research communications
Synthesis and catena-[metavanadate(V)]
of bis(2-aminobenzimidazolium)aInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, 100170, M. Ulugbek Str 77a, Tashkent, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan, cUniversity of Geological Sciences, Olimlar Street, 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, dNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, and eUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent, 100095, Uzbekistan
*Correspondence e-mail: jabborova0707@gmail.com
The structure of polymeric catena-poly[2-aminobenzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of interest with respect to anticancer activity. In the infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetrahedra and that run parallel to the a axis, are present. Two different protonated 2-aminobenzimidazole molecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.
CCDC reference: 2291372
1. Chemical context
In recent years, vanadate compounds have attracted attention in various fields due to their various compositions and interesting structures (Smith et al., 2012; Wutkowski et al., 2009; Wang et al., 2007). This is partly due to the ability of vanadium to adopt tetrahedral [VO4], square-pyramidal [VO5], trigonal–bipyramidal [VO5] or octahedral [VO6] coordination environments together with possible stable oxidation states of +III, +IV and +V. Interestingly, all major vanadate compounds known to date containing cage-, shell-, belt-, barrel-, or basket-shaped entities are structurally related to the layer structure of vanadium pentoxide (Ishaque Khan et al., 2000). These compounds have many practical pharmacological applications, ranging from anticancer agents to antifungal agents and, more recently, as insulin mimetics (Singh et al., 2014; Abakumova et al., 2012; Amin et al., 2000) where they interact with several points in the cell-signaling pathway associated with the hormone insulin (Amin et al., 2000; Srivastava & Mehdi, 2005). Studies have also indicated that vanadate compounds interact directly with glucose transporters located on the cell surface (Hiromura et al., 2007; Makinen & Brady, 2002). Furthermore, vanadium has been found to have important interactions in DNA repair systems, making it a useful target for many oncological/pharmacological studies (Abakumova et al., 2012; Kostova, 2009). Given the structural dependence on functions and application, a deeper study of the molecular and crystal structures of such complexes is warranted. In this context, we describe the synthesis and structural features of the polymeric title compound {(C7H8N3)2 (V2O6)}n.
2. Structural commentary
The A and B) and two V and six O atoms of the polymeric metavanadate anion (Fig. 1). The cationic molecules are almost planar (root-mean-square deviation for A = 0.0127 Å and for B = 0.0064 Å), and their N—C bond-length distributions are similar to those in related compounds (Aliabadi et al., 2021; Ruzieva et al., 2022). The linear zigzag metavanadate (V2O6)2– chain runs parallel to the a axis and is constructed from corner-sharing VO4 tetrahedra (Fig. 2). Typical for such chains, the bridging O atoms (O3 and O4) have considerably longer V—O bonds than the terminal O atoms (O1 and O2 for the V1O4 tetrahedron and O5 and O6 for the V2O4 tetrahedron; Table 1). The corresponding V—O and V=O bond lengths are similar to those reported for related hybrid metavanadate compounds (Smith et al., 2012; Wutkowski et al., 2009; Wang et al., 2007; Tyrselova et al., 1996).
comprises two 2-aminobenzimidazolium cations (denoted3. Supramolecular features
The crystal packing exhibits an intricate network of classical intermolecular N—H⋯O hydrogen bonds between the NH and NH2 groups of the cations and all oxygen atoms of the metavanadate chain (Fig. 3, Table 2). Additional short contacts (Fig. 4) between the vanadate O6 atom and the centroid of the N1B/C1B/N2B/C7B/C2B ring (V2—O6⋯Cg4(−1 + x, y, z) = 3.8768 (16) Å) consolidate the tri-periodic network structure.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.43, update of November 2022; Groom et al., 2016) revealed four hybrid compounds with protonated 2-aminobenzimidazole moieties, two with gallium (WURVAJ, WURVEN; Aliabadi et al., 2021) and two with lanthanum (JARVOQ, WEGRAF; Ruzieva et al., 2022). A search for the metavanadate moiety with linear zigzag chains similar to that in the title structure gave the following hits: CEHQEN and CEHQIR, for which dipole moments were calculated using iterative Hirshfeld partial atomic charges (Smith et al., 2012); (H3NCH2CH2NH3)(V2O6) (FUDLOF02; Ishaque Khan et al., 2000); 1,6-hexanediammonium metavanadate (KOYJAJ; Tyršelová & Pavelčík, 1992); 3-aza-1,5-pentamethylenediammonium metavanadate (KUGGUO; Roman et al., 1992); [Cu(H2O)(C5H14N2)2](VO3)2 (POYNAT; Wutkowski et al., 2009); catena-poly[N,N′-bis(2-ammonioethyl)oxamide [dioxidovanadate-μ-oxido-dioxidovanadate-μ-oxido]] (TIGBUH; Wang et al., 2007); catena-poly[2,2′,2′′-nitrilotris(ethanaminium) [tri-μ-oxido-tris[dioxidovanadate(V)]] monohydrate] (VIPRET; Chang et al., 2013); {piperazinediium poly[trioxovanadate], {(C4H12N2)(VO3)2} (ZITSEA; Tyrselova et al., 1996); catena[bis[tris(2-ammonioethyl)amine]hexakis(μ2-oxo)dodecaoxohexavanadium trihydrate] (IMATOG; Li et al., 2009); catena-[pentakis(cyclohexylammonium) pentakis(μ2-oxo)decaoxopentavanadium(V)] (NACFON; Wang et al., 2004).
5. Synthesis and crystallization
All reagents for synthesis and analysis were commercially available and purchased from Sigma Aldrich and used as received without further purification. Chemically pure vanadyl acetylacetonate, 2-aminobenzimidazole, and 96% vol ethanol were used. Vanadyl acetylacetonate (0.0265 g, 1 mmol) dissolved in 5 ml of EtOH and 2-aminobenzimidazole (0.0133 g, 1 mmol) dissolved in 5 ml of EtOH were mixed with constant stirring until the color of the solution turned to green. The stirring was continued for three hours. The resulting green solution was then allowed to cool to room temperature and green crystals were grown over seven days via slow evaporation of the mother liquor. Selected IR bands (KBr pellet, cm−1): 3447 (N—H), 1647 (C=N), 868 (V=O), 898 (V—O), 943 (O=V=O), 655 (V—O—V).
6. Refinement
Crystal data, data collection and structure . H atoms bound to C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms bound to N atoms were discernible in difference-Fourier maps and were refined with N—H bond length restraints of 0.86 (2) Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2291372
https://doi.org/10.1107/S2056989024005528/wm5720sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005528/wm5720Isup3.hkl
(C7H8N3)2[V2O6] | F(000) = 944 |
Mr = 466.21 | Dx = 1.680 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.8817 (1) Å | Cell parameters from 11386 reflections |
b = 16.8263 (2) Å | θ = 3.3–71.2° |
c = 22.4354 (2) Å | µ = 8.93 mm−1 |
β = 90.675 (1)° | T = 100 K |
V = 1842.74 (5) Å3 | Block, green |
Z = 4 | 0.28 × 0.24 × 0.18 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3413 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 71.5°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −5→5 |
Tmin = 0.349, Tmax = 1.000 | k = −20→20 |
17440 measured reflections | l = −27→27 |
3540 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0486P)2 + 1.0444P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.38 e Å−3 |
3540 reflections | Δρmin = −0.44 e Å−3 |
286 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
8 restraints | Extinction coefficient: 0.00059 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V2 | −0.28372 (6) | 0.46447 (2) | 0.35937 (2) | 0.01360 (11) | |
V1 | 0.24874 (6) | 0.34781 (2) | 0.33048 (2) | 0.01340 (11) | |
O4 | −0.5361 (3) | 0.42994 (8) | 0.30547 (6) | 0.0165 (3) | |
O6 | −0.4298 (3) | 0.48306 (8) | 0.42291 (6) | 0.0194 (3) | |
O3 | −0.0282 (3) | 0.38899 (8) | 0.37331 (6) | 0.0175 (3) | |
O2 | 0.4310 (3) | 0.28954 (8) | 0.37509 (6) | 0.0182 (3) | |
O5 | −0.1386 (3) | 0.54667 (8) | 0.33474 (6) | 0.0194 (3) | |
O1 | 0.1365 (3) | 0.29770 (8) | 0.27302 (6) | 0.0213 (3) | |
N2B | 0.1986 (3) | 0.68245 (10) | 0.51241 (7) | 0.0161 (3) | |
N1B | 0.0739 (3) | 0.64665 (10) | 0.42202 (7) | 0.0165 (3) | |
N1A | 0.6212 (4) | 0.14345 (10) | 0.34384 (7) | 0.0175 (3) | |
N3B | −0.1562 (4) | 0.58715 (10) | 0.50284 (7) | 0.0190 (3) | |
N3A | 0.3272 (4) | 0.13954 (10) | 0.25959 (8) | 0.0209 (4) | |
N2A | 0.6531 (4) | 0.03991 (10) | 0.28485 (7) | 0.0176 (3) | |
C2A | 0.8201 (4) | 0.09402 (11) | 0.36893 (9) | 0.0170 (4) | |
C1B | 0.0284 (4) | 0.63523 (11) | 0.48039 (8) | 0.0154 (4) | |
C1A | 0.5216 (4) | 0.10926 (12) | 0.29382 (9) | 0.0176 (4) | |
C2B | 0.2814 (4) | 0.70255 (11) | 0.41573 (8) | 0.0158 (4) | |
C7B | 0.3623 (4) | 0.72532 (11) | 0.47309 (8) | 0.0155 (4) | |
C7A | 0.8420 (4) | 0.02816 (12) | 0.33111 (9) | 0.0171 (4) | |
C3B | 0.4005 (4) | 0.73529 (12) | 0.36553 (9) | 0.0201 (4) | |
H3B | 0.343148 | 0.720517 | 0.326468 | 0.024* | |
C6B | 0.5667 (4) | 0.78067 (12) | 0.48278 (9) | 0.0181 (4) | |
H6B | 0.621111 | 0.796047 | 0.521905 | 0.022* | |
C3A | 0.9760 (4) | 0.10065 (12) | 0.42048 (9) | 0.0212 (4) | |
H3A | 0.957695 | 0.144818 | 0.446506 | 0.025* | |
C5B | 0.6896 (4) | 0.81295 (12) | 0.43252 (9) | 0.0210 (4) | |
H5B | 0.832215 | 0.850884 | 0.437509 | 0.025* | |
C4B | 0.6082 (4) | 0.79089 (12) | 0.37508 (9) | 0.0221 (4) | |
H4B | 0.695992 | 0.814193 | 0.341798 | 0.027* | |
C4A | 1.1607 (5) | 0.03984 (13) | 0.43252 (10) | 0.0248 (5) | |
H4A | 1.271173 | 0.042284 | 0.467625 | 0.030* | |
C6A | 1.0281 (4) | −0.03202 (12) | 0.34269 (10) | 0.0213 (4) | |
H6A | 1.045994 | −0.076194 | 0.316655 | 0.026* | |
C5A | 1.1874 (4) | −0.02505 (13) | 0.39392 (10) | 0.0242 (4) | |
H5A | 1.317900 | −0.065244 | 0.403102 | 0.029* | |
H3BA | −0.259 (4) | 0.5555 (12) | 0.4812 (9) | 0.023 (6)* | |
H2B | 0.217 (5) | 0.6788 (16) | 0.5508 (5) | 0.026 (7)* | |
H3AA | 0.251 (5) | 0.1857 (9) | 0.2664 (12) | 0.031 (7)* | |
H2A | 0.619 (5) | 0.0069 (13) | 0.2558 (9) | 0.029 (7)* | |
H3BB | −0.160 (5) | 0.5797 (17) | 0.5413 (5) | 0.034 (7)* | |
H3AB | 0.263 (5) | 0.1129 (14) | 0.2288 (8) | 0.027 (7)* | |
H1B | −0.004 (5) | 0.6193 (15) | 0.3933 (9) | 0.036 (7)* | |
H1A | 0.566 (5) | 0.1897 (9) | 0.3563 (12) | 0.035 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V2 | 0.01470 (19) | 0.01364 (18) | 0.01242 (17) | −0.00046 (11) | −0.00200 (12) | 0.00155 (11) |
V1 | 0.01604 (19) | 0.01193 (17) | 0.01219 (17) | −0.00065 (11) | −0.00225 (12) | 0.00014 (11) |
O4 | 0.0192 (7) | 0.0153 (7) | 0.0150 (6) | −0.0008 (5) | −0.0029 (5) | 0.0023 (5) |
O6 | 0.0199 (7) | 0.0207 (7) | 0.0174 (7) | −0.0005 (5) | 0.0004 (5) | 0.0001 (5) |
O3 | 0.0172 (7) | 0.0192 (7) | 0.0160 (6) | 0.0011 (5) | −0.0027 (5) | 0.0011 (5) |
O2 | 0.0226 (7) | 0.0155 (7) | 0.0166 (6) | 0.0018 (5) | −0.0009 (5) | 0.0001 (5) |
O5 | 0.0227 (7) | 0.0195 (7) | 0.0159 (7) | −0.0033 (5) | −0.0033 (5) | 0.0026 (5) |
O1 | 0.0268 (8) | 0.0190 (7) | 0.0181 (7) | −0.0018 (6) | −0.0043 (6) | −0.0015 (5) |
N2B | 0.0208 (8) | 0.0151 (8) | 0.0124 (7) | −0.0007 (6) | −0.0026 (6) | 0.0011 (6) |
N1B | 0.0185 (8) | 0.0177 (8) | 0.0133 (8) | −0.0022 (6) | −0.0008 (6) | −0.0012 (6) |
N1A | 0.0224 (9) | 0.0134 (8) | 0.0165 (8) | 0.0013 (6) | −0.0017 (7) | −0.0042 (6) |
N3B | 0.0218 (9) | 0.0186 (8) | 0.0165 (8) | −0.0027 (7) | 0.0006 (7) | 0.0002 (7) |
N3A | 0.0291 (10) | 0.0164 (8) | 0.0171 (8) | 0.0017 (7) | −0.0044 (7) | −0.0037 (7) |
N2A | 0.0225 (9) | 0.0141 (8) | 0.0162 (8) | −0.0013 (6) | −0.0004 (7) | −0.0035 (6) |
C2A | 0.0166 (9) | 0.0150 (9) | 0.0195 (9) | −0.0016 (7) | 0.0008 (7) | 0.0005 (7) |
C1B | 0.0174 (9) | 0.0133 (9) | 0.0155 (9) | 0.0042 (7) | −0.0017 (7) | −0.0001 (7) |
C1A | 0.0206 (10) | 0.0164 (9) | 0.0159 (9) | −0.0030 (7) | 0.0022 (7) | −0.0001 (7) |
C2B | 0.0166 (9) | 0.0141 (9) | 0.0168 (9) | 0.0016 (7) | −0.0008 (7) | −0.0005 (7) |
C7B | 0.0165 (9) | 0.0147 (9) | 0.0152 (9) | 0.0028 (7) | 0.0001 (7) | 0.0011 (7) |
C7A | 0.0184 (10) | 0.0168 (9) | 0.0161 (9) | −0.0024 (7) | 0.0038 (7) | −0.0006 (7) |
C3B | 0.0258 (11) | 0.0198 (10) | 0.0148 (9) | 0.0014 (8) | 0.0022 (8) | 0.0003 (7) |
C6B | 0.0181 (10) | 0.0168 (9) | 0.0194 (10) | 0.0015 (7) | −0.0039 (7) | −0.0003 (7) |
C3A | 0.0212 (10) | 0.0203 (10) | 0.0220 (10) | −0.0012 (8) | −0.0013 (8) | −0.0035 (8) |
C5B | 0.0171 (10) | 0.0178 (10) | 0.0282 (10) | −0.0004 (8) | −0.0006 (8) | 0.0020 (8) |
C4B | 0.0242 (11) | 0.0203 (10) | 0.0221 (10) | 0.0015 (8) | 0.0060 (8) | 0.0043 (8) |
C4A | 0.0223 (11) | 0.0260 (11) | 0.0261 (11) | −0.0008 (8) | −0.0047 (9) | 0.0012 (8) |
C6A | 0.0220 (10) | 0.0164 (10) | 0.0256 (10) | 0.0000 (7) | 0.0043 (8) | −0.0007 (8) |
C5A | 0.0202 (10) | 0.0199 (10) | 0.0326 (12) | 0.0027 (8) | 0.0008 (9) | 0.0053 (9) |
V1—O1 | 1.6300 (14) | N2A—C1A | 1.348 (3) |
V1—O2 | 1.6534 (14) | N2A—C7A | 1.394 (3) |
V1—O3 | 1.8061 (15) | N2A—H2A | 0.871 (10) |
V1—O4i | 1.8280 (14) | C2A—C3A | 1.381 (3) |
V2—O6 | 1.6317 (14) | C2A—C7A | 1.401 (3) |
V2—O5 | 1.6521 (14) | C2B—C3B | 1.387 (3) |
V2—O3 | 1.8049 (14) | C2B—C7B | 1.395 (3) |
V2—O4 | 1.8118 (14) | C7B—C6B | 1.380 (3) |
V2—V1ii | 3.0736 (4) | C7A—C6A | 1.383 (3) |
N2B—C1B | 1.351 (3) | C3B—C4B | 1.394 (3) |
N2B—C7B | 1.398 (2) | C3B—H3B | 0.9500 |
N2B—H2B | 0.866 (10) | C6B—C5B | 1.394 (3) |
N1B—C1B | 1.345 (3) | C6B—H6B | 0.9500 |
N1B—C2B | 1.391 (3) | C3A—C4A | 1.388 (3) |
N1B—H1B | 0.873 (10) | C3A—H3A | 0.9500 |
N1A—C1A | 1.347 (3) | C5B—C4B | 1.394 (3) |
N1A—C2A | 1.393 (3) | C5B—H5B | 0.9500 |
N1A—H1A | 0.871 (10) | C4B—H4B | 0.9500 |
N3B—C1B | 1.315 (3) | C4A—C5A | 1.401 (3) |
N3B—H3BA | 0.874 (10) | C4A—H4A | 0.9500 |
N3B—H3BB | 0.873 (10) | C6A—C5A | 1.385 (3) |
N3A—C1A | 1.316 (3) | C6A—H6A | 0.9500 |
N3A—H3AA | 0.875 (10) | C5A—H5A | 0.9500 |
N3A—H3AB | 0.877 (10) | ||
O6—V2—O5 | 108.98 (7) | N1B—C1B—N2B | 109.04 (17) |
O6—V2—O3 | 106.96 (7) | N3A—C1A—N1A | 124.85 (18) |
O5—V2—O3 | 110.42 (7) | N3A—C1A—N2A | 126.10 (18) |
O6—V2—O4 | 110.11 (7) | N1A—C1A—N2A | 109.05 (17) |
O5—V2—O4 | 109.64 (7) | C3B—C2B—N1B | 131.57 (18) |
O3—V2—O4 | 110.68 (6) | C3B—C2B—C7B | 121.52 (18) |
O1—V1—O2 | 110.21 (7) | N1B—C2B—C7B | 106.90 (16) |
O1—V1—O3 | 111.87 (7) | C6B—C7B—C2B | 121.79 (18) |
O2—V1—O3 | 107.84 (6) | C6B—C7B—N2B | 131.79 (18) |
O1—V1—O4i | 109.71 (7) | C2B—C7B—N2B | 106.42 (16) |
O2—V1—O4i | 109.10 (7) | C6A—C7A—N2A | 132.15 (18) |
O3—V1—O4i | 108.04 (6) | C6A—C7A—C2A | 121.32 (19) |
V2—O4—V1ii | 115.22 (7) | N2A—C7A—C2A | 106.53 (17) |
V2—O3—V1 | 134.26 (8) | C2B—C3B—C4B | 116.91 (19) |
C1B—N2B—C7B | 108.71 (16) | C2B—C3B—H3B | 121.5 |
C1B—N2B—H2B | 122.9 (18) | C4B—C3B—H3B | 121.5 |
C7B—N2B—H2B | 127.5 (18) | C7B—C6B—C5B | 116.93 (18) |
C1B—N1B—C2B | 108.93 (16) | C7B—C6B—H6B | 121.5 |
C1B—N1B—H1B | 124.6 (19) | C5B—C6B—H6B | 121.5 |
C2B—N1B—H1B | 126.2 (19) | C2A—C3A—C4A | 116.97 (19) |
C1A—N1A—C2A | 108.96 (16) | C2A—C3A—H3A | 121.5 |
C1A—N1A—H1A | 122.5 (19) | C4A—C3A—H3A | 121.5 |
C2A—N1A—H1A | 128.5 (19) | C6B—C5B—C4B | 121.54 (19) |
C1B—N3B—H3BA | 123.6 (16) | C6B—C5B—H5B | 119.2 |
C1B—N3B—H3BB | 119.4 (19) | C4B—C5B—H5B | 119.2 |
H3BA—N3B—H3BB | 116 (3) | C3B—C4B—C5B | 121.30 (18) |
C1A—N3A—H3AA | 123.1 (18) | C3B—C4B—H4B | 119.4 |
C1A—N3A—H3AB | 120.6 (18) | C5B—C4B—H4B | 119.4 |
H3AA—N3A—H3AB | 116 (2) | C3A—C4A—C5A | 121.3 (2) |
C1A—N2A—C7A | 108.88 (16) | C3A—C4A—H4A | 119.4 |
C1A—N2A—H2A | 125.2 (18) | C5A—C4A—H4A | 119.4 |
C7A—N2A—H2A | 125.9 (18) | C7A—C6A—C5A | 117.07 (19) |
C3A—C2A—N1A | 131.68 (18) | C7A—C6A—H6A | 121.5 |
C3A—C2A—C7A | 121.74 (19) | C5A—C6A—H6A | 121.5 |
N1A—C2A—C7A | 106.57 (17) | C6A—C5A—C4A | 121.6 (2) |
N3B—C1B—N1B | 125.63 (18) | C6A—C5A—H5A | 119.2 |
N3B—C1B—N2B | 125.31 (18) | C4A—C5A—H5A | 119.2 |
O6—V2—O4—V1ii | −51.54 (10) | C3B—C2B—C7B—N2B | 178.79 (18) |
O5—V2—O4—V1ii | −171.43 (7) | N1B—C2B—C7B—N2B | −0.4 (2) |
O3—V2—O4—V1ii | 66.52 (9) | C1B—N2B—C7B—C6B | −179.8 (2) |
O6—V2—O3—V1 | −168.95 (10) | C1B—N2B—C7B—C2B | 0.6 (2) |
O5—V2—O3—V1 | −50.50 (13) | C1A—N2A—C7A—C6A | −179.1 (2) |
O4—V2—O3—V1 | 71.09 (12) | C1A—N2A—C7A—C2A | −0.1 (2) |
V1ii—V2—O3—V1 | 100.81 (10) | C3A—C2A—C7A—C6A | −2.3 (3) |
O1—V1—O3—V2 | −67.14 (13) | N1A—C2A—C7A—C6A | 178.54 (17) |
O2—V1—O3—V2 | 171.52 (10) | C3A—C2A—C7A—N2A | 178.57 (17) |
O4i—V1—O3—V2 | 53.72 (12) | N1A—C2A—C7A—N2A | −0.6 (2) |
V2i—V1—O3—V2 | 86.44 (11) | N1B—C2B—C3B—C4B | −179.92 (19) |
C1A—N1A—C2A—C3A | −177.9 (2) | C7B—C2B—C3B—C4B | 1.2 (3) |
C1A—N1A—C2A—C7A | 1.1 (2) | C2B—C7B—C6B—C5B | −0.1 (3) |
C2B—N1B—C1B—N3B | 179.08 (18) | N2B—C7B—C6B—C5B | −179.57 (19) |
C2B—N1B—C1B—N2B | 0.5 (2) | N1A—C2A—C3A—C4A | −179.6 (2) |
C7B—N2B—C1B—N3B | −179.32 (18) | C7A—C2A—C3A—C4A | 1.5 (3) |
C7B—N2B—C1B—N1B | −0.7 (2) | C7B—C6B—C5B—C4B | 0.6 (3) |
C2A—N1A—C1A—N3A | 178.88 (18) | C2B—C3B—C4B—C5B | −0.7 (3) |
C2A—N1A—C1A—N2A | −1.2 (2) | C6B—C5B—C4B—C3B | −0.2 (3) |
C7A—N2A—C1A—N3A | −179.26 (19) | C2A—C3A—C4A—C5A | 0.2 (3) |
C7A—N2A—C1A—N1A | 0.8 (2) | N2A—C7A—C6A—C5A | −179.8 (2) |
C1B—N1B—C2B—C3B | −179.1 (2) | C2A—C7A—C6A—C5A | 1.3 (3) |
C1B—N1B—C2B—C7B | 0.0 (2) | C7A—C6A—C5A—C4A | 0.3 (3) |
C3B—C2B—C7B—C6B | −0.8 (3) | C3A—C4A—C5A—C6A | −1.0 (3) |
N1B—C2B—C7B—C6B | −179.98 (17) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3B—H3BA···O6 | 0.88 | 1.97 | 2.830 | 169 (2) |
N1A—H1A···O2 | 0.87 | 1.85 | 2.722 | 174 (2) |
N1B—H1B···O5 | 0.88 | 1.91 | 2.774 | 171 (2) |
N3A—H3AA···O1 | 0.87 | 1.97 | 2.837 | 169 (2) |
N2A—H2A···O4iii | 0.87 | 1.93 | 2.798 | 177 (2) |
N2B—H2B···O2iv | 0.87 | 2.44 | 3.123 | 137 (2) |
N2B—H2B···O3v | 0.87 | 2.26 | 2.960 | 138 (2) |
N3B—H3BB···O3v | 0.87 | 2.18 | 2.938 | 145 (2) |
N3B—H3BB···O6vi | 0.87 | 2.41 | 2.887 | 115 (2) |
N3A—H3AB···O5iii | 0.88 | 1.90 | 2.779 | 175 (2) |
Symmetry codes: (iii) −x, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) −x−1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.
References
Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164–170. CrossRef Google Scholar
Aliabadi, A., Hakimi, M., Hosseinabadi, F., Motieiyan, E., Rodrigues, V. H. N., Ghadermazi, M., Marabello, D. & Abdolmaleki, S. (2021). J. Mol. Struct. 1223, 129005. CSD CrossRef Google Scholar
Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406–416. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chang, K. B., Smith, M. D., Zeller, M. & Norquist, A. J. (2013). Acta Cryst. E69, m570–m571. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275–1287. Web of Science CrossRef PubMed CAS Google Scholar
Ishaque Khan, M., Hope, T., Cevik, S., Zheng, Ch. & Powell, D. (2000). J. Cluster Sci. 11, 433–447. CSD CrossRef Google Scholar
Kostova, I. (2009). Anticancer Agents Med. Chem. 9, 827–842. Web of Science CrossRef PubMed CAS Google Scholar
Li, J., Xing, Y. H., Ge, M. F., Wang, C. G., Li, Z. P. & Niu, S. Y. (2009). J. Struct. Chem. 50, 532–538. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Makinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215–12220. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roman, P., Macias, R., Luque, A. & Gutiérrez-Zorrilla, J. M. (1992). Mater. Res. Bull. 27, 573–580. CSD CrossRef CAS Google Scholar
Ruzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647–651. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099–1109. Google Scholar
Smith, M. D., Blau, M. S., Chang, B. K., Tran, T. T., Zeller, M., Halasyamani, P. Sh., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86–93. CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Srivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2–13. Web of Science CrossRef PubMed CAS Google Scholar
Tyrselová, J., Kuchta, L. & Pavelcík, F. (1996). Acta Cryst. C52, 17–19. CSD CrossRef IUCr Journals Google Scholar
Tyršelová, J. & Pavelčík, F. (1992). Acta Cryst. C48, 1207–1209. CSD CrossRef IUCr Journals Google Scholar
Wang, G.-M., Li, J.-H., Han, J. & Liu, H.-L. (2007). Acta Cryst. E63, m2189. CSD CrossRef IUCr Journals Google Scholar
Wang, J. P., Zhao, J. W., Niu, J. Y. & Bo, Y. (2004). Jiegou Huaxue, 23, 655. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wutkowski, A., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 753–758. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.