C10—C11—C12—C13 | 0.7 (9) |
O4—S1—N3—Re1 | −162.5 (3) | C14—C11—C12—C13 | 179.3 (5) |
C8—S1—N3—Re1 | 83.7 (4) | C9—C8—C13—C12 | −0.4 (8) |
Re1—N1—C1—C2 | −48.9 (8) | S1—C8—C13—C12 | 179.4 (4) |
N1—C1—C2—N2 | 49.9 (9) | C11—C12—C13—C8 | −0.3 (9) |
C3—N2—C2—C1 | −148.2 (6) | C10—C11—C14—C15 | −37.0 (9) |
Re1—N2—C2—C1 | −26.3 (7) | C12—C11—C14—C15 | 144.5 (6) |
C2—N2—C3—C4 | 76.7 (7) | C10—C11—C14—C19 | 142.6 (6) |
Re1—N2—C3—C4 | −48.2 (6) | C12—C11—C14—C19 | −35.9 (8) |
S1—N3—C4—C3 | 169.7 (5) | C19—C14—C15—C16 | 1.4 (10) |
Re1—N3—C4—C3 | 2.9 (7) | C11—C14—C15—C16 | −179.1 (6) |
N2—C3—C4—N3 | 29.9 (8) | C14—C15—C16—C17 | 0.1 (11) |
O5—S1—C8—C13 | 20.8 (5) | C15—C16—C17—C18 | −1.9 (10) |
O4—S1—C8—C13 | 146.3 (5) | C15—C16—C17—C20 | 178.3 (7) |
N3—S1—C8—C13 | −96.5 (5) | C16—C17—C18—C19 | 2.2 (10) |
O5—S1—C8—C9 | −159.4 (4) | C20—C17—C18—C19 | −178.0 (6) |
O4—S1—C8—C9 | −33.9 (5) | C17—C18—C19—C14 | −0.7 (11) |
N3—S1—C8—C9 | 83.3 (5) | C15—C14—C19—C18 | −1.1 (10) |
C13—C8—C9—C10 | 0.5 (9) | C11—C14—C19—C18 | 179.3 (6) |
S1—C8—C9—C10 | −179.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11N···O3i | 0.89 | 2.27 | 3.053 (7) | 146 |
N1—H12N···O2ii | 0.89 | 2.59 | 3.028 (7) | 111 |
N2—H2N···O4iii | 0.98 | 1.98 | 2.941 (5) | 167 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
Instrumentation was supported by the Instrument Center and the Material Center of the University of Sri Jayewardenepura.
Funding information
This research was funded by grant No. ASP/01/RE/SCI/2022/25 of the University of Sri Jayewardenepura. The upgrade of the diffractometer was made possible by grant No. LEQSF (2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.
References
Abhayawardhana, P., Marzilli, L. G. & Fronczek, F. R. (2020). CSD Communications (refcodes BUPXAO, BUPXES, BUPYIX, and BUPYOD). CCDC, Cambridge, England. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173–11182. CSD CrossRef PubMed CAS Google Scholar
Congreve, A., Kataky, R., Knell, M., Parker, D., Puschmann, H., Senanayake, K. & Wylie, L. (2003). New J. Chem. 27, 98–106. Web of Science CSD CrossRef CAS Google Scholar
Darshani, T., Fronczek, F. R., Priyadarshani, V. V., Samarakoon, S. R., Perera, I. C. & Perera, T. (2020). Polyhedron, 187, 114652. CSD CrossRef Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Goodwin, J. M., Olmstead, M. M. & Patten, T. (2004). J. Am. Chem. Soc. 126, 14352–14353. CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179–186. CrossRef CAS PubMed Google Scholar
Kaluthanthiri, D., Rajagopalan, U., Samarakoon, S., Weerasinghe, L., Perera, I. C. & Perera, T. (2023). Curr. Sci. 26, No. 02, 78–98. Google Scholar
Kaushalya, C., Darshani, T., Samarakoon, S. R., Fronczek, F. R., Perera, I. C. & Perera, T. (2022). J. Sci. 25, 103–121. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mundwiler, S., Candreia, L., Häfliger, P., Ortner, K. & Alberto, R. (2004). Bioconjugate Chem. 15, 195–202. CSD CrossRef CAS Google Scholar
Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjugate Chem. 11, 345–351. Web of Science CrossRef CAS Google Scholar
Schibli, R. & Schubiger, A. P. (2002). Eur. J. Nucl. Med. Mol. Imaging, 29, 1529–1542. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598–8599. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.