research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate

crossmark logo

aDepartment of Chemistry, Lafayette College, Hugel Science Center, Easton, PA 18042-1768, USA, and bRigaku Americas Corporation, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: griffitd@lafayette.edu

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 19 October 2023; accepted 13 June 2024; online 18 June 2024)

The mol­ecular structure of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate di­chloro­methane hemisolvate, [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2, as determined by single-crystal X-ray diffraction is reported. The two independent tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure parallel to the (100) plane. Solid-state stability within that asymmetric unit as well as between neighboring dimeric units is afforded by C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π and YXπ (Y = B, C; X = F, O) inter­actions, which yield diperiodic sheets and a three-dimensional extended network.

1. Chemical context

This compound was prepared as part of a Course-based Undergraduate Research Experience (CURE) (Stone et al., 2020[Stone, K. L., Kissel, D. S., Shaner, S. E., Grice, K. A. & Van Opstal, M. T. (2020). ACS Symp. Ser. 1371, 35-55.]; Huang et al., 2019[Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D., Guan, Z., He, Y., Weiss, P. S. & Griffith, D. R. (2019). J. Vis. Exp. 150, e60050.]). The foundation of this CURE was to further examine addition reactions to tricarbon­yl(tropone)iron(0) (I) and tricarbon­yl(η5-keto­cyclo­hepta­dien­yl)iron(0) tetra­fluoro­borate (II) (Fig. 1[link]). The research focus of one author lies in the synthesis of unique and diverse aza­polycyclic skeletons from common synthetic building blocks such as compound I due to the biological importance of such scaffolds. Although seven-membered carbocyclic rings are found in a number of biologically active natural products (Shoemaker & Griffith, 2021[Shoemaker, A. H. & Griffith, D. R. (2021). Synthesis, 53, 65-78.]), their synthesis tends to present a greater challenge compared to similar five- or six-membered rings because of the increased enthalpic and entropic barriers associated with their formation (Phelan et al., 2020[Phelan, Z. K., Weiss, P. S., He, Y., Guan, Z., Thamattoor, D. M. & Griffith, D. R. (2020). J. Org. Chem. 85, 2202-2212.]; Huang et al., 2018[Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D. & Griffith, D. R. (2018). Tetrahedron Lett. 59, 3432-3434.]). The addition of a number of different nucleophiles to compound II has previously been reported, including amines (Phelan et al., 2020[Phelan, Z. K., Weiss, P. S., He, Y., Guan, Z., Thamattoor, D. M. & Griffith, D. R. (2020). J. Org. Chem. 85, 2202-2212.]), azide, and cyanide (Eisenstadt, 1975[Eisenstadt, A. (1975). J. Organomet. Chem. 97, 443-451.]). This raised the question as to whether or not tri­phenyl­phosphine would be sufficiently nucleophilic to react with compound II. Previously, the reaction of several phosphines (PEt3, PnPr3, PnBu3 or PMe2Ph) with tricarbon­yl(η5-cyclo­hepta­dien­yl)iron(II) tetra­fluoro­borate in methyl­ene chloride resulted in the formation of the corresponding tri­carbon­yl[η4-(5-exo-phosphine)cyclo­hepta­diene]iron(0) tetra­fluoro­borate (Brown et al., 1982[Brown, D. A., Chawla, S. K., Glass, W. K. & Hussein, F. M. (1982). Inorg. Chem. 21, 2726-2732.]). Similar to that system, the reaction of compound II and tri­phenyl­phosphine resulted in the formation of tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) (Fig. 1[link]). Ultimately, this and similar phospho­nium salts could be a precursor for Wittig olefinations that would provide efficient access to tropone rings with diverse substituents.

[Scheme 1]
[Figure 1]
Figure 1
Tricarbon­yl(tropone)iron(0) (I), tricarbon­yl(η5-keto­cyclo­hepta­dien­yl)iron(II) tetra­fluoro­borate (II), and tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) and the procedure outlining the synthesis of III from I and II.

2. Structural commentary

The single crystal X-ray structure of III crystallizes in the centrosymmetric triclinic space group P[\overline{1}] (Fig. 2[link]). The asymmetric unit consists of two tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations, two tetra­fluoro­borate anions (to balance the charge), and an inter­stitial CH2Cl2 solvent mol­ecule lying in solvent-accessible voids of ∼101 Å3. The iron tricarbonyl moieties adopt piano stool orientations with the cyclo­hepta-2,4-dien-1-one group (Fig. 2[link]). Closer analysis of the thermal parameters of the [BF4] anions and CH2Cl2 solvent mol­ecule within the asymmetric unit showed no qualitative evidence of disorder.

[Figure 2]
Figure 2
Single-crystal structure of one tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluoro­borate (III) from the asymmetric unit with anisotropic displacement ellipsoids at the 50% probability level. The inter­stitial CH2Cl2 has been removed for the sake of clarity.

3. Supra­molecular features

Solid-state stability between the mol­ecules of III within the asymmetric unit is afforded by an array of C—H⋯O and C—H⋯F hydrogen bonds (Table 1[link]) as determined through PLATON analysis (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The two independent tri­carbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations from the asymmetric unit lie parallel to the (100) plane and are stabilized by inter­molecular C—H⋯O hydrogen bonds. The addition of C—H⋯F hydrogen bonding involving the [BF4] anions increases the dimensionality of the solid-state structure into both diperiodic sheets and extended 3D networks, which also contain C—H⋯π and YXπ (Y = B,C; X = F, O) inter­actions (Table 2[link]) according to PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) (Figs. 3[link] and 4[link]). The resulting 3D network was also found to contain solvent-accessible voids of ∼101 Å3 within which the inter­stitial CH2Cl2 was located (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯F5 1.00 2.37 3.198 (3) 140
C43—H43⋯F6i 0.95 2.33 3.240 (3) 160
C44—H44⋯O8ii 0.95 2.56 3.467 (3) 159
C46—H46⋯F7iii 0.95 2.40 3.151 (3) 136
C49—H49⋯O7iv 0.95 2.60 3.339 (3) 135
C50—H50⋯F6iv 0.95 2.53 3.471 (3) 169
C52—H52⋯O1 0.95 2.37 3.286 (3) 161
C53—H53⋯F4iii 0.95 2.66 3.500 (3) 148
C56—H56⋯F6iv 0.95 2.48 3.362 (3) 155
C2—H2⋯F3v 1.00 2.50 3.493 (3) 170
C4—H4⋯F4iii 1.00 2.42 3.393 (3) 165
C7—H7⋯O5 1.00 2.34 3.192 (3) 143
C13—H13⋯F1v 0.95 2.41 3.232 (3) 144
C19—H19⋯O2vi 0.95 2.51 3.393 (3) 154
C28—H28⋯O5 0.95 2.41 3.319 (4) 161
C57A—H57A⋯F4 0.99 2.47 3.276 (4) 139
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+2]; (iii) [x-1, y, z]; (iv) [x-1, y+1, z]; (v) [-x+2, -y+1, -z+1]; (vi) [x+1, y-1, z].

Table 2
Phenyl ring torsion angles (°)

Cation 1 Cation 2
Torsion angle Value Torsion angle Value
Ring 1      
P1—C11—C16—C15 175.9 (2) P2—C39—C40—C41 −176.5 (2)
C11—C16—C15—C14 −0.7 (4) C39—C40—C41—C42 1.0 (4)
C16—C15—C14—C13 −0.7 (4) C40—C41—C42—C43 1.2 (4)
C15—C14—C13—C12 1.2 (4) C41—C42—C43—C44 −2.2 (4)
C14—C13—C12—C11 −0.2 (4) C42—C43—C44—C39 0.9 (4)
C13—C12—C11—P1 −175.4 (2) C43—C44—C39—P2 175.6 (2)
       
Ring 2      
P1—C17—C18—C19 −175.5 (2) P2—C45—C50—C49 178.8 (2)
C17—C18—C19—C20 −0.1 (4) C45—C50—C49—C48 0.8 (4)
C18—C19—C20—C21 0.4 (4) C50—C49—C48—C47 −0.1 (4)
C19—C20—C21—C22 −0.2 (5) C49—C48—C47—C46 −1.5 (4)
C20—C21—C22—C17 −1.2 (4) C48—C47—C46—C45 2.3 (4)
C21—C22—C17—P1 176.0 (2) C47—C46—C45—P2 179.7 (2)
       
Ring 3      
P1—C23—C28—C27 −170.3 (2) P2—C51—C52—C53 176.9 (2)
C23—C28—C27—C26 −1.1 (4) C51—C52—C53—C54 0.1 (4)
C28—C27—C26—C25 1.1 (4) C52—C53—C54—C55 −0.5 (4)
C27—C26—C25—C24 0.1 (5) C53—C54—C55—C56 −0.1 (5)
C26—C25—C24—C23 −1.3 (5) C54—C55—C56—C51 1.2 (5)
C25—C24—C23—P1 171.4 (2) C55—C56—C51—P2 −177.7 (2)
[Figure 3]
Figure 3
View of the C—H⋯O and C—H⋯F hydrogen bonds from the (101) plane of III. When coupled with the C—H⋯π and Y—Xπ (Y = B, C; X = F, O) inter­actions, this repeat unit extends into a three-dimensional network. Anisotropic displacement ellipsoids have been set to the 50% probability level.
[Figure 4]
Figure 4
Projection of the C—H⋯π and Y—Xπ (Y = B, C; X = F, O) inter­actions in the ac plane of III. Their combination with the hydrogen bonds yields a three-dimensional extended network in the solid state. Anisotropic displacement ellipsoids have been set to the 50% probability level (Cg = ring centroids).
[Figure 5]
Figure 5
View into the (120) plane showing the inter­stitial CH2Cl2 solvent mol­ecules lying within the solvent-accessible voids of III. These voids are generated from the packing supported by the C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π and Y—Xπ (Y = B, C; X = F, O) inter­actions. The anisotropic displacement ellipsoids for CH2Cl2 have been set to the 50% probability level.

The Z′ > 1 nature of the structural model for III suggests the presence of structural differences between mol­ecules within the asymmetric unit. Barring differences in the thermal parameters for the various atoms within the independent components, overlaying the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations and [BF4] anions showed that the anions had better alignment while differences in the some of the constituent torsion angles within phenyl rings from the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations were more pronounced visually (Fig. 6[link]). Table 3[link] summarizes the torsion angles from the phenyl rings of the tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) cations.

Table 3
XY⋯π inter­actions (Å,°)

Cg1–Cg5 are the centroids of the C11–C16, C17–C22, C39–C44 and C45–C50 rings, respectively.

XYCg YCg XCg X—H⋯Cg
C54—H54⋯Cg2i 2.99 3.929 (3) 171
B1—F1⋯Cg1ii 3.429 (2) 4.790 (3) 165.56 (17)
B2—F6⋯Cg3iii 3.653 (2) 4.913 (3) 150.99 (17)
C9—O3⋯Cg2iv 3.393 (2) 3.858 (3) 105.37 (19)
C38—08⋯Cg4v 3.467 (2) 3.925 (3) 105.10 (18)
Symmetry codes: (i) −1 + x, 1 + y, z; (ii) x, 1 + y, z; (iii) 1 + x, −1 + y, z; (iv) 2 − x, 1 − y, 1 − z; (v) 1 − x, 1 − y, 2 − z.
[Figure 6]
Figure 6
Mol­ecular overlay of between both cations constituting the symmetric unit of III demonstrating that the greatest disparity between them exists within the torsion angles of the the phenyl rings. The first tricarbon­yl[η4-6-exo-(tri­phenyl­phosphino)cyclo­hepta-2,4-dien-1-one]iron(0) tetra­fluor­r­borate is in black while the second is in yellow. Anisotropic displacement ellipsoids have been set to the 50% probability level.

4. Database survey

The structure of this report is not found in the Cambridge Structural Database (CSD version 5.43; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). To date, the structures of six tricarbon­yl(η4-tropone derivative)iron(0) compounds have been reported. In addition to the structure of compound I (Dodge, 1964[Dodge, R. P. (1964). J. Am. Chem. Soc. 86, 5429-5431.]), three of the remaining reports have one additional substituent in the 6-position, H (Sotokawa et al., 1987[Sotokawa, H., Tajiri, A., Morita, N., Kabuto, C., Hatano, M. & Asao, T. (1987). Tetrahedron Lett. 28, 5873-5876.]), t-Bu (Coquerel et al., 2002[Coquerel, Y., Deprés, J.-P., Greene, A. E. & Philouze, C. (2002). J. Organomet. Chem. 659, 176-185.]) and morpholi-4-yl (Huang et al., 2018[Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D. & Griffith, D. R. (2018). Tetrahedron Lett. 59, 3432-3434.]). From the various reports, comparison of their structural features suggested that the presence of the formally cationic phospho­rous had minimal impact on the bond lengths.

5. Synthesis and crystallization

All chemicals were purchased from commercial vendors and used as is. Compounds I and II were prepared according to literature procedures (Huang et al., 2019[Huang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D., Guan, Z., He, Y., Weiss, P. S. & Griffith, D. R. (2019). J. Vis. Exp. 150, e60050.]). NMR spectra were obtained in d3-aceto­nitrile using a Bruker Avance III HD 400 FT-NMR spectrometer. The synthesis was performed using standard Schlenk conditions as outlined in Fig. 1[link], but all subsequent manipulations of the product were conducted in air. Compound II (0.0054 g, 0.016 mmol) and tri­phenyl­phosphine (0.0043 g, 0.016 mmol) were added to a 50 mL round-bottom flask along with a stir bar. Methyl­ene chloride (12 mL) was added, and the reaction mixture was stirred at room temperature for 30 minutes. A color change from pastel yellow to a darker yellow was observed. The solution was reduced in vacuo to approximately 5 mL and the resulting solution was layered with diethyl ether (7 mL) before being placed in the freezer for 48 h. The sample formed a pastel yellow solid and was filtered via cannula. The solid was dried in vacuo to give the desired product (0.0085 g, 88% yield). Crystals were grown by slow vapor diffusion of diethyl ether at room temperature into a solution of the compound in methyl­ene chloride. 1H NMR (400 MHz, CD3CN): δ 7.87 (m, 9H, Hmeta, Hpara), 7.75 (m, 6H, Hortho), 5.80 (t, J = 6.2 Hz, 1H, H4), 5.20 (t, J = 7.0 Hz, 1H, H1), 4.86 (td, J = 12.7, 4.7 Hz, 1H, H7), 3.21 (dd, J = 13.0, 7.5 Hz, 1H, H3), 3.16 (d, J = 6.6 Hz, 1H, H2), 2.18 (m, 1H, H6A/B), 1.99 (q, J = 12.2 Hz, 1H, H6A/B); 31P{1H} NMR (162 MHz, CD3CN): δ 23.3 (s); 13C{1H} NMR (100 MHz, CD3CN): δ 207.9 (s, No DEPT, C8–10), 202.6 (d, J = 15.4 Hz, No DEPT, C5), 135.9 (d, J = 3.2 Hz, DEPT +, Cpara), 134.8 (d, J = 9.5 Hz, DEPT +, Cmeta), 131.1 (d, J = 12.7 Hz, DEPT +, Cortho), 117.2 (d, J = 81.6 Hz, No DEPT, Cipso), 94.6 (s, DEPT +, C4), 89.8 (s, DEPT +, C1), 56.7 (s, DEPT +, C2), 49.5 (d, J = 7.4 Hz, DEPT +, C3), 41.2 (d, J = 31.8 Hz, DEPT +, C7), 37.2 (s, DEPT –, C6). Peaks were assigned using COSY, HMBC and HSQC NMR spectra. Protons of the tropone ring are labeled by the number of the carbon atom to which they are bonded. IR (cm−1, CH3CN): 2059 (m, Fe—C≡O), 2014 (m, Fe—C≡O), 1966 (vs, Fe—C≡O), 1710 (m, C=O), 1609 (m, C=C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All non-hydrogen atoms were refined anisotropically. H atoms bound to carbon were positioned geometrically and constrained to ride on their parent atoms. Uiso(H) values were set to a multiple of Ueq(C) with 1.2 times all CH and CH2 groups.

Table 4
Experimental details

Crystal data
Chemical formula [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2
Mr 638.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.9343 (2), 10.9767 (3), 26.4168 (6)
α, β, γ (°) 86.993 (2), 82.468 (2), 77.300 (2)
V3) 2785.09 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.3 × 0.14 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Mini II
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.841, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 59046, 9882, 7785
Rint 0.054
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03
No. of reflections 9882
No. of parameters 730
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Tricarbonyl[η4-6-exo-(triphenylphosphino)cyclohepta-2,4-dien-1-one]\ iron(0) tetrafluoroborate dichloromethane hemisolvate top
Crystal data top
[Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2Z = 4
Mr = 638.57F(000) = 1300
Triclinic, P1Dx = 1.523 Mg m3
a = 9.9343 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9767 (3) ÅCell parameters from 14608 reflections
c = 26.4168 (6) Åθ = 2.3–25.9°
α = 86.993 (2)°µ = 0.76 mm1
β = 82.468 (2)°T = 100 K
γ = 77.300 (2)°Block, yellow
V = 2785.09 (12) Å30.3 × 0.14 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Mini II
diffractometer
9882 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source7785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.0000 pixels mm-1θmax = 25.1°, θmin = 2.0°
ω scansh = 1111
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
k = 1313
Tmin = 0.841, Tmax = 0.969l = 3131
59046 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.9998P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9882 reflectionsΔρmax = 0.54 e Å3
730 parametersΔρmin = 0.43 e Å3
9 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P20.49890 (7)0.80234 (6)0.85505 (2)0.01236 (16)
Fe20.76338 (4)0.40071 (4)0.89551 (2)0.01306 (11)
O50.8797 (2)0.49399 (18)0.75394 (7)0.0214 (5)
O60.6413 (2)0.28814 (19)0.81779 (7)0.0266 (5)
O70.9804 (2)0.18494 (18)0.92305 (7)0.0231 (5)
O80.5743 (2)0.3482 (2)0.98587 (7)0.0285 (5)
C290.6417 (3)0.5823 (2)0.89315 (10)0.0145 (6)
H290.5568160.5930760.9188380.017*
C300.7655 (3)0.5796 (2)0.91661 (10)0.0149 (6)
H300.7569790.5985660.9536520.018*
C310.8961 (3)0.5230 (2)0.89111 (10)0.0159 (6)
H310.9779350.5022970.9108030.019*
C320.9086 (3)0.4713 (3)0.84151 (10)0.0160 (6)
H320.9977450.4097520.8321290.019*
C330.8442 (3)0.5353 (3)0.79735 (10)0.0155 (6)
C340.7409 (3)0.6599 (2)0.80507 (10)0.0165 (6)
H34A0.7132840.6940010.7716160.020*
H34B0.7860630.7198800.8194110.020*
C350.6098 (3)0.6455 (2)0.84144 (9)0.0136 (6)
H350.5565410.5956600.8243170.016*
C360.6867 (3)0.3314 (3)0.84864 (10)0.0175 (6)
C370.8977 (3)0.2693 (3)0.91181 (10)0.0173 (6)
C380.6482 (3)0.3682 (3)0.95096 (10)0.0173 (6)
C390.5932 (3)0.8834 (2)0.89063 (9)0.0122 (6)
C400.6901 (3)0.9485 (2)0.86506 (10)0.0166 (6)
H400.7025050.9539060.8287980.020*
C410.7676 (3)1.0048 (3)0.89304 (10)0.0192 (6)
H410.8321121.0499710.8758780.023*
C420.7511 (3)0.9952 (3)0.94643 (11)0.0200 (7)
H420.8031541.0352190.9653830.024*
C430.6592 (3)0.9277 (3)0.97171 (10)0.0157 (6)
H430.6505920.9191321.0078930.019*
C440.5792 (3)0.8722 (2)0.94406 (10)0.0139 (6)
H440.5152410.8268360.9614760.017*
C450.3386 (3)0.7855 (2)0.89292 (10)0.0134 (6)
C460.3015 (3)0.6696 (3)0.90128 (10)0.0169 (6)
H460.3613840.5968760.8866850.020*
C470.1768 (3)0.6603 (3)0.93104 (11)0.0205 (7)
H470.1535180.5810820.9376880.025*
C480.0867 (3)0.7676 (3)0.95092 (11)0.0201 (7)
H480.0008840.7617970.9704660.024*
C490.1227 (3)0.8837 (3)0.94208 (10)0.0183 (6)
H490.0608560.9564660.9557090.022*
C500.2479 (3)0.8940 (3)0.91362 (10)0.0160 (6)
H500.2722470.9730780.9081490.019*
C510.4586 (3)0.8938 (2)0.79783 (9)0.0142 (6)
C520.4425 (3)0.8367 (3)0.75349 (10)0.0169 (6)
H520.4569990.7483600.7523920.020*
C530.4047 (3)0.9112 (3)0.71075 (10)0.0218 (7)
H530.3934390.8732650.6805260.026*
C540.3839 (3)1.0399 (3)0.71241 (11)0.0262 (7)
H540.3590611.0896910.6831750.031*
C550.3990 (3)1.0971 (3)0.75671 (11)0.0268 (7)
H550.3846921.1855010.7574770.032*
C560.4353 (3)1.0245 (3)0.79987 (10)0.0199 (7)
H560.4440191.0630750.8302870.024*
P10.94285 (7)0.20756 (6)0.64553 (2)0.01226 (16)
O10.5518 (2)0.53885 (18)0.72809 (7)0.0245 (5)
Fe10.70408 (4)0.60845 (4)0.59115 (2)0.01357 (11)
C10.8213 (3)0.4256 (2)0.60006 (9)0.0126 (6)
H10.9134700.4119130.5783870.015*
C20.7095 (3)0.4278 (2)0.57052 (10)0.0160 (6)
H20.7311330.4055100.5336850.019*
O20.4934 (2)0.81613 (18)0.55330 (8)0.0254 (5)
C30.5726 (3)0.4871 (3)0.58972 (11)0.0185 (6)
H30.4997870.5060830.5659670.022*
O30.9219 (2)0.6536 (2)0.50941 (8)0.0273 (5)
C40.5435 (3)0.5435 (3)0.63893 (10)0.0174 (6)
H40.4534100.6062420.6438970.021*
O40.7946 (2)0.73153 (19)0.67411 (8)0.0272 (5)
C50.5929 (3)0.4868 (3)0.68714 (10)0.0174 (6)
C60.6918 (3)0.3593 (3)0.68483 (10)0.0171 (6)
H6A0.6496060.2994880.6689210.021*
H6B0.7071120.3282160.7199290.021*
C70.8327 (3)0.3667 (2)0.65366 (9)0.0130 (6)
H70.8808270.4167290.6729860.016*
C80.5753 (3)0.7365 (3)0.56836 (10)0.0173 (6)
C90.8363 (3)0.6373 (3)0.54088 (11)0.0186 (6)
C100.7618 (3)0.6834 (3)0.64182 (11)0.0181 (6)
C110.8592 (3)0.1224 (2)0.60744 (10)0.0125 (6)
C120.8886 (3)0.1261 (2)0.55398 (10)0.0133 (6)
H120.9573990.1683290.5380810.016*
C130.8167 (3)0.0676 (2)0.52443 (10)0.0159 (6)
H130.8360290.0701490.4882470.019*
C140.7169 (3)0.0058 (3)0.54771 (10)0.0186 (6)
H140.6692800.0353170.5273380.022*
C150.6853 (3)0.0030 (3)0.60082 (10)0.0177 (6)
H150.6159180.0390060.6164040.021*
C160.7559 (3)0.0620 (2)0.63085 (10)0.0150 (6)
H160.7342590.0612660.6669570.018*
C171.1110 (3)0.2205 (2)0.61364 (9)0.0139 (6)
C181.2036 (3)0.1120 (3)0.59409 (9)0.0155 (6)
H181.1753480.0344970.5954950.019*
C191.3374 (3)0.1205 (3)0.57264 (10)0.0189 (7)
H191.4008260.0479940.5594120.023*
C201.3790 (3)0.2337 (3)0.57043 (11)0.0221 (7)
H201.4701330.2383300.5555460.026*
C211.2875 (3)0.3400 (3)0.58992 (11)0.0236 (7)
H211.3162520.4173190.5881980.028*
C221.1544 (3)0.3338 (3)0.61191 (10)0.0188 (6)
H221.0926700.4064780.6257850.023*
C230.9730 (3)0.1234 (3)0.70496 (10)0.0157 (6)
C240.9921 (3)0.0070 (3)0.70735 (11)0.0226 (7)
H240.9766790.0503710.6791880.027*
C251.0334 (3)0.0724 (3)0.75100 (12)0.0298 (8)
H251.0445550.1606540.7530210.036*
C261.0588 (3)0.0089 (3)0.79202 (11)0.0272 (8)
H261.0872830.0542690.8218060.033*
C271.0425 (3)0.1197 (3)0.78950 (10)0.0253 (7)
H271.0614770.1620450.8173160.030*
C280.9983 (3)0.1875 (3)0.74612 (10)0.0194 (6)
H280.9855320.2758740.7445550.023*
B11.1632 (3)0.7161 (3)0.59857 (12)0.0190 (7)
F11.06555 (19)0.81871 (17)0.58349 (7)0.0392 (5)
F21.09598 (19)0.62678 (16)0.62366 (7)0.0344 (5)
F31.25338 (19)0.66298 (17)0.55619 (6)0.0332 (5)
F41.24188 (19)0.75704 (18)0.63210 (7)0.0371 (5)
B21.2845 (4)0.2994 (3)0.90769 (14)0.0241 (8)
F51.2026 (2)0.3128 (2)0.86803 (8)0.0563 (6)
F61.3542 (2)0.17533 (15)0.91095 (6)0.0358 (5)
F71.38046 (19)0.37573 (18)0.89795 (8)0.0454 (5)
F81.1993 (2)0.33346 (18)0.95371 (7)0.0453 (5)
Cl1A1.25733 (10)0.41520 (8)0.72180 (3)0.0411 (2)
Cl2A1.18892 (9)0.61367 (8)0.79693 (3)0.0331 (2)
C57A1.1926 (4)0.5766 (3)0.73249 (11)0.0316 (7)
H57A1.2519160.6249210.7105490.038*
H57B1.0973980.6013620.7226590.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P20.0146 (4)0.0111 (4)0.0105 (3)0.0010 (3)0.0010 (3)0.0018 (3)
Fe20.0128 (2)0.0127 (2)0.0132 (2)0.00214 (16)0.00068 (16)0.00078 (15)
O50.0223 (11)0.0224 (12)0.0170 (10)0.0010 (9)0.0020 (9)0.0053 (8)
O60.0321 (13)0.0305 (13)0.0221 (11)0.0144 (10)0.0070 (10)0.0037 (10)
O70.0209 (11)0.0180 (12)0.0293 (11)0.0023 (10)0.0039 (9)0.0023 (9)
O80.0297 (13)0.0345 (14)0.0203 (11)0.0111 (11)0.0054 (10)0.0043 (10)
C290.0149 (15)0.0135 (15)0.0123 (13)0.0005 (12)0.0044 (11)0.0014 (11)
C300.0204 (15)0.0107 (14)0.0149 (13)0.0050 (12)0.0041 (12)0.0002 (11)
C310.0180 (15)0.0121 (15)0.0194 (14)0.0062 (12)0.0051 (12)0.0019 (11)
C320.0106 (14)0.0142 (15)0.0230 (15)0.0035 (12)0.0009 (12)0.0011 (12)
C330.0137 (14)0.0141 (15)0.0185 (14)0.0059 (12)0.0034 (12)0.0006 (11)
C340.0195 (15)0.0147 (15)0.0128 (13)0.0009 (12)0.0029 (11)0.0003 (11)
C350.0151 (14)0.0111 (14)0.0127 (13)0.0011 (11)0.0014 (11)0.0019 (11)
C360.0163 (15)0.0162 (16)0.0181 (15)0.0027 (12)0.0015 (12)0.0036 (12)
C370.0190 (16)0.0166 (16)0.0171 (14)0.0066 (13)0.0003 (12)0.0024 (12)
C380.0187 (16)0.0125 (15)0.0204 (15)0.0002 (12)0.0075 (13)0.0006 (12)
C390.0112 (14)0.0103 (14)0.0140 (13)0.0010 (11)0.0025 (11)0.0017 (10)
C400.0203 (15)0.0146 (15)0.0132 (13)0.0024 (12)0.0013 (12)0.0007 (11)
C410.0157 (15)0.0205 (16)0.0219 (15)0.0079 (13)0.0039 (12)0.0027 (12)
C420.0164 (15)0.0222 (17)0.0215 (15)0.0020 (13)0.0035 (12)0.0089 (12)
C430.0154 (15)0.0174 (16)0.0122 (13)0.0011 (12)0.0009 (11)0.0029 (11)
C440.0146 (14)0.0104 (14)0.0149 (13)0.0006 (11)0.0022 (11)0.0018 (11)
C450.0139 (14)0.0151 (15)0.0121 (13)0.0029 (12)0.0055 (11)0.0006 (11)
C460.0157 (15)0.0161 (16)0.0189 (14)0.0025 (12)0.0023 (12)0.0042 (12)
C470.0202 (16)0.0203 (17)0.0241 (15)0.0091 (13)0.0076 (13)0.0030 (12)
C480.0120 (15)0.0276 (18)0.0216 (15)0.0054 (13)0.0027 (12)0.0015 (13)
C490.0144 (15)0.0215 (17)0.0170 (14)0.0016 (12)0.0022 (12)0.0040 (12)
C500.0192 (15)0.0127 (15)0.0164 (14)0.0019 (12)0.0055 (12)0.0021 (11)
C510.0151 (14)0.0132 (15)0.0126 (13)0.0005 (12)0.0003 (11)0.0002 (11)
C520.0161 (15)0.0173 (16)0.0174 (14)0.0041 (12)0.0000 (12)0.0042 (12)
C530.0190 (16)0.0320 (19)0.0136 (14)0.0036 (14)0.0025 (12)0.0015 (13)
C540.0269 (18)0.033 (2)0.0160 (15)0.0023 (15)0.0049 (13)0.0083 (13)
C550.0343 (19)0.0172 (17)0.0269 (17)0.0002 (14)0.0066 (14)0.0023 (13)
C560.0286 (17)0.0125 (15)0.0175 (14)0.0005 (13)0.0050 (13)0.0004 (12)
P10.0142 (4)0.0106 (4)0.0114 (3)0.0015 (3)0.0006 (3)0.0023 (3)
O10.0242 (12)0.0230 (12)0.0231 (11)0.0030 (9)0.0086 (9)0.0082 (9)
Fe10.0123 (2)0.0118 (2)0.0157 (2)0.00230 (16)0.00080 (16)0.00029 (16)
C10.0148 (14)0.0106 (14)0.0109 (12)0.0016 (11)0.0028 (11)0.0023 (10)
C20.0225 (16)0.0093 (14)0.0171 (14)0.0055 (12)0.0020 (12)0.0013 (11)
O20.0208 (12)0.0184 (12)0.0360 (12)0.0016 (10)0.0063 (10)0.0042 (10)
C30.0164 (15)0.0165 (16)0.0246 (15)0.0080 (12)0.0049 (12)0.0059 (12)
O30.0255 (12)0.0338 (14)0.0228 (11)0.0115 (10)0.0045 (10)0.0023 (9)
C40.0087 (14)0.0159 (16)0.0258 (15)0.0025 (12)0.0033 (12)0.0025 (12)
O40.0359 (13)0.0264 (13)0.0219 (11)0.0117 (10)0.0031 (10)0.0035 (10)
C50.0112 (14)0.0169 (16)0.0230 (15)0.0059 (12)0.0066 (12)0.0000 (12)
C60.0187 (15)0.0176 (16)0.0130 (13)0.0031 (12)0.0047 (12)0.0009 (11)
C70.0158 (14)0.0106 (14)0.0122 (13)0.0021 (11)0.0004 (11)0.0031 (11)
C80.0152 (15)0.0172 (16)0.0205 (15)0.0087 (13)0.0038 (12)0.0022 (12)
C90.0209 (16)0.0161 (16)0.0191 (15)0.0027 (13)0.0057 (13)0.0001 (12)
C100.0178 (15)0.0135 (15)0.0193 (15)0.0012 (12)0.0058 (12)0.0038 (12)
C110.0132 (14)0.0097 (14)0.0139 (13)0.0005 (11)0.0018 (11)0.0017 (11)
C120.0123 (14)0.0115 (15)0.0148 (13)0.0017 (11)0.0019 (11)0.0012 (11)
C130.0170 (15)0.0168 (15)0.0124 (13)0.0002 (12)0.0016 (11)0.0026 (11)
C140.0190 (16)0.0179 (16)0.0205 (14)0.0052 (13)0.0044 (12)0.0058 (12)
C150.0163 (15)0.0154 (15)0.0209 (14)0.0053 (12)0.0025 (12)0.0011 (12)
C160.0185 (15)0.0134 (15)0.0126 (13)0.0026 (12)0.0010 (11)0.0014 (11)
C170.0146 (14)0.0155 (15)0.0111 (13)0.0011 (12)0.0026 (11)0.0019 (11)
C180.0174 (15)0.0162 (15)0.0139 (13)0.0036 (12)0.0045 (11)0.0028 (11)
C190.0129 (15)0.0249 (17)0.0161 (14)0.0047 (13)0.0049 (12)0.0039 (12)
C200.0118 (15)0.0287 (18)0.0256 (16)0.0050 (13)0.0007 (12)0.0007 (13)
C210.0170 (16)0.0215 (17)0.0341 (17)0.0074 (13)0.0035 (13)0.0022 (14)
C220.0169 (15)0.0156 (16)0.0242 (15)0.0025 (12)0.0038 (12)0.0055 (12)
C230.0139 (14)0.0177 (15)0.0126 (13)0.0000 (12)0.0023 (11)0.0015 (11)
C240.0269 (17)0.0185 (17)0.0221 (15)0.0032 (13)0.0052 (13)0.0004 (12)
C250.0345 (19)0.0215 (18)0.0311 (18)0.0018 (15)0.0054 (15)0.0066 (14)
C260.0226 (17)0.038 (2)0.0151 (15)0.0037 (15)0.0015 (13)0.0095 (14)
C270.0242 (17)0.034 (2)0.0129 (14)0.0034 (14)0.0005 (12)0.0068 (13)
C280.0185 (16)0.0220 (17)0.0156 (14)0.0003 (13)0.0004 (12)0.0040 (12)
B10.0183 (18)0.0163 (18)0.0203 (17)0.0000 (14)0.0015 (14)0.0007 (14)
F10.0316 (11)0.0366 (12)0.0390 (11)0.0082 (9)0.0001 (9)0.0159 (9)
F20.0425 (12)0.0244 (10)0.0363 (10)0.0137 (9)0.0039 (9)0.0046 (8)
F30.0360 (11)0.0324 (11)0.0274 (10)0.0036 (9)0.0068 (8)0.0092 (8)
F40.0352 (11)0.0458 (13)0.0344 (10)0.0141 (9)0.0067 (9)0.0093 (9)
B20.0226 (19)0.0179 (19)0.0313 (19)0.0027 (15)0.0054 (16)0.0039 (15)
F50.0337 (12)0.0883 (18)0.0516 (13)0.0204 (12)0.0224 (10)0.0308 (12)
F60.0588 (13)0.0175 (10)0.0240 (9)0.0039 (9)0.0005 (9)0.0003 (7)
F70.0285 (11)0.0290 (12)0.0799 (16)0.0121 (9)0.0014 (10)0.0064 (11)
F80.0466 (13)0.0345 (12)0.0496 (12)0.0045 (10)0.0119 (10)0.0154 (10)
Cl1A0.0475 (6)0.0249 (5)0.0523 (5)0.0028 (4)0.0173 (4)0.0064 (4)
Cl2A0.0452 (5)0.0323 (5)0.0239 (4)0.0120 (4)0.0065 (4)0.0026 (3)
C57A0.041 (2)0.0278 (15)0.0252 (14)0.0055 (15)0.0040 (14)0.0010 (13)
Geometric parameters (Å, º) top
P2—C351.853 (3)Fe1—C22.071 (3)
P2—C391.799 (3)Fe1—C32.065 (3)
P2—C451.807 (3)Fe1—C42.127 (3)
P2—C511.810 (3)Fe1—C81.816 (3)
Fe2—C292.094 (3)Fe1—C91.809 (3)
Fe2—C302.074 (3)Fe1—C101.822 (3)
Fe2—C312.068 (3)C1—H11.0000
Fe2—C322.134 (3)C1—C21.434 (4)
Fe2—C361.815 (3)C1—C71.533 (3)
Fe2—C371.812 (3)C2—H21.0000
Fe2—C381.808 (3)C2—C31.412 (4)
O5—C331.234 (3)O2—C81.149 (3)
O6—C361.150 (3)C3—H31.0000
O7—C371.149 (3)C3—C41.436 (4)
O8—C381.145 (3)O3—C91.145 (3)
C29—H291.0000C4—H41.0000
C29—C301.442 (4)C4—C51.482 (4)
C29—C351.538 (3)O4—C101.144 (3)
C30—H301.0000C5—C61.522 (4)
C30—C311.408 (4)C6—H6A0.9900
C31—H311.0000C6—H6B0.9900
C31—C321.435 (4)C6—C71.544 (4)
C32—H321.0000C7—H71.0000
C32—C331.475 (4)C11—C121.404 (3)
C33—C341.524 (4)C11—C161.402 (4)
C34—H34A0.9900C12—H120.9500
C34—H34B0.9900C12—C131.390 (4)
C34—C351.546 (4)C13—H130.9500
C35—H351.0000C13—C141.384 (4)
C39—C401.405 (4)C14—H140.9500
C39—C441.401 (3)C14—C151.397 (4)
C40—H400.9500C15—H150.9500
C40—C411.388 (4)C15—C161.393 (4)
C41—H410.9500C16—H160.9500
C41—C421.399 (4)C17—C181.411 (4)
C42—H420.9500C17—C221.400 (4)
C42—C431.383 (4)C18—H180.9500
C43—H430.9500C18—C191.396 (4)
C43—C441.396 (4)C19—H190.9500
C44—H440.9500C19—C201.389 (4)
C45—C461.399 (4)C20—H200.9500
C45—C501.413 (4)C20—C211.388 (4)
C46—H460.9500C21—H210.9500
C46—C471.399 (4)C21—C221.388 (4)
C47—H470.9500C22—H220.9500
C47—C481.393 (4)C23—C241.402 (4)
C48—H480.9500C23—C281.403 (4)
C48—C491.398 (4)C24—H240.9500
C49—H490.9500C24—C251.386 (4)
C49—C501.390 (4)C25—H250.9500
C50—H500.9500C25—C261.397 (4)
C51—C521.400 (4)C26—H260.9500
C51—C561.405 (4)C26—C271.384 (4)
C52—H520.9500C27—H270.9500
C52—C531.401 (4)C27—C281.400 (4)
C53—H530.9500C28—H280.9500
C53—C541.384 (4)B1—F11.394 (4)
C54—H540.9500B1—F21.396 (4)
C54—C551.397 (4)B1—F31.404 (3)
C55—H550.9500B1—F41.406 (4)
C55—C561.397 (4)B2—F51.392 (4)
C56—H560.9500B2—F61.389 (4)
P1—C71.853 (3)B2—F71.393 (4)
P1—C111.799 (3)B2—F81.405 (4)
P1—C171.801 (3)Cl1A—C57A1.771 (3)
P1—C231.805 (3)Cl2A—C57A1.765 (3)
O1—C51.229 (3)C57A—H57A0.9900
Fe1—C12.106 (3)C57A—H57B0.9900
C39—P2—C35107.22 (12)C3—Fe1—C172.32 (11)
C39—P2—C45109.80 (12)C3—Fe1—C239.93 (11)
C39—P2—C51108.45 (12)C3—Fe1—C440.04 (10)
C45—P2—C35109.27 (12)C8—Fe1—C1159.35 (11)
C45—P2—C51109.02 (12)C8—Fe1—C2119.34 (12)
C51—P2—C35113.05 (12)C8—Fe1—C390.88 (12)
C29—Fe2—C3285.14 (10)C8—Fe1—C489.74 (11)
C30—Fe2—C2940.48 (10)C8—Fe1—C10101.08 (12)
C30—Fe2—C3272.09 (10)C9—Fe1—C189.05 (11)
C31—Fe2—C2972.52 (11)C9—Fe1—C295.78 (12)
C31—Fe2—C3039.75 (10)C9—Fe1—C3127.05 (12)
C31—Fe2—C3239.90 (10)C9—Fe1—C4167.04 (12)
C36—Fe2—C2998.70 (11)C9—Fe1—C891.88 (12)
C36—Fe2—C30136.74 (11)C9—Fe1—C1096.79 (12)
C36—Fe2—C31134.13 (11)C10—Fe1—C199.29 (11)
C36—Fe2—C3295.62 (11)C10—Fe1—C2137.07 (11)
C37—Fe2—C29160.40 (12)C10—Fe1—C3134.26 (11)
C37—Fe2—C30120.23 (12)C10—Fe1—C495.51 (11)
C37—Fe2—C3192.41 (12)Fe1—C1—H1112.0
C37—Fe2—C3291.19 (11)C2—C1—Fe168.62 (15)
C37—Fe2—C36100.82 (12)C2—C1—H1112.0
C38—Fe2—C2988.42 (11)C2—C1—C7125.5 (2)
C38—Fe2—C3095.26 (11)C7—C1—Fe1119.90 (17)
C38—Fe2—C31126.49 (11)C7—C1—H1112.0
C38—Fe2—C32166.34 (12)Fe1—C2—H2119.4
C38—Fe2—C3697.26 (12)C1—C2—Fe171.24 (15)
C38—Fe2—C3790.87 (12)C1—C2—H2119.4
Fe2—C29—H29111.9C3—C2—Fe169.78 (15)
C30—C29—Fe269.04 (15)C3—C2—C1119.7 (2)
C30—C29—H29111.9C3—C2—H2119.4
C30—C29—C35125.5 (2)Fe1—C3—H3118.9
C35—C29—Fe2119.85 (17)C2—C3—Fe170.29 (15)
C35—C29—H29111.9C2—C3—H3118.9
Fe2—C30—H30119.5C2—C3—C4120.8 (2)
C29—C30—Fe270.48 (15)C4—C3—Fe172.34 (16)
C29—C30—H30119.5C4—C3—H3118.9
C31—C30—Fe269.88 (15)Fe1—C4—H4114.0
C31—C30—C29119.4 (2)C3—C4—Fe167.62 (15)
C31—C30—H30119.5C3—C4—H4114.0
Fe2—C31—H31118.8C3—C4—C5126.6 (2)
C30—C31—Fe270.37 (16)C5—C4—Fe1111.10 (18)
C30—C31—H31118.8C5—C4—H4114.0
C30—C31—C32121.2 (2)O1—C5—C4121.2 (3)
C32—C31—Fe272.50 (15)O1—C5—C6120.7 (3)
C32—C31—H31118.8C4—C5—C6118.0 (2)
Fe2—C32—H32114.1C5—C6—H6A109.4
C31—C32—Fe267.59 (15)C5—C6—H6B109.4
C31—C32—H32114.1C5—C6—C7111.0 (2)
C31—C32—C33125.5 (2)H6A—C6—H6B108.0
C33—C32—Fe2112.39 (18)C7—C6—H6A109.4
C33—C32—H32114.1C7—C6—H6B109.4
O5—C33—C32121.1 (2)P1—C7—H7108.6
O5—C33—C34119.6 (2)C1—C7—P1106.93 (17)
C32—C33—C34119.1 (2)C1—C7—C6114.4 (2)
C33—C34—H34A109.3C1—C7—H7108.6
C33—C34—H34B109.3C6—C7—P1109.73 (18)
C33—C34—C35111.5 (2)C6—C7—H7108.6
H34A—C34—H34B108.0O2—C8—Fe1178.8 (3)
C35—C34—H34A109.3O3—C9—Fe1178.6 (3)
C35—C34—H34B109.3O4—C10—Fe1178.2 (3)
P2—C35—H35108.9C12—C11—P1119.8 (2)
C29—C35—P2107.10 (17)C16—C11—P1119.85 (19)
C29—C35—C34113.7 (2)C16—C11—C12120.1 (2)
C29—C35—H35108.9C11—C12—H12120.1
C34—C35—P2109.12 (18)C13—C12—C11119.8 (2)
C34—C35—H35108.9C13—C12—H12120.1
O6—C36—Fe2177.8 (2)C12—C13—H13120.0
O7—C37—Fe2178.2 (3)C14—C13—C12120.0 (2)
O8—C38—Fe2179.3 (3)C14—C13—H13120.0
C40—C39—P2120.3 (2)C13—C14—H14119.6
C44—C39—P2119.8 (2)C13—C14—C15120.8 (3)
C44—C39—C40119.7 (2)C15—C14—H14119.6
C39—C40—H40120.2C14—C15—H15120.1
C41—C40—C39119.7 (2)C16—C15—C14119.8 (3)
C41—C40—H40120.2C16—C15—H15120.1
C40—C41—H41119.9C11—C16—H16120.2
C40—C41—C42120.3 (3)C15—C16—C11119.6 (2)
C42—C41—H41119.9C15—C16—H16120.2
C41—C42—H42119.9C18—C17—P1118.9 (2)
C43—C42—C41120.3 (3)C22—C17—P1120.9 (2)
C43—C42—H42119.9C22—C17—C18120.0 (2)
C42—C43—H43120.0C17—C18—H18120.6
C42—C43—C44120.0 (2)C19—C18—C17118.8 (3)
C44—C43—H43120.0C19—C18—H18120.6
C39—C44—H44120.0C18—C19—H19119.6
C43—C44—C39120.1 (3)C20—C19—C18120.7 (3)
C43—C44—H44120.0C20—C19—H19119.6
C46—C45—P2122.0 (2)C19—C20—H20119.9
C46—C45—C50119.8 (3)C21—C20—C19120.2 (3)
C50—C45—P2118.2 (2)C21—C20—H20119.9
C45—C46—H46119.9C20—C21—H21119.9
C47—C46—C45120.3 (3)C22—C21—C20120.3 (3)
C47—C46—H46119.9C22—C21—H21119.9
C46—C47—H47120.1C17—C22—H22120.0
C48—C47—C46119.8 (3)C21—C22—C17120.0 (3)
C48—C47—H47120.1C21—C22—H22120.0
C47—C48—H48120.0C24—C23—P1120.0 (2)
C47—C48—C49119.9 (3)C24—C23—C28120.2 (3)
C49—C48—H48120.0C28—C23—P1119.0 (2)
C48—C49—H49119.6C23—C24—H24120.2
C50—C49—C48120.9 (3)C25—C24—C23119.7 (3)
C50—C49—H49119.6C25—C24—H24120.2
C45—C50—H50120.4C24—C25—H25119.9
C49—C50—C45119.2 (3)C24—C25—C26120.2 (3)
C49—C50—H50120.4C26—C25—H25119.9
C52—C51—P2121.0 (2)C25—C26—H26119.8
C52—C51—C56120.5 (2)C27—C26—C25120.4 (3)
C56—C51—P2118.3 (2)C27—C26—H26119.8
C51—C52—H52120.3C26—C27—H27119.9
C51—C52—C53119.3 (3)C26—C27—C28120.2 (3)
C53—C52—H52120.3C28—C27—H27119.9
C52—C53—H53119.9C23—C28—H28120.4
C54—C53—C52120.2 (3)C27—C28—C23119.3 (3)
C54—C53—H53119.9C27—C28—H28120.4
C53—C54—H54119.7F1—B1—F2110.1 (3)
C53—C54—C55120.6 (3)F1—B1—F3110.7 (2)
C55—C54—H54119.7F1—B1—F4108.4 (3)
C54—C55—H55120.0F2—B1—F3109.8 (2)
C56—C55—C54120.1 (3)F2—B1—F4109.3 (2)
C56—C55—H55120.0F3—B1—F4108.6 (2)
C51—C56—H56120.4F5—B2—F7109.7 (3)
C55—C56—C51119.3 (3)F5—B2—F8109.4 (3)
C55—C56—H56120.4F6—B2—F5108.6 (3)
C11—P1—C7107.74 (12)F6—B2—F7109.7 (3)
C11—P1—C17110.56 (12)F6—B2—F8109.9 (3)
C11—P1—C23109.76 (13)F7—B2—F8109.5 (3)
C17—P1—C7108.54 (12)Cl1A—C57A—H57A109.2
C17—P1—C23106.44 (12)Cl1A—C57A—H57B109.2
C23—P1—C7113.81 (12)Cl2A—C57A—Cl1A112.05 (17)
C1—Fe1—C484.95 (10)Cl2A—C57A—H57A109.2
C2—Fe1—C140.14 (10)Cl2A—C57A—H57B109.2
C2—Fe1—C472.30 (11)H57A—C57A—H57B107.9
P2—C39—C40—C41176.5 (2)P1—C11—C12—C13175.4 (2)
P2—C39—C44—C43175.57 (19)P1—C11—C16—C15175.9 (2)
P2—C45—C46—C47179.7 (2)P1—C17—C18—C19175.46 (19)
P2—C45—C50—C49178.8 (2)P1—C17—C22—C21176.0 (2)
P2—C51—C52—C53176.9 (2)P1—C23—C24—C25171.4 (2)
P2—C51—C56—C55177.7 (2)P1—C23—C28—C27170.3 (2)
Fe2—C29—C30—C3151.8 (2)O1—C5—C6—C7116.4 (3)
Fe2—C29—C35—P2179.24 (13)Fe1—C1—C2—C352.1 (2)
Fe2—C29—C35—C3460.1 (3)Fe1—C1—C7—P1179.98 (13)
Fe2—C30—C31—C3253.9 (2)Fe1—C1—C7—C658.3 (3)
Fe2—C31—C32—C33102.3 (3)Fe1—C2—C3—C453.9 (2)
Fe2—C32—C33—O5115.5 (2)Fe1—C3—C4—C5100.3 (3)
Fe2—C32—C33—C3469.6 (3)Fe1—C4—C5—O1109.3 (3)
O5—C33—C34—C35121.2 (3)Fe1—C4—C5—C673.2 (3)
C29—C30—C31—Fe252.0 (2)C1—C2—C3—Fe152.8 (2)
C29—C30—C31—C321.9 (4)C1—C2—C3—C41.1 (4)
C30—C29—C35—P296.3 (3)C2—C1—C7—P196.1 (3)
C30—C29—C35—C3424.3 (4)C2—C1—C7—C625.6 (4)
C30—C31—C32—Fe253.0 (2)C2—C3—C4—Fe153.0 (2)
C30—C31—C32—C3349.3 (4)C2—C3—C4—C547.4 (4)
C31—C32—C33—O5166.8 (3)C3—C4—C5—O1173.5 (3)
C31—C32—C33—C348.1 (4)C3—C4—C5—C64.0 (4)
C32—C33—C34—C3563.8 (3)C4—C5—C6—C766.0 (3)
C33—C34—C35—P2173.40 (18)C5—C6—C7—P1173.67 (18)
C33—C34—C35—C2953.9 (3)C5—C6—C7—C153.5 (3)
C35—P2—C39—C4085.3 (2)C7—P1—C11—C1289.3 (2)
C35—P2—C39—C4488.9 (2)C7—P1—C11—C1685.0 (2)
C35—P2—C45—C4610.1 (3)C7—P1—C17—C18167.5 (2)
C35—P2—C45—C50171.1 (2)C7—P1—C17—C2217.9 (3)
C35—P2—C51—C5233.2 (3)C7—P1—C23—C24149.2 (2)
C35—P2—C51—C56150.7 (2)C7—P1—C23—C2840.5 (3)
C35—C29—C30—Fe2112.4 (2)C7—C1—C2—Fe1112.2 (2)
C35—C29—C30—C3160.7 (4)C7—C1—C2—C360.1 (4)
C39—P2—C35—C2957.4 (2)C11—P1—C7—C159.7 (2)
C39—P2—C35—C3466.1 (2)C11—P1—C7—C664.9 (2)
C39—P2—C45—C46127.4 (2)C11—P1—C17—C1849.5 (2)
C39—P2—C45—C5053.8 (2)C11—P1—C17—C22135.9 (2)
C39—P2—C51—C52151.9 (2)C11—P1—C23—C2428.4 (3)
C39—P2—C51—C5632.0 (3)C11—P1—C23—C28161.3 (2)
C39—C40—C41—C421.0 (4)C11—C12—C13—C140.2 (4)
C40—C39—C44—C431.3 (4)C12—C11—C16—C151.6 (4)
C40—C41—C42—C431.2 (4)C12—C13—C14—C151.2 (4)
C41—C42—C43—C442.1 (4)C13—C14—C15—C160.7 (4)
C42—C43—C44—C390.9 (4)C14—C15—C16—C110.7 (4)
C44—C39—C40—C412.2 (4)C16—C11—C12—C131.2 (4)
C45—P2—C35—C2961.5 (2)C17—P1—C7—C160.1 (2)
C45—P2—C35—C34174.99 (17)C17—P1—C7—C6175.37 (18)
C45—P2—C39—C40156.1 (2)C17—P1—C11—C1229.1 (2)
C45—P2—C39—C4429.7 (2)C17—P1—C11—C16156.6 (2)
C45—P2—C51—C5288.5 (2)C17—P1—C23—C2491.3 (2)
C45—P2—C51—C5687.5 (2)C17—P1—C23—C2879.0 (2)
C45—C46—C47—C482.3 (4)C17—C18—C19—C200.1 (4)
C46—C45—C50—C490.0 (4)C18—C17—C22—C211.4 (4)
C46—C47—C48—C491.5 (4)C18—C19—C20—C210.4 (4)
C47—C48—C49—C500.1 (4)C19—C20—C21—C220.3 (4)
C48—C49—C50—C450.8 (4)C20—C21—C22—C171.2 (4)
C50—C45—C46—C471.5 (4)C22—C17—C18—C190.8 (4)
C51—P2—C35—C29176.90 (17)C23—P1—C7—C1178.39 (18)
C51—P2—C35—C3453.4 (2)C23—P1—C7—C657.1 (2)
C51—P2—C39—C4037.1 (2)C23—P1—C11—C12146.3 (2)
C51—P2—C39—C44148.7 (2)C23—P1—C11—C1639.5 (2)
C51—P2—C45—C46113.9 (2)C23—P1—C17—C1869.6 (2)
C51—P2—C45—C5064.9 (2)C23—P1—C17—C22105.0 (2)
C51—C52—C53—C540.1 (4)C23—C24—C25—C261.3 (5)
C52—C51—C56—C551.6 (4)C24—C23—C28—C270.0 (4)
C52—C53—C54—C550.5 (4)C24—C25—C26—C270.1 (5)
C53—C54—C55—C560.1 (5)C25—C26—C27—C281.1 (4)
C54—C55—C56—C511.2 (5)C26—C27—C28—C231.1 (4)
C56—C51—C52—C531.0 (4)C28—C23—C24—C251.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···F51.002.373.198 (3)140
C43—H43···F6i0.952.333.240 (3)160
C44—H44···O8ii0.952.563.467 (3)159
C46—H46···F7iii0.952.403.151 (3)136
C49—H49···O7iv0.952.603.339 (3)135
C50—H50···F6iv0.952.533.471 (3)169
C52—H52···O10.952.373.286 (3)161
C53—H53···F4iii0.952.663.500 (3)148
C56—H56···F6iv0.952.483.362 (3)155
C2—H2···F3v1.002.503.493 (3)170
C4—H4···F4iii1.002.423.393 (3)165
C7—H7···O51.002.343.192 (3)143
C13—H13···F1v0.952.413.232 (3)144
C19—H19···O2vi0.952.513.393 (3)154
C28—H28···O50.952.413.319 (4)161
C57A—H57A···F40.992.473.276 (4)139
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+2, y+1, z+1; (vi) x+1, y1, z.
Phenyl ring torsion angles (°) top
Cation 1Cation 2
Torsion angleValueTorsion angleValue
Ring 1
P1—C11—C16—C15175.9 (2)P2—C39—C40—C41-176.5 (2)
C11—C16—C15—C14-0.7 (4)C39—C40—C41—C421.0 (4)
C16—C15—C14—C13-0.7 (4)C40—C41—C42—C431.2 (4)
C15—C14—C13—C121.2 (4)C41—C42—C43—C44-2.2 (4)
C14—C13—C12—C11-0.2 (4)C42—C43—C44—C390.9 (4)
C13—C12—C11—P1-175.4 (2)C43—C44—C39—P2175.6 (2)
Ring 2
P1—C17—C18—C19-175.5 (2)P2—C45—C50—C49178.8 (2)
C17—C18—C19—C20-0.1 (4)C45—C50—C49—C480.8 (4)
C18—C19—C20—C210.4 (4)C50—C49—C48—C47-0.1 (4)
C19—C20—C21—C22-0.2 (5)C49—C48—C47—C46-1.5 (4)
C20—C21—C22—C17-1.2 (4)C48—C47—C46—C452.3 (4)
C21—C22—C17—P1176.0 (2)C47—C46—C45—P2179.7 (2)
Ring 3
P1—C23—C28—C27-170.3 (2)P2—C51—C52—C53176.9 (2)
C23—C28—C27—C26-1.1 (4)C51—C52—C53—C540.1 (4)
C28—C27—C26—C251.1 (4)C52—C53—C54—C55-0.5 (4)
C27—C26—C25—C240.1 (5)C53—C54—C55—C56-0.1 (5)
C26—C25—C24—C23-1.3 (5)C54—C55—C56—C511.2 (5)
C25—C24—C23—P1171.4 (2)C55—C56—C51—P2-177.7 (2)
XY···π interactions (Å,°) top
Cg1–Cg5 are the centroids of the C11–C16, C17–C22, C39–C44 and C45–C50 rings, respectively.
XY···CgY···CgX···CgX—H···Cg
C54—H54···Cg2i2.993.929 (3)171
B1—F1···Cg1ii3.429 (2)4.790 (3)165.56 (17)
B2—F6···Cg3iii3.653 (2)4.913 (3)150.99 (17)
C9—O3···Cg2iv3.393 (2)3.858 (3)105.37 (19)
C38—08···Cg4v3.467 (2)3.925 (3)105.10 (18)
Symmetry codes: (i) -1 + x, 1 + y, z; (ii) x, 1 + y, z; (iii) 1 + x, -1 + y, z; (iv) 2 - x, 1 - y, 1 - z; (v) 1 - x, 1 - y, 2 - z.
 

Funding information

The authors gratefully acknowledge the McCutchen Foundation for partial support of the X-ray diffractometer.

References

First citationBrown, D. A., Chawla, S. K., Glass, W. K. & Hussein, F. M. (1982). Inorg. Chem. 21, 2726–2732.  CrossRef CAS Google Scholar
First citationCoquerel, Y., Deprés, J.-P., Greene, A. E. & Philouze, C. (2002). J. Organomet. Chem. 659, 176–185.  CSD CrossRef CAS Google Scholar
First citationDodge, R. P. (1964). J. Am. Chem. Soc. 86, 5429–5431.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEisenstadt, A. (1975). J. Organomet. Chem. 97, 443–451.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D. & Griffith, D. R. (2018). Tetrahedron Lett. 59, 3432–3434.  CSD CrossRef CAS Google Scholar
First citationHuang, Z., Phelan, Z. K., Tritt, R. L., Valent, S. D., Guan, Z., He, Y., Weiss, P. S. & Griffith, D. R. (2019). J. Vis. Exp. 150, e60050.  Google Scholar
First citationPhelan, Z. K., Weiss, P. S., He, Y., Guan, Z., Thamattoor, D. M. & Griffith, D. R. (2020). J. Org. Chem. 85, 2202–2212.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoemaker, A. H. & Griffith, D. R. (2021). Synthesis, 53, 65–78.  CAS Google Scholar
First citationSotokawa, H., Tajiri, A., Morita, N., Kabuto, C., Hatano, M. & Asao, T. (1987). Tetrahedron Lett. 28, 5873–5876.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStone, K. L., Kissel, D. S., Shaner, S. E., Grice, K. A. & Van Opstal, M. T. (2020). ACS Symp. Ser. 1371, 35–55.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds