research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-amino­eth­yl)amino]­eth­yl}-4′-methyl-[1,1′-bi­phenyl]-4-sulfonamidato)tri­carb­on­ylrhenium(I)

crossmark logo

aDepartment of Chemistry, University of Sri Jayewardenepura, Sri Lanka, bDepartment of Pharmacy and Pharmaceutical Sciences, University of Sri Jayewardenepura, Sri Lanka, and cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: theshi@sjp.ac.lk

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 20 May 2024; accepted 12 June 2024; online 18 June 2024)

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl­biphenyl sulfonamide derivatized di­ethyl­enetri­amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa­hedral geometry where one face of the octa­hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitro­gen atom of the sulfonamide group and two sp3 nitro­gen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å).

1. Chemical context

Organometallic compounds have garnered significant inter­est due to their notable properties in cell imaging and anti­cancer applications. Particularly, Re complexes are noted for their kinetic inertness and large Stokes shift (Stephenson et al., 2004[Stephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598-8599.]; Guo et al., 1997[Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179-186.]). Research has shown that tridentate ligand systems are more robust and possess better pharmacokinetics than those bearing bidentate ligands, leading to reduced side effects (Schibli et al., 2000[Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjugate Chem. 11, 345-351.]). Our focus involves a sulfonamide ligand, which has a di­ethyl­enetri­amine (dien) backbone and 4-methyl­biphenyl (4-Mebip) as the pendant group. The N(SO2)(4-Mebip)dienH ligand, along with its bidentate PtII complex have both been reported to exhibit remarkable anti­cancer properties against non-small lung cancer (Kaluthanthiri et al., 2023[Kaluthanthiri, D., Rajagopalan, U., Samarakoon, S., Weerasinghe, L., Perera, I. C. & Perera, T. (2023). Curr. Sci. 26, No. 02, 78-98.]). Motivated by its potential as a cytotoxic drug lead, here we have focused on rhenium, in its lowest oxidation state because it exhibits less reactivity toward species in the cellular environment (Schibli & Schubiger, 2002[Schibli, R. & Schubiger, A. P. (2002). Eur. J. Nucl. Med. Mol. Imaging, 29, 1529-1542.]). Given rhenium's soft metal center characteristics, a preference for soft donors, particularly nitro­gen, is observed and tridentate metal complexes featuring nitro­gen donors are commonly employed (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]; Kaushalya et al., 2022[Kaushalya, C., Darshani, T., Samarakoon, S. R., Fronczek, F. R., Perera, I. C. & Perera, T. (2022). J. Sci. 25, 103-121.]; Darshani et al., 2020[Darshani, T., Fronczek, F. R., Priyadarshani, V. V., Samarakoon, S. R., Perera, I. C. & Perera, T. (2020). Polyhedron, 187, 114652.]). In this study, the Re(CO)3[N(SO2)(4-Mebip)dien] complex was successfully synthesized and its mol­ecular structure was confirmed by single-crystal X-ray diffraction analysis and 1H NMR spectroscopy. Furthermore, comprehensive characterization was conducted using FTIR, UV–vis, and fluorescence spectroscopic tech­niques.

[Scheme 1]

2. Structural commentary

The Re(CO)3[N(SO2)(4-Mebip)dien] complex is shown in Fig. 1[link]. The Re—C distances in Re—CO bonds are in the range of 1.895 (8)–1.914 (6) Å, which is consistent with related data reported (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]; Darshani et al., 2020[Darshani, T., Fronczek, F. R., Priyadarshani, V. V., Samarakoon, S. R., Perera, I. C. & Perera, T. (2020). Polyhedron, 187, 114652.]). The longest Re—C distance is trans to the sp2 nitro­gen atom N3. The C11—C14 bond distance between the two phenyl rings of the anionic ligand in the biphenyl group in Re(CO)3[N(SO2)(4-Mebip)dien] is 1.484 (8) Å. The biphenyl moiety is twisted out of planarity, the dihedral angle between the two planes being 36.5 (3)°. The average Re—N bond length in our Re complex is 2.206 Å, which is consistent with the distances found in related Re(CO)3 complexes containing a dien backbone (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]). The Re—N3 bond (sp2 nitro­gen) distance [2.173 (4) Å] in the complex is significantly shorter than the other Re—N (sp3 N) bonds [2.217 (5) and 2.228 (6) Å], which explains the anionic nature of the N3 amino nitro­gen. The S—N bond length for the deprotonated sulfonamido group is 1.579 (4) Å for the complex and is within the accepted range for S—N bonds available in deprotonated sulfonamides coordinated to Re, Cu and Zn metals (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]; Goodwin et al., 2004[Goodwin, J. M., Olmstead, M. M. & Patten, T. (2004). J. Am. Chem. Soc. 126, 14352-14353.]; Congreve et al., 2003[Congreve, A., Kataky, R., Knell, M., Parker, D., Puschmann, H., Senanayake, K. & Wylie, L. (2003). New J. Chem. 27, 98-106.]).

[Figure 1]
Figure 1
The asymmetric unit with 50% probability displacement ellipsoids and atom labels. H atoms are represented by spheres of arbitrary radius.

3. Supra­molecular features

The unit cell is shown in Fig. 2[link]. The inter­molecular inter­actions are predominantly N—H⋯O hydrogen bonds as listed in Table 1[link] and shown in Fig. 3[link]. The N1⋯O2 separations in these hydrogen bonds are in the range 2.941 (5)–3.053 (7) Å. The graph sets (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) are centrosymmetric R22(10) rings and C11(6) chains, forming double-stranded chains in the [001] direction. One of the NH2 H atoms is not involved in the hydrogen bonding. Inter­leaved between the double-stranded hydrogen-bonded chains are hydro­phobic layers of stacked biphenyl moieties, as can be seen in Fig. 2[link]. The closest distance [4.079 (4) Å] between centers of gravity (Cg) of these rings is between the phenyl ring C14–C19 carrying the methyl group and its centrosymmetric equivalent at 1 − x, 2 − y, 2 − z. There are no other CgCg distances closer than 5.5 Å. The phenyl ring C8–C13 has no close inter­molecular contacts to other phenyl rings, but has a close contact to carbonyl C5—O1 at x, [{3\over 2}] − y, −[{1\over 2}] + z, with Cg⋯O1 3.758 (7) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O3i 0.89 2.27 3.053 (7) 146
N1—H12N⋯O2ii 0.89 2.59 3.028 (7) 111
N2—H2N⋯O4iii 0.98 1.98 2.941 (5) 167
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the unit cell. H atoms are not shown.
[Figure 3]
Figure 3
View of the hydrogen bonding, shown as blue dashed lines, and chain formation along the [001] direction. H atoms on C are omitted and the unit cell axes are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the di­ethyl­enetri­amine SO2Re(CO)3 fragment yielded four hits, LIMDIV and LIMDOB (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]); SUNFUF and SUNGAM (Darshani et al., 2020[Darshani, T., Fronczek, F. R., Priyadarshani, V. V., Samarakoon, S. R., Perera, I. C. & Perera, T. (2020). Polyhedron, 187, 114652.]). These structures have been mentioned above. A similar search for [N-(2-amino­eth­yl)ethane-1,2-di­amine]Re(CO)3 salts yielded seven hits: BUPXAO, BUPXES, BUPYIX, and BUPYOD (Abhayawardhana et al., 2020[Abhayawardhana, P., Marzilli, L. G. & Fronczek, F. R. (2020). CSD Communications (refcodes BUPXAO, BUPXES, BUPYIX, and BUPYOD). CCDC, Cambridge, England.]), IWENAZ (Mundwiler et al., 2004[Mundwiler, S., Candreia, L., Häfliger, P., Ortner, K. & Alberto, R. (2004). Bioconjugate Chem. 15, 195-202.]), TIYVIH and TIYVON (Christoforou et al., 2007[Christoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173-11182.]). In these structures, the Re—N distances are in the range 2.203 (7)–2.244 (3) Å, with a mean value 2.219 Å for 21 individual measurements. The Re—C distances are in the range 1.878 (12)–1.956 (15) Å with a mean value 1.917 Å. There is no indication that the Re—N or Re—C distances to the central ligand atoms differ from those to the terminal atoms.

5. Synthesis, crystallization and spectroscopic data

The ligand N(SO2)(4-Mebip)dienH was synthesized by following a reported procedure (Fig. 4[link]; Kaluthanthiri et al., 2023[Kaluthanthiri, D., Rajagopalan, U., Samarakoon, S., Weerasinghe, L., Perera, I. C. & Perera, T. (2023). Curr. Sci. 26, No. 02, 78-98.]). A solution of the ligand N(SO2)(4-Mebip)dienH (0.0272 g, 0.0816 mmol) in 2 ml of methanol was added to a solution of [Re(CO)3(H2O)3]Br (0.033 g, 0.0816 mmol) in 3 ml of water. The solution was then adjusted to pH 7–8 with aqueous NaOH and refluxed for 16 h (Fig. 4[link]). The complex formed was collected by filtration as a white powder (0.025 g, 51% yield). Crystals suitable for X-ray crystallography were grown by slow evaporation of an aceto­nitrile/ methanol solution. UV–vis (MeOH) [λmax (nm)]: 203, 266; FT–IR (ATR) (cm−1): 969 ([(S—N)], 1342, 1128 [ν(S=O)], 2008, 1865 [ν(CO)]. 1H NMR (400 MHz, DMSO-d6) δ(ppm): 7.81 (m, 2H, Ha/a′), 7.74 (m, 2H, Hb/b′), 7.62 (m, 2H, Hc/c′) 7.29 (m, 2H, Hd/d′), 6.69 (b, 1H, N2H), 5.15 (m, 1H, endo N1H), 3.47 (m, 1H, exo N1H), 3.34–3.38 (m, 1H, CH), 2.64–2.90 (m, 7H, CH2), 2.35 (s, 3H, CH3). Although the ligand shows excellent fluorescence properties even at low concentrations, its Re complex offers quenched fluorescence properties attributed to the direct binding of sulfonamide nitro­gen to Re center in the complex (Fig. 5[link]). Furthermore, a slight blue shift (about 9 nm) was observed in the complex.

[Figure 4]
Figure 4
Synthetic route for preparation of N(SO2)(4-Mebip)dienH and Re(CO)3[N(SO2)(4-Mebip)dien].
[Figure 5]
Figure 5
Fluorescence emission spectra of N(SO2)(4-Mebip)dienH and Re(CO)3[N(SO2)(4-Mebip)dien] in methanol at 298 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps and treated as riding in geometrically ideal­ized positions with C—H distances of 0.94 Å and with Uiso(H) = 1.2Ueq for the attached C atom (0.97 Å and 1.5Ueq for the methyl group). The H atoms on nitro­gen had N—H distances of 0.89 Å for NH2 and 0.98 Å for NH, and Uiso values were assigned as 1.2Ueq for the N atom.

Table 2
Experimental details

Crystal data
Chemical formula [Re(C17H22N3O2S)(CO)3]
Mr 602.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 18.5651 (9), 7.6604 (4), 15.4897 (11)
β (°) 95.472 (2)
V3) 2192.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.67
Crystal size (mm) 0.22 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.572, 0.765
No. of measured, independent and observed [I > 2σ(I)] reflections 119413, 4849, 3513
Rint 0.102
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 1.08
No. of reflections 4849
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.00, −1.80
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

(N-{2-[(2-Aminoethyl)amino]ethyl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tricarbonylrhenium(I) top
Crystal data top
[Re(C17H22N3O2S)(CO)3]F(000) = 1176
Mr = 602.66Dx = 1.825 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.5651 (9) ÅCell parameters from 2346 reflections
b = 7.6604 (4) Åθ = 2.6–24.1°
c = 15.4897 (11) ŵ = 5.67 mm1
β = 95.472 (2)°T = 296 K
V = 2192.8 (2) Å3Needle, colorless
Z = 40.22 × 0.13 × 0.05 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4849 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.102
φ and ω scansθmax = 27.2°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.572, Tmax = 0.765k = 99
119413 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0179P)2 + 6.5423P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.08Δρmax = 2.00 e Å3
4849 reflectionsΔρmin = 1.80 e Å3
273 parametersExtinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00017 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.86146 (2)0.45261 (3)0.61070 (2)0.04344 (9)
S10.82122 (8)0.3572 (2)0.81148 (8)0.0456 (4)
O10.7335 (3)0.7018 (7)0.5732 (4)0.0875 (16)
O20.9354 (3)0.7562 (8)0.7131 (3)0.104 (2)
O30.9230 (3)0.6052 (8)0.4508 (3)0.0879 (17)
O40.8016 (2)0.2083 (5)0.8619 (2)0.0563 (11)
O50.8906 (2)0.4354 (6)0.8338 (2)0.0568 (11)
N10.9482 (3)0.2530 (9)0.6360 (3)0.0769 (19)
H11N0.9915410.3020490.6346390.092*
H12N0.9458920.2050820.6880230.092*
N20.8135 (3)0.2133 (6)0.5486 (3)0.0487 (12)
H2N0.8018080.2375330.4866800.058*
N30.8132 (2)0.3099 (6)0.7118 (2)0.0440 (12)
C10.9364 (5)0.1159 (12)0.5660 (6)0.099 (3)
H1C0.9490620.1633560.5114550.119*
H1D0.9675510.0165510.5807940.119*
C20.8629 (5)0.0603 (10)0.5568 (4)0.080 (2)
H2A0.8529920.0084840.6068440.096*
H2B0.8544130.0127390.5056550.096*
C30.7445 (4)0.1752 (9)0.5872 (4)0.0598 (18)
H3A0.7274850.0598350.5693740.072*
H3B0.7079840.2593110.5659140.072*
C40.7553 (4)0.1838 (10)0.6838 (4)0.0655 (19)
H4A0.7105540.2191620.7063180.079*
H4B0.7682740.0691380.7069190.079*
C50.7818 (4)0.6059 (8)0.5873 (4)0.0525 (16)
C60.9077 (4)0.6386 (11)0.6748 (4)0.069 (2)
C70.9009 (3)0.5469 (10)0.5110 (4)0.0607 (17)
C80.7558 (3)0.5190 (8)0.8291 (3)0.0457 (14)
C90.6854 (3)0.4687 (8)0.8401 (4)0.0550 (16)
H90.6729520.3510640.8389170.066*
C100.6339 (3)0.5938 (8)0.8529 (4)0.0561 (17)
H100.5869410.5582500.8601920.067*
C110.6498 (3)0.7698 (8)0.8553 (3)0.0492 (15)
C120.7211 (3)0.8167 (8)0.8449 (4)0.0534 (16)
H120.7338580.9341220.8468680.064*
C130.7730 (3)0.6936 (8)0.8319 (4)0.0506 (15)
H130.8200030.7288790.8249310.061*
C140.5948 (3)0.9040 (8)0.8704 (4)0.0517 (16)
C150.5233 (4)0.8895 (10)0.8371 (4)0.070 (2)
H150.5085190.7915830.8046780.084*
C160.4733 (4)1.0176 (11)0.8511 (5)0.075 (2)
H160.4255961.0039620.8279300.090*
C170.4927 (4)1.1647 (10)0.8984 (5)0.0662 (19)
C180.5630 (4)1.1776 (9)0.9336 (5)0.0654 (18)
H180.5771061.2739210.9676060.079*
C190.6130 (4)1.0513 (9)0.9197 (4)0.0613 (16)
H190.6604561.0649080.9441030.074*
C200.4383 (4)1.3088 (11)0.9120 (5)0.092 (3)
H20A0.4618911.4202040.9113980.138*
H20B0.4190681.2923290.9667800.138*
H20C0.3995571.3046490.8662440.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.04118 (13)0.06022 (16)0.02905 (11)0.00246 (13)0.00405 (8)0.00870 (12)
S10.0592 (9)0.0527 (9)0.0250 (6)0.0062 (8)0.0056 (6)0.0006 (6)
O10.070 (3)0.073 (4)0.118 (4)0.023 (3)0.002 (3)0.001 (3)
O20.113 (5)0.112 (5)0.079 (4)0.062 (4)0.029 (3)0.013 (3)
O30.071 (3)0.134 (5)0.062 (3)0.002 (3)0.023 (2)0.050 (3)
O40.090 (3)0.052 (3)0.0283 (19)0.006 (2)0.012 (2)0.0072 (18)
O50.056 (2)0.074 (3)0.039 (2)0.009 (2)0.0056 (18)0.002 (2)
N10.044 (3)0.138 (6)0.049 (3)0.022 (3)0.008 (3)0.029 (4)
N20.071 (3)0.047 (3)0.028 (2)0.012 (3)0.006 (2)0.004 (2)
N30.055 (3)0.055 (3)0.023 (2)0.009 (2)0.0078 (19)0.002 (2)
C10.085 (6)0.093 (7)0.126 (8)0.017 (5)0.041 (6)0.006 (6)
C20.112 (7)0.076 (5)0.052 (4)0.042 (5)0.008 (4)0.002 (4)
C30.080 (5)0.056 (4)0.044 (3)0.025 (4)0.010 (3)0.003 (3)
C40.070 (4)0.087 (5)0.041 (3)0.027 (4)0.016 (3)0.015 (3)
C50.059 (4)0.049 (4)0.051 (4)0.009 (3)0.013 (3)0.004 (3)
C60.056 (4)0.100 (6)0.050 (4)0.017 (4)0.004 (3)0.027 (4)
C70.053 (4)0.084 (5)0.045 (3)0.005 (4)0.006 (3)0.016 (4)
C80.057 (4)0.050 (4)0.031 (3)0.012 (3)0.010 (2)0.005 (2)
C90.070 (4)0.043 (3)0.053 (3)0.019 (4)0.016 (3)0.011 (3)
C100.050 (4)0.055 (4)0.065 (4)0.028 (3)0.014 (3)0.015 (3)
C110.060 (4)0.052 (4)0.036 (3)0.007 (3)0.008 (3)0.001 (3)
C120.064 (4)0.044 (4)0.053 (4)0.012 (3)0.011 (3)0.001 (3)
C130.053 (4)0.054 (4)0.047 (3)0.015 (3)0.012 (3)0.001 (3)
C140.053 (4)0.062 (4)0.040 (3)0.006 (3)0.008 (3)0.009 (3)
C150.065 (5)0.087 (6)0.057 (4)0.003 (4)0.001 (3)0.011 (4)
C160.053 (4)0.109 (7)0.063 (4)0.001 (4)0.002 (3)0.005 (4)
C170.069 (5)0.069 (5)0.065 (4)0.011 (4)0.025 (4)0.016 (4)
C180.068 (5)0.046 (4)0.083 (5)0.002 (4)0.013 (4)0.002 (4)
C190.056 (4)0.055 (4)0.072 (4)0.001 (4)0.002 (3)0.003 (4)
C200.075 (5)0.100 (7)0.106 (6)0.019 (5)0.030 (5)0.012 (5)
Geometric parameters (Å, º) top
Re1—C61.895 (8)C4—H4A0.9700
Re1—C51.896 (7)C4—H4B0.9700
Re1—C71.914 (6)C8—C131.375 (8)
Re1—N32.173 (4)C8—C91.389 (8)
Re1—N22.217 (5)C9—C101.381 (9)
Re1—N12.228 (6)C9—H90.9300
S1—O51.433 (4)C10—C111.381 (8)
S1—O41.448 (4)C10—H100.9300
S1—N31.579 (4)C11—C121.394 (8)
S1—C81.775 (6)C11—C141.484 (8)
O1—C51.163 (7)C12—C131.376 (8)
O2—C61.170 (9)C12—H120.9300
O3—C71.143 (7)C13—H130.9300
N1—C11.510 (10)C14—C151.381 (9)
N1—H11N0.8900C14—C191.387 (9)
N1—H12N0.8900C15—C161.381 (10)
N2—C21.486 (8)C15—H150.9300
N2—C31.493 (7)C16—C171.372 (10)
N2—H2N0.9800C16—H160.9300
N3—C41.479 (7)C17—C181.370 (9)
C1—C21.423 (10)C17—C201.524 (9)
C1—H1C0.9700C18—C191.372 (9)
C1—H1D0.9700C18—H180.9300
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—H20A0.9600
C3—C41.493 (8)C20—H20B0.9600
C3—H3A0.9700C20—H20C0.9600
C3—H3B0.9700
C6—Re1—C586.6 (3)H3A—C3—H3B108.1
C6—Re1—C787.1 (3)N3—C4—C3110.3 (5)
C5—Re1—C787.9 (3)N3—C4—H4A109.6
C6—Re1—N3101.4 (2)C3—C4—H4A109.6
C5—Re1—N394.7 (2)N3—C4—H4B109.6
C7—Re1—N3171.2 (2)C3—C4—H4B109.6
C6—Re1—N2172.9 (2)H4A—C4—H4B108.1
C5—Re1—N299.0 (2)O1—C5—Re1179.1 (6)
C7—Re1—N297.5 (2)O2—C6—Re1178.4 (7)
N3—Re1—N273.78 (16)O3—C7—Re1178.4 (6)
C6—Re1—N198.1 (3)C13—C8—C9119.0 (6)
C5—Re1—N1174.9 (3)C13—C8—S1121.6 (5)
C7—Re1—N194.3 (2)C9—C8—S1119.4 (5)
N3—Re1—N182.45 (18)C10—C9—C8119.9 (6)
N2—Re1—N176.3 (2)C10—C9—H9120.1
O5—S1—O4117.7 (3)C8—C9—H9120.1
O5—S1—N3109.4 (2)C11—C10—C9122.1 (6)
O4—S1—N3110.0 (2)C11—C10—H10118.9
O5—S1—C8106.5 (3)C9—C10—H10118.9
O4—S1—C8104.8 (3)C10—C11—C12116.9 (6)
N3—S1—C8108.0 (3)C10—C11—C14122.1 (6)
C1—N1—Re1107.3 (4)C12—C11—C14121.0 (6)
C1—N1—H11N110.2C13—C12—C11121.7 (6)
Re1—N1—H11N110.2C13—C12—H12119.2
C1—N1—H12N110.2C11—C12—H12119.2
Re1—N1—H12N110.2C8—C13—C12120.5 (6)
H11N—N1—H12N108.5C8—C13—H13119.8
C2—N2—C3111.0 (5)C12—C13—H13119.8
C2—N2—Re1113.3 (4)C15—C14—C19116.5 (6)
C3—N2—Re1108.2 (3)C15—C14—C11122.5 (6)
C2—N2—H2N108.1C19—C14—C11120.9 (6)
C3—N2—H2N108.1C14—C15—C16121.4 (7)
Re1—N2—H2N108.1C14—C15—H15119.3
C4—N3—S1115.8 (3)C16—C15—H15119.3
C4—N3—Re1117.1 (3)C17—C16—C15121.4 (7)
S1—N3—Re1125.6 (3)C17—C16—H16119.3
C2—C1—N1110.7 (6)C15—C16—H16119.3
C2—C1—H1C109.5C18—C17—C16117.5 (7)
N1—C1—H1C109.5C18—C17—C20120.8 (7)
C2—C1—H1D109.5C16—C17—C20121.7 (7)
N1—C1—H1D109.5C17—C18—C19121.4 (7)
H1C—C1—H1D108.1C17—C18—H18119.3
C1—C2—N2110.5 (7)C19—C18—H18119.3
C1—C2—H2A109.5C18—C19—C14121.7 (6)
N2—C2—H2A109.5C18—C19—H19119.1
C1—C2—H2B109.5C14—C19—H19119.1
N2—C2—H2B109.5C17—C20—H20A109.5
H2A—C2—H2B108.1C17—C20—H20B109.5
N2—C3—C4110.8 (5)H20A—C20—H20B109.5
N2—C3—H3A109.5C17—C20—H20C109.5
C4—C3—H3A109.5H20A—C20—H20C109.5
N2—C3—H3B109.5H20B—C20—H20C109.5
C4—C3—H3B109.5
O5—S1—N3—C4162.7 (5)C8—C9—C10—C110.0 (9)
O4—S1—N3—C432.0 (5)C9—C10—C11—C120.6 (9)
C8—S1—N3—C481.8 (5)C9—C10—C11—C14179.1 (6)
O5—S1—N3—Re131.7 (4)C10—C11—C12—C130.7 (9)
O4—S1—N3—Re1162.5 (3)C14—C11—C12—C13179.3 (5)
C8—S1—N3—Re183.7 (4)C9—C8—C13—C120.4 (8)
Re1—N1—C1—C248.9 (8)S1—C8—C13—C12179.4 (4)
N1—C1—C2—N249.9 (9)C11—C12—C13—C80.3 (9)
C3—N2—C2—C1148.2 (6)C10—C11—C14—C1537.0 (9)
Re1—N2—C2—C126.3 (7)C12—C11—C14—C15144.5 (6)
C2—N2—C3—C476.7 (7)C10—C11—C14—C19142.6 (6)
Re1—N2—C3—C448.2 (6)C12—C11—C14—C1935.9 (8)
S1—N3—C4—C3169.7 (5)C19—C14—C15—C161.4 (10)
Re1—N3—C4—C32.9 (7)C11—C14—C15—C16179.1 (6)
N2—C3—C4—N329.9 (8)C14—C15—C16—C170.1 (11)
O5—S1—C8—C1320.8 (5)C15—C16—C17—C181.9 (10)
O4—S1—C8—C13146.3 (5)C15—C16—C17—C20178.3 (7)
N3—S1—C8—C1396.5 (5)C16—C17—C18—C192.2 (10)
O5—S1—C8—C9159.4 (4)C20—C17—C18—C19178.0 (6)
O4—S1—C8—C933.9 (5)C17—C18—C19—C140.7 (11)
N3—S1—C8—C983.3 (5)C15—C14—C19—C181.1 (10)
C13—C8—C9—C100.5 (9)C11—C14—C19—C18179.3 (6)
S1—C8—C9—C10179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O3i0.892.273.053 (7)146
N1—H12N···O2ii0.892.593.028 (7)111
N2—H2N···O4iii0.981.982.941 (5)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

Instrumentation was supported by the Instrument Center and the Material Center of the University of Sri Jayewardenepura.

Funding information

This research was funded by grant No. ASP/01/RE/SCI/2022/25 of the University of Sri Jayewardenepura. The upgrade of the diffractometer was made possible by grant No. LEQSF (2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationAbhayawardhana, P., Marzilli, L. G. & Fronczek, F. R. (2020). CSD Communications (refcodes BUPXAO, BUPXES, BUPYIX, and BUPYOD). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristoforou, A. M., Marzilli, P. A., Fronczek, F. R. & Marzilli, L. G. (2007). Inorg. Chem. 46, 11173–11182.  CSD CrossRef PubMed CAS Google Scholar
First citationCongreve, A., Kataky, R., Knell, M., Parker, D., Puschmann, H., Senanayake, K. & Wylie, L. (2003). New J. Chem. 27, 98–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationDarshani, T., Fronczek, F. R., Priyadarshani, V. V., Samarakoon, S. R., Perera, I. C. & Perera, T. (2020). Polyhedron, 187, 114652.  CSD CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGoodwin, J. M., Olmstead, M. M. & Patten, T. (2004). J. Am. Chem. Soc. 126, 14352–14353.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179–186.  CrossRef CAS PubMed Google Scholar
First citationKaluthanthiri, D., Rajagopalan, U., Samarakoon, S., Weerasinghe, L., Perera, I. C. & Perera, T. (2023). Curr. Sci. 26, No. 02, 78–98.  Google Scholar
First citationKaushalya, C., Darshani, T., Samarakoon, S. R., Fronczek, F. R., Perera, I. C. & Perera, T. (2022). J. Sci. 25, 103–121.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMundwiler, S., Candreia, L., Häfliger, P., Ortner, K. & Alberto, R. (2004). Bioconjugate Chem. 15, 195–202.  CSD CrossRef CAS Google Scholar
First citationSchibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjugate Chem. 11, 345–351.  Web of Science CrossRef CAS Google Scholar
First citationSchibli, R. & Schubiger, A. P. (2002). Eur. J. Nucl. Med. Mol. Imaging, 29, 1529–1542.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598–8599.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds