research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chiral versus achiral crystal structures of 4-benzyl-1H-pyrazole and its 3,5-di­amino derivative

crossmark logo

aWestern Michigan University, Department of Chemistry, 1903 W. Michigan Ave., Kalamazoo, MI 49008, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
*Correspondence e-mail: gellert.mezei@wmich.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 13 June 2024; accepted 24 June 2024; online 28 June 2024)

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di­amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti­omers easily inter­convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)—C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N—H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N—H protons as donors in N—H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N—H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra­molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.

1. Chemical context

1H-Pyrazole (pzH) is a chemically and thermally robust organic mol­ecule (Katritzky et al., 2010[Katritzky, A. R., Ramsden, C. A., Joule, J. A. & Zhdankin, V. V. (2010). Handbook of Heterocyclic Chemistry, 3rd ed. Amsterdam: Elsevier.]). Hence, its function­alized derivatives have found widespread applications as pharmaceuticals, pesticides and dyes (Ahmed et al., 2016[Ahmed, B. M., Zhang, H., Mo, Y. & Mezei, G. (2016). J. Org. Chem. 81, 1718-1722.] and references therein). Owing to its adjacent pair of N atoms, pyrazole derivatives are also very popular in coordination chemistry, especially for the construction of discrete polynuclear complexes (Al Isawi et al., 2021[Al Isawi, W. A., Zeller, M. & Mezei, G. (2021). Inorg. Chem. 60, 13479-13492.] and references therein). Within the crystal packing of pyrazole derivatives with different substituents, N—H⋯N hydrogen bonding between pz moieties leads to either discrete hydrogen-bonded motifs, such as dimers, trimers, tetra­mers and hexa­mers, or polymeric catemers depending on the substituents (Alkorta et al., 2006[Alkorta, I., Elguero, J., Foces-Foces, C. & Infantes, L. (2006). ARKIVOC (ii), 15-30.]; Bertolasi et al., 1999[Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985-993.]; Cammers & Parkin, 2004[Cammers, A. & Parkin, S. (2004). CrystEngComm, 6, 168-172.]; Claramunt et al., 2006[Claramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, A., Lokshin, V., Valés, M. & Elguero, J. (2006). J. Org. Chem. 71, 6881-6891.]; Foces-Foces et al., 2000[Foces-Foces, C., Alkorta, I. & Elguero, J. (2000). Acta Cryst. B56, 1018-1028.]). In general, the overall crystal structure is the result of the inter­play of optimal shape packing and multiple different inter­molecular forces, including electrostatic inter­actions, hydro­phobic effects, aromatic inter­actions, hydrogen bonding with potential hydrogen-bond donor/acceptor substituents, halogen bonding and other non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

Displacement ellipsoid plots of the crystal structures of 1 and 2 are shown in Figs. 1[link] and 2[link], respectively. Similarly to the parent pyrazole (La Cour & Rasmussen, 1973[La Cour, T. & Rasmussen, S. E. (1973). Acta Chem. Scand. 27, 1845-1854.]; Sikora & Katrusiak, 2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]) and 4-fluoro­pyrazole (Ahmed et al., 2023[Ahmed, B. M., Zeller, M. & Mezei, G. (2023). Acta Cryst. E79, 428-431.]), the NH and N centers of the pz rings in 1 and 2 are not disordered and two distinct sets of C—N and C—C bond distances are observed. Thus, the C—N bond adjacent to N is shorter than the one adjacent to NH, whereas the C—C bond adjacent to N is longer than the one adjacent to NH (see supporting information). This is in contrast with other pyrazole derivatives, such as 4-phenyl­pyrazole (Reger et al., 2003[Reger, D. L., Gardinier, J. R., Christian Grattan, T., Smith, M. R. & Smith, M. D. (2003). New J. Chem. 27, 1670-1677.]) and 4-halo­pyrazoles (halogen = Cl, Br, I; Rue & Raptis, 2021[Rue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955-957.]; Foces-Foces et al., 1999[Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237-241.]; Rue et al., 2023[Rue, K. L., Herrera, S., Chakraborty, I., Mebel, A. M. & Raptis, R. G. (2023). Crystals, 13, 1101.]), where the N—H hydrogen atom is disordered over the two N atoms of the pyrazole unit. Otherwise, the N—N, C—N and C—C bond lengths in 1 and 2 are similar to those observed in related pyrazole derivatives. C—C—C bond angles between the pz, CH2 and Ph units are 63.85 (15)° in 1 and 65.65 (9)° in 2, with pz/Ph centroid–centroid distances of 4.8294 (10) and 4.7376 (9) Å, respectively. While the dihedral angles between the pz and Ph units in 1 and 2 are not very disparate [86.00 (7) and 65.27 (4)°], the corresponding individual fold and twist angles are rather different. Specifically, the fold angle is much smaller in 1 [17.52 (12)°] than in 2 [76.12 (8)°], whereas the twist angle is much larger in 1 [65.00 (4)°] than in 2 [7.42 (6)°].

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability) of the crystal structure of 4-benzyl-1H-pyrazole (1), showing the contents of the asymmetric unit.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability) of the crystal structure of 3,5-di­amino-4-benzyl-1H-pyrazole (2), showing the contents of the asymmetric unit.

An inter­esting difference between the structures of 1 (P21) and 2 (P21/c) is related to their crystal symmetry. Although 4-benzyl-1H-pyrazole displays axial chirality (atropisomerism; Basilaia et al., 2022[Basilaia, M., Chen, M. H., Secka, J. & Gustafson, J. L. (2022). Acc. Chem. Res. 55, 2904-2919.]) in the crystal structure described here, the two atropenanti­omers can inter­convert in solution by rotation of the benzyl substituent around the C(pz)—C(CH2) single bond (Fig. 3[link]). Even if the direct conversion of conformer A to conformer B by rotation of the benzyl group from one side to the other side of the pz moiety would meet a significant barrier (caused by bulky substituents on the pz ring), A can still convert to B through its annular tautomer C. The latter converts to B by a same-side rotation of the benzyl group. Despite the facile inter­conversion of its different conformers (AD), evidenced by a single resonance for the two pyrazole C—H protons in its 1H NMR spectrum (Fig. 4[link]), 1 adopts a chiral crystal structure (in the achiral, yet non-centrosymmetric space group P21; Flack, 2003[Flack, H. D. (2003). Helv. Chim. Acta, 86, 905-921.]). This must be the result of a more efficient crystal packing in the non-centrosymmetric space group (detailed in the next section) than in a centrosymmetric one.

[Figure 3]
Figure 3
Inter­conversion between the different conformers, tautomers and atropenanti­omers of 4-benzyl-1H-pyrazole (AD) by annular tautomerism and/or rotation of the benzyl moiety (red: above pz plane; blue: below pz plane) around the C—C bond between the pz and CH2 units.
[Figure 4]
Figure 4
1H NMR spectra of 1 in CDCl3 (upper) and 2 in DMSO-d6 (lower) at ambient temperature. The signal for the NH proton of 1 is not detectable due to exchange with the solvent deuterium.

3. Supra­molecular features

The pz moieties in 1 are organized into layers along the ab plane, which consist of two symmetry-related (by a 21 screw axis) halves (Fig. 5[link]). Within each half, the pz moieties are all parallel to each other (crystallographically imposed) and are organized into parallel columns along both the a and b axes (which are orthogonal), with pz–pz inter­planar distances of 3.540 (4) and 2.184 (5) Å, and centroid–centroid distances of 5.6651 (5) and 5.7566 (6) Å, respectively. The two halves of the pz layer are connected by edge-to-face pz–pz inter­actions with dihedral angles of 44.59 (11)° and centroid–centroid distances of 4.3813 (12) Å (closest H⋯pz-plane and H⋯pz-centroid distances: 2.7021 (8) and 2.7052 (8) Å), as well as by N—H⋯N hydrogen bonding between pz moieties (Table 1[link]), which leads to catemers along the b axis with pz/pz dihedral angles of 44.59 (11)° and centroid–centroid distances of 4.3813 (12) Å).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.90 (2) 2.01 (2) 2.887 (2) 163 (2)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].
[Figure 5]
Figure 5
Packing diagram (viewed along the a axis) of 4-benzyl-1H-pyrazole (1).

Similarly to the pz moieties, the phenyl moieties of 1 also form layers along the ab plane, with two 21 screw axis-related halves comprised of parallel columns along both the a and b axes [Ph–Ph inter­planar distances of 2.557 (4) and 3.516 (4) Å, and centroid–centroid distances of 5.6651 (5) and 5.7566 (6) Å, respectively]. Edge-to-face Ph–Ph inter­actions connect the two halves of the Ph layer, with dihedral angles of 75.29 (9)° and centroid–centroid distances of 4.8833 (11) Å [closest H⋯Ph-plane and H⋯Ph-centroid distances: 2.7962 (10) and 2.8660 (7) Å].

The benzyl protons of 1 are involved in C—H⋯π hydrogen bonding with neighboring pz and Ph moieties, with H⋯pz/Ph-plane, H⋯pz/Ph-centroid and closest H⋯N/C distances of 2.6778 (16), 3.1016 (8), 2.7399 (17), and 2.503 (2), 3.3598 (9), 2.659 (2) Å, respectively.

In 2, the pz moieties form layers along the bc plane, which are comprised of two 21 screw axis-related halves as in 1 (Fig. 6[link]). Here, however, the pz moieties are only parallel within individual columns and in every second column, with dihedral angles between neighboring inter-columnar pz moieties of 85.71 (7)° [centroid–centroid distance: 5.9674 (8) Å]. Within each column, the pz–pz inter­planar and centroid–centroid distances are 3.4653 (18) and 4.7271 (7) Å, respectively. The two halves of the pz layer are connected by edge-to-face inter­actions characterized by dihedral angles of 85.71 (7)° and centroid–centroid distances of 4.5404 (9) Å [closest H⋯pz-plane, H⋯pz-centroid and H⋯N distances: 1.974 (16), 2.769 (16) and 2.108 (16) Å], as well as by N—H⋯N hydrogen bonding (Table 2[link]). Unlike in 1, this inter-layer hydrogen bonding in 2 occurs between NH2 donor and N(pz) acceptor moieties, while the N—H(pz) hydrogen atom is involved in an N—H⋯π inter­action. Within each half-layer, there are additional hydrogen bonds between neighboring NH2 groups, one on each side of the pz moieties (Table 2[link]). Since there are five N—H hydrogen-bond donors but only four hydrogen-bond acceptors in 2, one of the NH2 hydrogen atoms does not have a hydrogen-bond acceptor. Instead, an N—H⋯π inter­action is formed with a neighboring Ph moiety, with H⋯Ph-plane, H⋯Ph-centroid and closest H⋯C distances of 2.840 (15), 3.363 (15) and 2.956 (15) Å, respectively.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.894 (16) 2.108 (16) 2.9912 (13) 169.7 (14)
N3—H3A⋯N1ii 0.898 (17) 2.240 (17) 3.1032 (14) 161.0 (13)
N3—H3B⋯N4iii 0.905 (17) 2.383 (16) 3.1521 (14) 142.8 (13)
N4—H4A⋯N3iv 0.905 (17) 2.140 (18) 3.0388 (14) 171.7 (14)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
Packing diagram (viewed along the b axis) of 3,5-di­amino-4-benzyl-1H-pyrazole (2).

Similarly to 1, the phenyl moieties of 2 form layers but along the bc plane, which are analogous to the layers formed by its pz moieties with dihedral angles of 85.07 (6)° between neighboring inter-columnar Ph moieties [centroid–centroid distance: 6.0946 (8) Å]. Within each column, the Ph–Ph inter­planar and centroid–centroid distances are 3.4833 (18) and 4.7271 (7) Å, respectively. Because the Ph moieties in neighboring columns are not parallel, two types of Ph–Ph inter­actions are present between the two halves of the Ph layer. Edge-to-face inter­actions are characterized by dihedral angles of 85.07 (6)° and centroid–centroid distances of 5.4925 (10) Å [closest H⋯Ph-plane and H⋯Ph-centroid distances: 2.8014 (3) and 3.4126 (6) Å], in addition to offset stacked inter­actions between parallel Ph moieties with inter-planar and centroid–centroid distances of 1.997 (3) and 6.0466 (13) Å, respectively.

In 2, only one of the benzyl protons is involved in C—H⋯π hydrogen bonding with neighboring pz moieties, characterized by H⋯pz-plane, H⋯pz-centroid and closest H⋯C distances of 2.9081 (9), 3.2096 (5) and 2.9183 (11) Å, respectively.

4. Database survey

Two crystal structures of simple derivatives of 4-benzyl-1H-pyrazole are known, namely 3,5-dimethyl-4-benzyl-1H-pyrazole (3; Wang & Kong, 2011[Wang, S.-Q. & Kong, C. (2011). Acta Cryst. E67, o3199.]; CCDC refcode: OBUHOK) and 3,5-diphenyl-4-benzyl-1H-pyrazole (4; Huang et al., 2007[Huang, H.-P., Wu, Q., Liu, L.-X. & Sun, Q.-F. (2007). Acta Cryst. E63, o1473-o1474.]; CCDC refcode: XEYYAC). Inter­estingly, 3,5-dimethyl-4-benzyl-1H-pyrazole crystallizes in the same space group (P21) as its parent compound, 4-benzyl-1H-pyrazole (1), instead of the centrosymmetric space group (P21/c) of its structurally more similar 3,5-di­amino-4-benzyl-1H-pyrazole (2). This is likely due to the hydrogen-bond donor/acceptor ability of the NH2 groups of 2 compared to the CH3 groups of 3.

Not only does 3 crystallize in the same space group as 1, but it also adopts a very similar crystal packing in a unit cell of comparable dimensions [a = 6.2303 (6) Å; b = 5.5941 (5) Å; c = 15.1364 (15) Å; β = 97.049 (1)°]. Notably, its c axis is longer than in 1 [13.2321 (9) Å] to accommodate the bulkier CH3 group compared to H. The C—C—C bond angle of 66.3 (3)° between the pz, CH2 and Ph units is closer to that of 2 [65.65 (8)°], with a pz/Ph centroid–centroid distance of 4.6524 (2) Å, shorter than in both 1 and 2. The dihedral angle of 78.65 (13)° between the pz and Ph units in 3 is in-between the values of 1 and 2, with individual fold and twist angles of 60.60 (14) and 52.27 (16)°.

The supra­molecular features of 3 are similar to those of 1, with a slightly expanded crystal packing due to the presence of the CH3 groups. Thus, the parallel columns along the a and b axes feature pz–pz inter­planar distances of 2.995 (8) and 3.514 (7) Å, and centroid–centroid distances of 6.2303 (6) and 5.5941 (5) Å, respectively. The edge-to-face orientation of the pz/pz pairs within the two halves of the pz layer is described by a dihedral angle of 77.83 (18)° and centroid–centroid distance of 5.8969 (19) Å, which are significantly larger than the corresponding values in 1 [44.59 (11)° and 4.3813 (12) Å]. The N—H⋯N hydrogen bonding between pz moieties leading to catemers along the b axis is characterized by N—H, H⋯N and N⋯N distances of 0.86, 2.09 and 2.946 (4) Å, with an N—H⋯N angle of 170°, pz/pz dihedral angle of 77.83 (18)° and centroid–centroid distance of 4.9789 (19) Å. The corresponding values for the Ph–Ph inter­actions along the a and b axes are 2.202 (11) and 3.772 (7) Å (inter­planar) and 6.2302 (6) and 5.5941 (5) Å (centroid–centroid), whereas between the two halves of the Ph layer the values are 84.8 (2)° (dihedral angle) and 5.066 (3) Å (centroid–centroid), with closest H⋯Ph-plane and H⋯Ph-centroid distances of 2.863 (3) and 3.1738 (17) Å. Similarly to 1, the methyl and benzyl protons are involved in various C—H⋯π inter­actions with neighboring pz and Ph moieties.

3,5-Diphenyl-4-benzyl-1H-pyrazole (4) crystallizes in the centrosymmetric space group P21/c. As opposed to 13, however, the N—H⋯N hydrogen bonding between pz moieties does not lead to catemers. Instead, 4 forms hydrogen-bonded dimers, with an overall crystal packing very different from the ones of 13.

5. Synthesis and crystallization

4-Benzyl-1H-pyrazole (1) was synthesized by reduction with hypo­phospho­rous acid of 3,5-di­amino-4-benzyl-1H-pyrazole (2) (Echevarría & Elguero, 1993[Echevarría, A. & Elguero, J. (1993). Synth. Commun. 23, 925-930.]), which in turn was obtained from benzyl­malono­nitrile by reaction with hydrazine hydrate (Vaquero et al., 1987[Vaquero, J. J., Fuentes, L., Del Castillo, J. C., Pérez, M. I., García, J. L. & Soto, J. L. (1987). Synthesis, pp. 33-35.]). The synthesis of benzyl­malono­nitrile by alkyl­ation of malono­nitrile with benzyl bromide provided the mono­benzyl­ated product contaminated with large amounts of di­benzyl­ated side product (Díez-Barra et al., 1991[Díez-Barra, E., de la Hoz, A., Moreno, A. & Sánchez-Verdú, P. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2589-2592.]). Therefore, an alternate method, by the reaction of malono­nitrile with benzaldehyde and reduction of the benzyl­idenemalono­nitrile inter­mediate with NaBH4 was used for the preparation of pure benzyl­malono­nitrile in high yield (Tayyari et al., 2008[Tayyari, F., Wood, D. E., Fanwick, P. E. & Sammelson, R. E. (2008). Synthesis, pp. 279-285.]). Single crystals were grown by recrystallization from hot n-heptane (1) or by vapor diffusion of benzene into a solution in pyridine at room temperature (2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C—H bond distances were constrained to 0.95 Å (pz and Ph) or 0.99 Å (CH2) and refined as riding. Positions of N-bound H atoms were freely refined. Uiso(H) values were set to 1.2 or 1.5 times Ueq(C/N) for H atoms.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C10H10N2 C10H12N4
Mr 158.20 188.24
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 5.6651 (5), 5.7566 (6), 13.2321 (9) 17.410 (2), 4.7271 (7), 11.4664 (15)
β (°) 101.732 (4) 98.247 (6)
V3) 422.51 (6) 933.9 (2)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.59 0.69
Crystal size (mm) 0.14 × 0.13 × 0.09 0.23 × 0.21 × 0.11
 
Data collection
Diffractometer Bruker AXS D8 Quest Bruker AXS D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.605, 0.754 0.543, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 4021, 1612, 1549 10090, 1963, 1817
Rint 0.052 0.063
(sin θ/λ)max−1) 0.639 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.08 0.038, 0.095, 1.03
No. of reflections 1612 1963
No. of parameters 112 142
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16 0.21, −0.20
Absolute structure Flack x determined using 605 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3)
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and CrystalMaker (CrystalMaker Software, 2003[CrystalMaker Software (2003). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Supporting information


Computing details top

4-Benzyl-1H-pyrazole (1) top
Crystal data top
C10H10N2F(000) = 168
Mr = 158.20Dx = 1.244 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.6651 (5) ÅCell parameters from 3320 reflections
b = 5.7566 (6) Åθ = 3.4–78.8°
c = 13.2321 (9) ŵ = 0.59 mm1
β = 101.732 (4)°T = 150 K
V = 422.51 (6) Å3Plate, colourless
Z = 20.14 × 0.13 × 0.09 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
1612 independent reflections
Radiation source: I-mu-S 3.0 microsource X-ray tube1549 reflections with I > 2σ(I)
HELIOS multilayer Montel optics monochromatorRint = 0.052
Detector resolution: 7.4074 pixels mm-1θmax = 80.0°, θmin = 3.4°
ω and phi scansh = 65
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 67
Tmin = 0.605, Tmax = 0.754l = 1616
4021 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.0328P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1612 reflectionsΔρmax = 0.14 e Å3
112 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 605 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2067 (3)0.1035 (3)0.57682 (11)0.0298 (3)
H1N0.097 (4)0.009 (4)0.5558 (18)0.045*
N20.1810 (3)0.3078 (3)0.52511 (10)0.0304 (3)
C10.4146 (3)0.0962 (3)0.64801 (12)0.0296 (4)
H10.4699280.0300940.6928130.036*
C20.5319 (3)0.3046 (3)0.64400 (12)0.0281 (4)
C30.3770 (3)0.4290 (3)0.56670 (13)0.0294 (4)
H30.4082360.5823140.5462940.035*
C40.7775 (3)0.3749 (3)0.70179 (14)0.0333 (4)
H4A0.8722430.4285010.6510890.040*
H4B0.8589280.2353760.7362360.040*
C50.7846 (3)0.5626 (3)0.78212 (12)0.0285 (4)
C60.9684 (3)0.7272 (3)0.79620 (14)0.0342 (4)
H61.0832720.7243510.7529550.041*
C70.9862 (4)0.8950 (4)0.87229 (15)0.0413 (5)
H71.1134641.0053610.8810610.050*
C80.8206 (4)0.9031 (4)0.93542 (15)0.0433 (5)
H80.8335621.0178600.9878700.052*
C90.6349 (3)0.7423 (4)0.92160 (14)0.0389 (5)
H90.5187310.7481230.9641630.047*
C100.6177 (3)0.5727 (3)0.84595 (13)0.0329 (4)
H100.4906320.4622170.8376550.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0313 (7)0.0251 (7)0.0323 (7)0.0007 (6)0.0050 (6)0.0005 (6)
N20.0325 (7)0.0279 (7)0.0303 (7)0.0030 (6)0.0052 (6)0.0012 (6)
C10.0346 (9)0.0248 (8)0.0282 (7)0.0022 (7)0.0034 (6)0.0014 (6)
C20.0298 (8)0.0280 (8)0.0270 (7)0.0015 (7)0.0069 (6)0.0028 (7)
C30.0330 (9)0.0236 (8)0.0321 (8)0.0014 (7)0.0082 (6)0.0003 (6)
C40.0287 (9)0.0344 (10)0.0360 (8)0.0025 (7)0.0045 (7)0.0039 (7)
C50.0263 (8)0.0299 (9)0.0269 (7)0.0013 (7)0.0004 (6)0.0035 (6)
C60.0290 (9)0.0365 (9)0.0358 (9)0.0019 (8)0.0033 (7)0.0060 (7)
C70.0398 (11)0.0341 (9)0.0443 (10)0.0084 (8)0.0047 (8)0.0011 (8)
C80.0461 (12)0.0386 (10)0.0394 (10)0.0040 (9)0.0052 (8)0.0093 (8)
C90.0370 (10)0.0457 (12)0.0337 (9)0.0048 (9)0.0062 (7)0.0040 (8)
C100.0294 (8)0.0348 (9)0.0332 (8)0.0019 (7)0.0033 (6)0.0008 (7)
Geometric parameters (Å, º) top
N1—C11.351 (2)C5—C101.391 (3)
N1—N21.353 (2)C5—C61.392 (2)
N1—H1N0.90 (2)C6—C71.384 (3)
N2—C31.332 (2)C6—H60.9500
C1—C21.378 (3)C7—C81.378 (3)
C1—H10.9500C7—H70.9500
C2—C31.401 (2)C8—C91.385 (3)
C2—C41.500 (2)C8—H80.9500
C3—H30.9500C9—C101.388 (3)
C4—C51.511 (2)C9—H90.9500
C4—H4A0.9900C10—H100.9500
C4—H4B0.9900
C1—N1—N2111.63 (14)C10—C5—C6118.22 (16)
C1—N1—H1N130.0 (15)C10—C5—C4122.19 (15)
N2—N1—H1N118.0 (15)C6—C5—C4119.55 (16)
C3—N2—N1104.56 (13)C7—C6—C5120.94 (18)
N1—C1—C2107.75 (15)C7—C6—H6119.5
N1—C1—H1126.1C5—C6—H6119.5
C2—C1—H1126.1C8—C7—C6120.44 (19)
C1—C2—C3103.75 (15)C8—C7—H7119.8
C1—C2—C4128.29 (16)C6—C7—H7119.8
C3—C2—C4127.76 (17)C7—C8—C9119.31 (18)
N2—C3—C2112.30 (15)C7—C8—H8120.3
N2—C3—H3123.8C9—C8—H8120.3
C2—C3—H3123.8C8—C9—C10120.38 (18)
C2—C4—C5116.15 (15)C8—C9—H9119.8
C2—C4—H4A108.2C10—C9—H9119.8
C5—C4—H4A108.2C9—C10—C5120.69 (17)
C2—C4—H4B108.2C9—C10—H10119.7
C5—C4—H4B108.2C5—C10—H10119.7
H4A—C4—H4B107.4
C1—N1—N2—C30.69 (18)C2—C4—C5—C6143.18 (17)
N2—N1—C1—C20.29 (19)C10—C5—C6—C70.6 (3)
N1—C1—C2—C30.21 (18)C4—C5—C6—C7177.05 (16)
N1—C1—C2—C4174.91 (16)C5—C6—C7—C80.4 (3)
N1—N2—C3—C20.84 (18)C6—C7—C8—C90.4 (3)
C1—C2—C3—N20.67 (19)C7—C8—C9—C100.9 (3)
C4—C2—C3—N2174.49 (15)C8—C9—C10—C50.7 (3)
C1—C2—C4—C5112.26 (19)C6—C5—C10—C90.1 (3)
C3—C2—C4—C573.7 (2)C4—C5—C10—C9177.52 (16)
C2—C4—C5—C1039.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.90 (2)2.01 (2)2.887 (2)163 (2)
Symmetry code: (i) x, y1/2, z+1.
3,5-Diamino-4-benzyl-1H-pyrazole (2) top
Crystal data top
C10H12N4F(000) = 400
Mr = 188.24Dx = 1.339 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 17.410 (2) ÅCell parameters from 7332 reflections
b = 4.7271 (7) Åθ = 5.1–79.3°
c = 11.4664 (15) ŵ = 0.69 mm1
β = 98.247 (6)°T = 150 K
V = 933.9 (2) Å3Block, colourless
Z = 40.23 × 0.21 × 0.11 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
1963 independent reflections
Radiation source: I-mu-S 3.0 microsource X-ray tube1817 reflections with I > 2σ(I)
HELIOS multilayer Montel optics monochromatorRint = 0.063
Detector resolution: 7.4074 pixels mm-1θmax = 79.8°, θmin = 5.1°
ω and phi scansh = 2221
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.543, Tmax = 0.754l = 1414
10090 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.2938P]
where P = (Fo2 + 2Fc2)/3
1963 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45388 (5)0.6148 (2)0.34503 (8)0.0242 (2)
N20.42688 (6)0.7374 (2)0.23732 (8)0.0244 (2)
H20.4576 (9)0.859 (3)0.2061 (14)0.037*
N30.39960 (6)0.2960 (2)0.47002 (8)0.0245 (2)
H3A0.4465 (10)0.288 (3)0.5142 (14)0.037*
H3B0.3739 (9)0.129 (4)0.4651 (14)0.037*
N40.32068 (6)0.7197 (2)0.08053 (8)0.0253 (2)
H4A0.3421 (9)0.876 (4)0.0527 (14)0.038*
H4B0.2685 (10)0.736 (3)0.0774 (14)0.038*
C10.39646 (6)0.4405 (2)0.36362 (9)0.0214 (2)
C20.33394 (6)0.4435 (2)0.27059 (9)0.0215 (2)
C30.35673 (6)0.6383 (2)0.19157 (9)0.0218 (2)
C40.26130 (6)0.2683 (2)0.25826 (9)0.0240 (2)
H4C0.2734910.0838500.2974980.029*
H4D0.2443230.2307430.1735450.029*
C50.19460 (6)0.4035 (2)0.30979 (9)0.0241 (2)
C60.18121 (7)0.3371 (3)0.42321 (10)0.0302 (3)
H60.2136240.2030600.4681640.036*
C70.12111 (7)0.4639 (3)0.47196 (11)0.0364 (3)
H70.1126300.4151620.5494750.044*
C80.07384 (8)0.6599 (3)0.40819 (14)0.0407 (3)
H80.0332990.7489530.4418600.049*
C90.08595 (8)0.7262 (3)0.29431 (15)0.0450 (4)
H90.0533430.8599400.2494790.054*
C100.14562 (7)0.5973 (3)0.24591 (12)0.0359 (3)
H100.1530770.6425320.1675970.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0249 (5)0.0267 (5)0.0216 (4)0.0011 (4)0.0054 (4)0.0021 (3)
N20.0252 (5)0.0264 (5)0.0225 (4)0.0012 (4)0.0070 (4)0.0042 (3)
N30.0280 (5)0.0265 (5)0.0192 (4)0.0016 (4)0.0036 (4)0.0026 (4)
N40.0292 (5)0.0270 (5)0.0203 (4)0.0014 (4)0.0057 (4)0.0028 (3)
C10.0251 (5)0.0216 (5)0.0186 (5)0.0023 (4)0.0066 (4)0.0020 (4)
C20.0247 (5)0.0220 (5)0.0187 (5)0.0010 (4)0.0061 (4)0.0012 (4)
C30.0252 (5)0.0220 (5)0.0194 (5)0.0023 (4)0.0074 (4)0.0017 (4)
C40.0287 (6)0.0245 (5)0.0191 (5)0.0031 (4)0.0044 (4)0.0018 (4)
C50.0232 (5)0.0254 (5)0.0233 (5)0.0058 (4)0.0022 (4)0.0024 (4)
C60.0301 (6)0.0383 (6)0.0222 (5)0.0012 (5)0.0032 (4)0.0021 (5)
C70.0321 (6)0.0488 (7)0.0296 (6)0.0066 (5)0.0090 (5)0.0091 (5)
C80.0269 (6)0.0408 (7)0.0567 (8)0.0031 (5)0.0144 (6)0.0124 (6)
C90.0302 (7)0.0403 (7)0.0649 (10)0.0055 (5)0.0080 (6)0.0119 (7)
C100.0306 (6)0.0392 (7)0.0381 (7)0.0000 (5)0.0062 (5)0.0115 (5)
Geometric parameters (Å, º) top
N1—C11.3360 (14)C4—H4C0.9900
N1—N21.3839 (13)C4—H4D0.9900
N2—C31.3425 (15)C5—C101.3869 (17)
N2—H20.894 (16)C5—C61.3896 (15)
N3—C11.3924 (13)C6—C71.3906 (17)
N3—H3A0.898 (17)C6—H60.9500
N3—H3B0.905 (17)C7—C81.378 (2)
N4—C31.3906 (14)C7—H70.9500
N4—H4A0.905 (17)C8—C91.388 (2)
N4—H4B0.907 (17)C8—H80.9500
C1—C21.4106 (15)C9—C101.3871 (19)
C2—C31.3892 (14)C9—H90.9500
C2—C41.5012 (15)C10—H100.9500
C4—C51.5174 (15)
C1—N1—N2103.56 (9)C2—C4—H4D108.7
C3—N2—N1112.10 (9)C5—C4—H4D108.7
C3—N2—H2129.1 (10)H4C—C4—H4D107.6
N1—N2—H2118.7 (10)C10—C5—C6118.05 (11)
C1—N3—H3A115.6 (10)C10—C5—C4121.30 (10)
C1—N3—H3B114.6 (10)C6—C5—C4120.66 (10)
H3A—N3—H3B113.7 (14)C5—C6—C7121.06 (12)
C3—N4—H4A113.2 (10)C5—C6—H6119.5
C3—N4—H4B112.2 (10)C7—C6—H6119.5
H4A—N4—H4B112.1 (14)C8—C7—C6120.20 (12)
N1—C1—N3120.41 (10)C8—C7—H7119.9
N1—C1—C2112.78 (9)C6—C7—H7119.9
N3—C1—C2126.62 (10)C7—C8—C9119.43 (12)
C3—C2—C1103.77 (9)C7—C8—H8120.3
C3—C2—C4128.31 (10)C9—C8—H8120.3
C1—C2—C4127.88 (10)C10—C9—C8120.05 (13)
N2—C3—C2107.78 (9)C10—C9—H9120.0
N2—C3—N4121.81 (10)C8—C9—H9120.0
C2—C3—N4130.32 (10)C5—C10—C9121.20 (12)
C2—C4—C5114.35 (9)C5—C10—H10119.4
C2—C4—H4C108.7C9—C10—H10119.4
C5—C4—H4C108.7
C1—N1—N2—C31.02 (11)C3—C2—C4—C592.03 (13)
N2—N1—C1—N3174.26 (9)C1—C2—C4—C590.56 (13)
N2—N1—C1—C20.95 (11)C2—C4—C5—C1083.88 (13)
N1—C1—C2—C30.55 (12)C2—C4—C5—C695.73 (12)
N3—C1—C2—C3174.30 (10)C10—C5—C6—C70.83 (18)
N1—C1—C2—C4177.35 (10)C4—C5—C6—C7178.80 (11)
N3—C1—C2—C47.80 (17)C5—C6—C7—C80.36 (19)
N1—N2—C3—C20.72 (12)C6—C7—C8—C91.0 (2)
N1—N2—C3—N4176.05 (9)C7—C8—C9—C100.5 (2)
C1—C2—C3—N20.11 (11)C6—C5—C10—C91.34 (19)
C4—C2—C3—N2178.00 (10)C4—C5—C10—C9178.28 (12)
C1—C2—C3—N4176.29 (10)C8—C9—C10—C50.7 (2)
C4—C2—C3—N41.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.894 (16)2.108 (16)2.9912 (13)169.7 (14)
N3—H3A···N1ii0.898 (17)2.240 (17)3.1032 (14)161.0 (13)
N3—H3B···N4iii0.905 (17)2.383 (16)3.1521 (14)142.8 (13)
N4—H4A···N3iv0.905 (17)2.140 (18)3.0388 (14)171.7 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

We thank the College of Science, Purdue University, for support for X-ray source and detector upgrades through the 2020 and 2023 Laboratory and University Core Facility Research Equipment Program.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1808554 to Western Michigan University for Gellert Mezei; grant No. CHE-1625543 to Purdue University for the single-crystal X-ray diffractometer); Western Michigan University College of Arts and Sciences (award to Emily R. Hayward); Lee Honors College (award to Emily R. Hayward).

References

First citationAhmed, B. M., Zeller, M. & Mezei, G. (2023). Acta Cryst. E79, 428–431.  CSD CrossRef IUCr Journals Google Scholar
First citationAhmed, B. M., Zhang, H., Mo, Y. & Mezei, G. (2016). J. Org. Chem. 81, 1718–1722.  CrossRef CAS PubMed Google Scholar
First citationAl Isawi, W. A., Zeller, M. & Mezei, G. (2021). Inorg. Chem. 60, 13479–13492.  CSD CrossRef CAS PubMed Google Scholar
First citationAlkorta, I., Elguero, J., Foces-Foces, C. & Infantes, L. (2006). ARKIVOC (ii), 15–30.  Google Scholar
First citationBasilaia, M., Chen, M. H., Secka, J. & Gustafson, J. L. (2022). Acc. Chem. Res. 55, 2904–2919.  CrossRef CAS PubMed Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985–993.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2020). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammers, A. & Parkin, S. (2004). CrystEngComm, 6, 168–172.  Web of Science CrossRef CAS Google Scholar
First citationClaramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, A., Lokshin, V., Valés, M. & Elguero, J. (2006). J. Org. Chem. 71, 6881–6891.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCrystalMaker Software (2003). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationDíez-Barra, E., de la Hoz, A., Moreno, A. & Sánchez-Verdú, P. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2589–2592.  Google Scholar
First citationEchevarría, A. & Elguero, J. (1993). Synth. Commun. 23, 925–930.  Google Scholar
First citationFlack, H. D. (2003). Helv. Chim. Acta, 86, 905–921.  Web of Science CrossRef CAS Google Scholar
First citationFoces-Foces, C., Alkorta, I. & Elguero, J. (2000). Acta Cryst. B56, 1018–1028.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237–241.  CAS Google Scholar
First citationHuang, H.-P., Wu, Q., Liu, L.-X. & Sun, Q.-F. (2007). Acta Cryst. E63, o1473–o1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Ramsden, C. A., Joule, J. A. & Zhdankin, V. V. (2010). Handbook of Heterocyclic Chemistry, 3rd ed. Amsterdam: Elsevier.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLa Cour, T. & Rasmussen, S. E. (1973). Acta Chem. Scand. 27, 1845–1854.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReger, D. L., Gardinier, J. R., Christian Grattan, T., Smith, M. R. & Smith, M. D. (2003). New J. Chem. 27, 1670–1677.  CSD CrossRef CAS Google Scholar
First citationRue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955–957.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationRue, K. L., Herrera, S., Chakraborty, I., Mebel, A. M. & Raptis, R. G. (2023). Crystals, 13, 1101.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661–10668.  Web of Science CSD CrossRef CAS Google Scholar
First citationTayyari, F., Wood, D. E., Fanwick, P. E. & Sammelson, R. E. (2008). Synthesis, pp. 279–285.  Google Scholar
First citationVaquero, J. J., Fuentes, L., Del Castillo, J. C., Pérez, M. I., García, J. L. & Soto, J. L. (1987). Synthesis, pp. 33–35.  CrossRef Google Scholar
First citationWang, S.-Q. & Kong, C. (2011). Acta Cryst. E67, o3199.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds