research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­(2-aminobenzimidazolium) catena-[metavanadate(V)]

crossmark logo

aInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, 100170, M. Ulugbek Str 77a, Tashkent, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan, cUniversity of Geological Sciences, Olimlar Street, 64, Mirzo Ulugbek district, Tashkent, Uzbekistan, dNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, and eUzbekistan–Japan Innovation Center of Youth, University Street 2B, Tashkent, 100095, Uzbekistan
*Correspondence e-mail: jabborova0707@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 May 2024; accepted 10 June 2024; online 18 June 2024)

The structure of polymeric catena-poly[2-amino­benzimidazolium [[dioxidovanadium(V)]-μ-oxido]], {(C7H8N3)2[V2O6]}n, has monoclinic symmetry. The title compound is of inter­est with respect to anti­cancer activity. In the crystal structure, infinite linear zigzag vanadate (V2O6)2− chains, constructed from corner-sharing VO4 tetra­hedra and that run parallel to the a axis, are present. Two different protonated 2-amino­benzimidazole mol­ecules are located between the (V2O6)2– chains and form classical N—H⋯O hydrogen bonds with the vanadate oxygen atoms, which contribute to the cohesion of the structure.

1. Chemical context

In recent years, vanadate compounds have attracted attention in various fields due to their various compositions and inter­esting structures (Smith et al., 2012[Smith, M. D., Blau, M. S., Chang, B. K., Tran, T. T., Zeller, M., Halasyamani, P. Sh., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86-93.]; Wutkowski et al., 2009[Wutkowski, A., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 753-758.]; Wang et al., 2007[Wang, G.-M., Li, J.-H., Han, J. & Liu, H.-L. (2007). Acta Cryst. E63, m2189.]). This is partly due to the ability of vanadium to adopt tetra­hedral [VO4], square-pyramidal [VO5], trigonal–bipyramidal [VO5] or octa­hedral [VO6] coordination environments together with possible stable oxidation states of +III, +IV and +V. Inter­estingly, all major vanadate compounds known to date containing cage-, shell-, belt-, barrel-, or basket-shaped entities are structurally related to the layer structure of vanadium pentoxide (Ishaque Khan et al., 2000[Ishaque Khan, M., Hope, T., Cevik, S., Zheng, Ch. & Powell, D. (2000). J. Cluster Sci. 11, 433-447.]). These compounds have many practical pharmacological applications, ranging from anti­cancer agents to anti­fungal agents and, more recently, as insulin mimetics (Singh et al., 2014[Singh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099-1109.]; Abakumova et al., 2012[Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164-170.]; Amin et al., 2000[Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406-416.]) where they inter­act with several points in the cell-signaling pathway associated with the hormone insulin (Amin et al., 2000[Amin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406-416.]; Srivastava & Mehdi, 2005[Srivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2-13.]). Studies have also indicated that vanadate compounds inter­act directly with glucose transporters located on the cell surface (Hiromura et al., 2007[Hiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275-1287.]; Makinen & Brady, 2002[Makinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215-12220.]). Furthermore, vanadium has been found to have important inter­actions in DNA repair systems, making it a useful target for many oncological/pharmacological studies (Abakumova et al., 2012[Abakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164-170.]; Kostova, 2009[Kostova, I. (2009). Anticancer Agents Med. Chem. 9, 827-842.]). Given the structural dependence on functions and application, a deeper study of the mol­ecular and crystal structures of such complexes is warranted. In this context, we describe the synthesis and structural features of the polymeric title compound {(C7H8N3)2 (V2O6)}n.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises two 2-amino­benzimidazolium cations (denoted A and B) and two V and six O atoms of the polymeric metavanadate anion (Fig. 1[link]). The cationic mol­ecules are almost planar (root-mean-square deviation for A = 0.0127 Å and for B = 0.0064 Å), and their N—C bond-length distributions are similar to those in related compounds (Aliabadi et al., 2021[Aliabadi, A., Hakimi, M., Hosseinabadi, F., Motieiyan, E., Rodrigues, V. H. N., Ghadermazi, M., Marabello, D. & Abdolmaleki, S. (2021). J. Mol. Struct. 1223, 129005.]; Ruzieva et al., 2022[Ruzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647-651.]). The linear zigzag metavanadate (V2O6)2– chain runs parallel to the a axis and is constructed from corner-sharing VO4 tetra­hedra (Fig. 2[link]). Typical for such chains, the bridging O atoms (O3 and O4) have considerably longer V—O bonds than the terminal O atoms (O1 and O2 for the V1O4 tetra­hedron and O5 and O6 for the V2O4 tetra­hedron; Table 1[link]). The corresponding V—O and V=O bond lengths are similar to those reported for related hybrid metavanadate compounds (Smith et al., 2012[Smith, M. D., Blau, M. S., Chang, B. K., Tran, T. T., Zeller, M., Halasyamani, P. Sh., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86-93.]; Wutkowski et al., 2009[Wutkowski, A., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 753-758.]; Wang et al., 2007[Wang, G.-M., Li, J.-H., Han, J. & Liu, H.-L. (2007). Acta Cryst. E63, m2189.]; Tyrselova et al., 1996[Tyrselová, J., Kuchta, L. & Pavelcík, F. (1996). Acta Cryst. C52, 17-19.]).

Table 1
Selected bond lengths (Å)

V1—O1 1.6300 (14) V2—O6 1.6317 (14)
V1—O2 1.6534 (14) V2—O5 1.6521 (14)
V1—O3 1.8061 (15) V2—O3 1.8049 (14)
V1—O4i 1.8280 (14) V2—O4 1.8118 (14)
Symmetry code: (i) [x+1, y, z].
[Figure 1]
Figure 1
The asymmetric unit of the title compound with the labeling scheme and displacement ellipsoids drawn at the 50% probability level. Dotted lines indicate N—H⋯O hydrogen-bonding inter­actions.
[Figure 2]
Figure 2
The metavanadate chain with the two different tetra­hedra in polyhedral representation.

3. Supra­molecular features

The crystal packing exhibits an intricate network of classical inter­molecular N—H⋯O hydrogen bonds between the NH and NH2 groups of the cations and all oxygen atoms of the metavanadate chain (Fig. 3[link], Table 2[link]). Additional short contacts (Fig. 4[link]) between the vanadate O6 atom and the centroid of the N1B/C1B/N2B/C7B/C2B ring (V2—O6⋯Cg4(−1 + x, y, z) = 3.8768 (16) Å) consolidate the tri-periodic network structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3B—H3BA⋯O6 0.88 1.97 2.830 169 (2)
N1A—H1A⋯O2 0.87 1.85 2.722 174 (2)
N1B—H1B⋯O5 0.88 1.91 2.774 171 (2)
N3A—H3AA⋯O1 0.87 1.97 2.837 169 (2)
N2A—H2A⋯O4ii 0.87 1.93 2.798 177 (2)
N2B—H2B⋯O2iii 0.87 2.44 3.123 137 (2)
N2B—H2B⋯O3iv 0.87 2.26 2.960 138 (2)
N3B—H3BB⋯O3iv 0.87 2.18 2.938 145 (2)
N3B—H3BB⋯O6v 0.87 2.41 2.887 115 (2)
N3A—H3AB⋯O5ii 0.88 1.90 2.779 175 (2)
Symmetry codes: (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1]; (v) [-x-1, -y+1, -z+1].
[Figure 3]
Figure 3
View of the crystal structure of the title compound along the a axis, showing N—H⋯O hydrogen bonds drawn as blue dotted lines.
[Figure 4]
Figure 4
V2—O6⋯Cg4 inter­actions in the crystal structure of the title compound.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed four hybrid compounds with protonated 2-amino­benzimidazole moieties, two with gallium (WURVAJ, WURVEN; Aliabadi et al., 2021[Aliabadi, A., Hakimi, M., Hosseinabadi, F., Motieiyan, E., Rodrigues, V. H. N., Ghadermazi, M., Marabello, D. & Abdolmaleki, S. (2021). J. Mol. Struct. 1223, 129005.]) and two with lanthanum (JARVOQ, WEGRAF; Ruzieva et al., 2022[Ruzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647-651.]). A search for the metavanadate moiety with linear zigzag chains similar to that in the title structure gave the following hits: CEHQEN and CEHQIR, for which dipole moments were calculated using iterative Hirshfeld partial atomic charges (Smith et al., 2012[Smith, M. D., Blau, M. S., Chang, B. K., Tran, T. T., Zeller, M., Halasyamani, P. Sh., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86-93.]); (H3NCH2CH2NH3)(V2O6) (FUDLOF02; Ishaque Khan et al., 2000[Ishaque Khan, M., Hope, T., Cevik, S., Zheng, Ch. & Powell, D. (2000). J. Cluster Sci. 11, 433-447.]); 1,6-hexa­nedi­ammonium metavanadate (KOYJAJ; Tyršelová & Pavelčík, 1992[Tyršelová, J. & Pavelčík, F. (1992). Acta Cryst. C48, 1207-1209.]); 3-aza-1,5-penta­methyl­enedi­ammonium metavanadate (KUGGUO; Roman et al., 1992[Roman, P., Macias, R., Luque, A. & Gutiérrez-Zorrilla, J. M. (1992). Mater. Res. Bull. 27, 573-580.]); [Cu(H2O)(C5H14N2)2](VO3)2 (POYNAT; Wutkowski et al., 2009[Wutkowski, A., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 753-758.]); catena-poly[N,N′-bis­(2-ammonio­eth­yl)oxamide [dioxidovanadate-μ-oxido-dioxidovanadate-μ-oxido]] (TIGBUH; Wang et al., 2007[Wang, G.-M., Li, J.-H., Han, J. & Liu, H.-L. (2007). Acta Cryst. E63, m2189.]); catena-poly[2,2′,2′′-nitrilo­tris­(ethanamin­ium) [tri-μ-oxido-tris­[dioxidovanadate(V)]] monohydrate] (VIPRET; Chang et al., 2013[Chang, K. B., Smith, M. D., Zeller, M. & Norquist, A. J. (2013). Acta Cryst. E69, m570-m571.]); {piperazinediium poly[trioxo­vanadate], {(C4H12N2)(VO3)2} (ZITSEA; Tyrselova et al., 1996[Tyrselová, J., Kuchta, L. & Pavelcík, F. (1996). Acta Cryst. C52, 17-19.]); catena[bis­[tris­(2-ammonio­eth­yl)amine]­hexa­kis­(μ2-oxo)dodeca­oxohexa­vanadium trihydrate] (IMATOG; Li et al., 2009[Li, J., Xing, Y. H., Ge, M. F., Wang, C. G., Li, Z. P. & Niu, S. Y. (2009). J. Struct. Chem. 50, 532-538.]); catena-[penta­kis­(cyclo­hexyl­ammonium) penta­kis­(μ2-oxo)deca­oxo­penta­vanadium(V)] (NACFON; Wang et al., 2004[Wang, J. P., Zhao, J. W., Niu, J. Y. & Bo, Y. (2004). Jiegou Huaxue, 23, 655.]).

5. Synthesis and crystallization

All reagents for synthesis and analysis were commercially available and purchased from Sigma Aldrich and used as received without further purification. Chemically pure vanadyl acetyl­acetonate, 2-amino­benzimidazole, and 96% vol ethanol were used. Vanadyl acetyl­acetonate (0.0265 g, 1 mmol) dissolved in 5 ml of EtOH and 2-amino­benzimidazole (0.0133 g, 1 mmol) dissolved in 5 ml of EtOH were mixed with constant stirring until the color of the solution turned to green. The stirring was continued for three hours. The resulting green solution was then allowed to cool to room temperature and green crystals were grown over seven days via slow evaporation of the mother liquor. Selected IR bands (KBr pellet, cm−1): 3447 (N—H), 1647 (C=N), 868 (V=O), 898 (V—O), 943 (O=V=O), 655 (V—O—V).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bound to C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms bound to N atoms were discernible in difference-Fourier maps and were refined with N—H bond length restraints of 0.86 (2) Å.

Table 3
Experimental details

Crystal data
Chemical formula (C7H8N3)2[V2O6]
Mr 466.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.8817 (1), 16.8263 (2), 22.4354 (2)
β (°) 90.675 (1)
V3) 1842.74 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 8.93
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.349, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17440, 3540, 3413
Rint 0.037
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.07
No. of reflections 3540
No. of parameters 286
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[2-aminobenzimidazolium [[dioxidovanadium(V)]-µ-oxido]] top
Crystal data top
(C7H8N3)2[V2O6]F(000) = 944
Mr = 466.21Dx = 1.680 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.8817 (1) ÅCell parameters from 11386 reflections
b = 16.8263 (2) Åθ = 3.3–71.2°
c = 22.4354 (2) ŵ = 8.93 mm1
β = 90.675 (1)°T = 100 K
V = 1842.74 (5) Å3Block, green
Z = 40.28 × 0.24 × 0.18 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3413 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.037
ω scansθmax = 71.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 55
Tmin = 0.349, Tmax = 1.000k = 2020
17440 measured reflectionsl = 2727
3540 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.0444P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.38 e Å3
3540 reflectionsΔρmin = 0.44 e Å3
286 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.00059 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V20.28372 (6)0.46447 (2)0.35937 (2)0.01360 (11)
V10.24874 (6)0.34781 (2)0.33048 (2)0.01340 (11)
O40.5361 (3)0.42994 (8)0.30547 (6)0.0165 (3)
O60.4298 (3)0.48306 (8)0.42291 (6)0.0194 (3)
O30.0282 (3)0.38899 (8)0.37331 (6)0.0175 (3)
O20.4310 (3)0.28954 (8)0.37509 (6)0.0182 (3)
O50.1386 (3)0.54667 (8)0.33474 (6)0.0194 (3)
O10.1365 (3)0.29770 (8)0.27302 (6)0.0213 (3)
N2B0.1986 (3)0.68245 (10)0.51241 (7)0.0161 (3)
N1B0.0739 (3)0.64665 (10)0.42202 (7)0.0165 (3)
N1A0.6212 (4)0.14345 (10)0.34384 (7)0.0175 (3)
N3B0.1562 (4)0.58715 (10)0.50284 (7)0.0190 (3)
N3A0.3272 (4)0.13954 (10)0.25959 (8)0.0209 (4)
N2A0.6531 (4)0.03991 (10)0.28485 (7)0.0176 (3)
C2A0.8201 (4)0.09402 (11)0.36893 (9)0.0170 (4)
C1B0.0284 (4)0.63523 (11)0.48039 (8)0.0154 (4)
C1A0.5216 (4)0.10926 (12)0.29382 (9)0.0176 (4)
C2B0.2814 (4)0.70255 (11)0.41573 (8)0.0158 (4)
C7B0.3623 (4)0.72532 (11)0.47309 (8)0.0155 (4)
C7A0.8420 (4)0.02816 (12)0.33111 (9)0.0171 (4)
C3B0.4005 (4)0.73529 (12)0.36553 (9)0.0201 (4)
H3B0.3431480.7205170.3264680.024*
C6B0.5667 (4)0.78067 (12)0.48278 (9)0.0181 (4)
H6B0.6211110.7960470.5219050.022*
C3A0.9760 (4)0.10065 (12)0.42048 (9)0.0212 (4)
H3A0.9576950.1448180.4465060.025*
C5B0.6896 (4)0.81295 (12)0.43252 (9)0.0210 (4)
H5B0.8322150.8508840.4375090.025*
C4B0.6082 (4)0.79089 (12)0.37508 (9)0.0221 (4)
H4B0.6959920.8141930.3417980.027*
C4A1.1607 (5)0.03984 (13)0.43252 (10)0.0248 (5)
H4A1.2711730.0422840.4676250.030*
C6A1.0281 (4)0.03202 (12)0.34269 (10)0.0213 (4)
H6A1.0459940.0761940.3166550.026*
C5A1.1874 (4)0.02505 (13)0.39392 (10)0.0242 (4)
H5A1.3179000.0652440.4031020.029*
H3BA0.259 (4)0.5555 (12)0.4812 (9)0.023 (6)*
H2B0.217 (5)0.6788 (16)0.5508 (5)0.026 (7)*
H3AA0.251 (5)0.1857 (9)0.2664 (12)0.031 (7)*
H2A0.619 (5)0.0069 (13)0.2558 (9)0.029 (7)*
H3BB0.160 (5)0.5797 (17)0.5413 (5)0.034 (7)*
H3AB0.263 (5)0.1129 (14)0.2288 (8)0.027 (7)*
H1B0.004 (5)0.6193 (15)0.3933 (9)0.036 (7)*
H1A0.566 (5)0.1897 (9)0.3563 (12)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V20.01470 (19)0.01364 (18)0.01242 (17)0.00046 (11)0.00200 (12)0.00155 (11)
V10.01604 (19)0.01193 (17)0.01219 (17)0.00065 (11)0.00225 (12)0.00014 (11)
O40.0192 (7)0.0153 (7)0.0150 (6)0.0008 (5)0.0029 (5)0.0023 (5)
O60.0199 (7)0.0207 (7)0.0174 (7)0.0005 (5)0.0004 (5)0.0001 (5)
O30.0172 (7)0.0192 (7)0.0160 (6)0.0011 (5)0.0027 (5)0.0011 (5)
O20.0226 (7)0.0155 (7)0.0166 (6)0.0018 (5)0.0009 (5)0.0001 (5)
O50.0227 (7)0.0195 (7)0.0159 (7)0.0033 (5)0.0033 (5)0.0026 (5)
O10.0268 (8)0.0190 (7)0.0181 (7)0.0018 (6)0.0043 (6)0.0015 (5)
N2B0.0208 (8)0.0151 (8)0.0124 (7)0.0007 (6)0.0026 (6)0.0011 (6)
N1B0.0185 (8)0.0177 (8)0.0133 (8)0.0022 (6)0.0008 (6)0.0012 (6)
N1A0.0224 (9)0.0134 (8)0.0165 (8)0.0013 (6)0.0017 (7)0.0042 (6)
N3B0.0218 (9)0.0186 (8)0.0165 (8)0.0027 (7)0.0006 (7)0.0002 (7)
N3A0.0291 (10)0.0164 (8)0.0171 (8)0.0017 (7)0.0044 (7)0.0037 (7)
N2A0.0225 (9)0.0141 (8)0.0162 (8)0.0013 (6)0.0004 (7)0.0035 (6)
C2A0.0166 (9)0.0150 (9)0.0195 (9)0.0016 (7)0.0008 (7)0.0005 (7)
C1B0.0174 (9)0.0133 (9)0.0155 (9)0.0042 (7)0.0017 (7)0.0001 (7)
C1A0.0206 (10)0.0164 (9)0.0159 (9)0.0030 (7)0.0022 (7)0.0001 (7)
C2B0.0166 (9)0.0141 (9)0.0168 (9)0.0016 (7)0.0008 (7)0.0005 (7)
C7B0.0165 (9)0.0147 (9)0.0152 (9)0.0028 (7)0.0001 (7)0.0011 (7)
C7A0.0184 (10)0.0168 (9)0.0161 (9)0.0024 (7)0.0038 (7)0.0006 (7)
C3B0.0258 (11)0.0198 (10)0.0148 (9)0.0014 (8)0.0022 (8)0.0003 (7)
C6B0.0181 (10)0.0168 (9)0.0194 (10)0.0015 (7)0.0039 (7)0.0003 (7)
C3A0.0212 (10)0.0203 (10)0.0220 (10)0.0012 (8)0.0013 (8)0.0035 (8)
C5B0.0171 (10)0.0178 (10)0.0282 (10)0.0004 (8)0.0006 (8)0.0020 (8)
C4B0.0242 (11)0.0203 (10)0.0221 (10)0.0015 (8)0.0060 (8)0.0043 (8)
C4A0.0223 (11)0.0260 (11)0.0261 (11)0.0008 (8)0.0047 (9)0.0012 (8)
C6A0.0220 (10)0.0164 (10)0.0256 (10)0.0000 (7)0.0043 (8)0.0007 (8)
C5A0.0202 (10)0.0199 (10)0.0326 (12)0.0027 (8)0.0008 (9)0.0053 (9)
Geometric parameters (Å, º) top
V1—O11.6300 (14)N2A—C1A1.348 (3)
V1—O21.6534 (14)N2A—C7A1.394 (3)
V1—O31.8061 (15)N2A—H2A0.871 (10)
V1—O4i1.8280 (14)C2A—C3A1.381 (3)
V2—O61.6317 (14)C2A—C7A1.401 (3)
V2—O51.6521 (14)C2B—C3B1.387 (3)
V2—O31.8049 (14)C2B—C7B1.395 (3)
V2—O41.8118 (14)C7B—C6B1.380 (3)
V2—V1ii3.0736 (4)C7A—C6A1.383 (3)
N2B—C1B1.351 (3)C3B—C4B1.394 (3)
N2B—C7B1.398 (2)C3B—H3B0.9500
N2B—H2B0.866 (10)C6B—C5B1.394 (3)
N1B—C1B1.345 (3)C6B—H6B0.9500
N1B—C2B1.391 (3)C3A—C4A1.388 (3)
N1B—H1B0.873 (10)C3A—H3A0.9500
N1A—C1A1.347 (3)C5B—C4B1.394 (3)
N1A—C2A1.393 (3)C5B—H5B0.9500
N1A—H1A0.871 (10)C4B—H4B0.9500
N3B—C1B1.315 (3)C4A—C5A1.401 (3)
N3B—H3BA0.874 (10)C4A—H4A0.9500
N3B—H3BB0.873 (10)C6A—C5A1.385 (3)
N3A—C1A1.316 (3)C6A—H6A0.9500
N3A—H3AA0.875 (10)C5A—H5A0.9500
N3A—H3AB0.877 (10)
O6—V2—O5108.98 (7)N1B—C1B—N2B109.04 (17)
O6—V2—O3106.96 (7)N3A—C1A—N1A124.85 (18)
O5—V2—O3110.42 (7)N3A—C1A—N2A126.10 (18)
O6—V2—O4110.11 (7)N1A—C1A—N2A109.05 (17)
O5—V2—O4109.64 (7)C3B—C2B—N1B131.57 (18)
O3—V2—O4110.68 (6)C3B—C2B—C7B121.52 (18)
O1—V1—O2110.21 (7)N1B—C2B—C7B106.90 (16)
O1—V1—O3111.87 (7)C6B—C7B—C2B121.79 (18)
O2—V1—O3107.84 (6)C6B—C7B—N2B131.79 (18)
O1—V1—O4i109.71 (7)C2B—C7B—N2B106.42 (16)
O2—V1—O4i109.10 (7)C6A—C7A—N2A132.15 (18)
O3—V1—O4i108.04 (6)C6A—C7A—C2A121.32 (19)
V2—O4—V1ii115.22 (7)N2A—C7A—C2A106.53 (17)
V2—O3—V1134.26 (8)C2B—C3B—C4B116.91 (19)
C1B—N2B—C7B108.71 (16)C2B—C3B—H3B121.5
C1B—N2B—H2B122.9 (18)C4B—C3B—H3B121.5
C7B—N2B—H2B127.5 (18)C7B—C6B—C5B116.93 (18)
C1B—N1B—C2B108.93 (16)C7B—C6B—H6B121.5
C1B—N1B—H1B124.6 (19)C5B—C6B—H6B121.5
C2B—N1B—H1B126.2 (19)C2A—C3A—C4A116.97 (19)
C1A—N1A—C2A108.96 (16)C2A—C3A—H3A121.5
C1A—N1A—H1A122.5 (19)C4A—C3A—H3A121.5
C2A—N1A—H1A128.5 (19)C6B—C5B—C4B121.54 (19)
C1B—N3B—H3BA123.6 (16)C6B—C5B—H5B119.2
C1B—N3B—H3BB119.4 (19)C4B—C5B—H5B119.2
H3BA—N3B—H3BB116 (3)C3B—C4B—C5B121.30 (18)
C1A—N3A—H3AA123.1 (18)C3B—C4B—H4B119.4
C1A—N3A—H3AB120.6 (18)C5B—C4B—H4B119.4
H3AA—N3A—H3AB116 (2)C3A—C4A—C5A121.3 (2)
C1A—N2A—C7A108.88 (16)C3A—C4A—H4A119.4
C1A—N2A—H2A125.2 (18)C5A—C4A—H4A119.4
C7A—N2A—H2A125.9 (18)C7A—C6A—C5A117.07 (19)
C3A—C2A—N1A131.68 (18)C7A—C6A—H6A121.5
C3A—C2A—C7A121.74 (19)C5A—C6A—H6A121.5
N1A—C2A—C7A106.57 (17)C6A—C5A—C4A121.6 (2)
N3B—C1B—N1B125.63 (18)C6A—C5A—H5A119.2
N3B—C1B—N2B125.31 (18)C4A—C5A—H5A119.2
O6—V2—O4—V1ii51.54 (10)C3B—C2B—C7B—N2B178.79 (18)
O5—V2—O4—V1ii171.43 (7)N1B—C2B—C7B—N2B0.4 (2)
O3—V2—O4—V1ii66.52 (9)C1B—N2B—C7B—C6B179.8 (2)
O6—V2—O3—V1168.95 (10)C1B—N2B—C7B—C2B0.6 (2)
O5—V2—O3—V150.50 (13)C1A—N2A—C7A—C6A179.1 (2)
O4—V2—O3—V171.09 (12)C1A—N2A—C7A—C2A0.1 (2)
V1ii—V2—O3—V1100.81 (10)C3A—C2A—C7A—C6A2.3 (3)
O1—V1—O3—V267.14 (13)N1A—C2A—C7A—C6A178.54 (17)
O2—V1—O3—V2171.52 (10)C3A—C2A—C7A—N2A178.57 (17)
O4i—V1—O3—V253.72 (12)N1A—C2A—C7A—N2A0.6 (2)
V2i—V1—O3—V286.44 (11)N1B—C2B—C3B—C4B179.92 (19)
C1A—N1A—C2A—C3A177.9 (2)C7B—C2B—C3B—C4B1.2 (3)
C1A—N1A—C2A—C7A1.1 (2)C2B—C7B—C6B—C5B0.1 (3)
C2B—N1B—C1B—N3B179.08 (18)N2B—C7B—C6B—C5B179.57 (19)
C2B—N1B—C1B—N2B0.5 (2)N1A—C2A—C3A—C4A179.6 (2)
C7B—N2B—C1B—N3B179.32 (18)C7A—C2A—C3A—C4A1.5 (3)
C7B—N2B—C1B—N1B0.7 (2)C7B—C6B—C5B—C4B0.6 (3)
C2A—N1A—C1A—N3A178.88 (18)C2B—C3B—C4B—C5B0.7 (3)
C2A—N1A—C1A—N2A1.2 (2)C6B—C5B—C4B—C3B0.2 (3)
C7A—N2A—C1A—N3A179.26 (19)C2A—C3A—C4A—C5A0.2 (3)
C7A—N2A—C1A—N1A0.8 (2)N2A—C7A—C6A—C5A179.8 (2)
C1B—N1B—C2B—C3B179.1 (2)C2A—C7A—C6A—C5A1.3 (3)
C1B—N1B—C2B—C7B0.0 (2)C7A—C6A—C5A—C4A0.3 (3)
C3B—C2B—C7B—C6B0.8 (3)C3A—C4A—C5A—C6A1.0 (3)
N1B—C2B—C7B—C6B179.98 (17)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3B—H3BA···O60.881.972.830169 (2)
N1A—H1A···O20.871.852.722174 (2)
N1B—H1B···O50.881.912.774171 (2)
N3A—H3AA···O10.871.972.837169 (2)
N2A—H2A···O4iii0.871.932.798177 (2)
N2B—H2B···O2iv0.872.443.123137 (2)
N2B—H2B···O3v0.872.262.960138 (2)
N3B—H3BB···O3v0.872.182.938145 (2)
N3B—H3BB···O6vi0.872.412.887115 (2)
N3A—H3AB···O5iii0.881.902.779175 (2)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x1, y+1, z+1.
 

Acknowledgements

The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.

References

First citationAbakumova, O. Y., Podobed, O. V., Belayeva, N. F. & Tochilkin, A. I. (2012). Biochem. Moscow Suppl. Ser. B, 6, 164–170.  CrossRef Google Scholar
First citationAliabadi, A., Hakimi, M., Hosseinabadi, F., Motieiyan, E., Rodrigues, V. H. N., Ghadermazi, M., Marabello, D. & Abdolmaleki, S. (2021). J. Mol. Struct. 1223, 129005.  CSD CrossRef Google Scholar
First citationAmin, S. S., Cryer, K., Zhang, B., Dutta, S. K., Eaton, S. S., Anderson, O. P., Miller, S. M., Reul, B. A., Brichard, S. M. & Crans, D. C. (2000). Inorg. Chem. 39, 406–416.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChang, K. B., Smith, M. D., Zeller, M. & Norquist, A. J. (2013). Acta Cryst. E69, m570–m571.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiromura, M., Nakayama, A., Adachi, Y., Doi, M. & Sakurai, H. (2007). J. Biol. Inorg. Chem. 12, 1275–1287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshaque Khan, M., Hope, T., Cevik, S., Zheng, Ch. & Powell, D. (2000). J. Cluster Sci. 11, 433–447.  CSD CrossRef Google Scholar
First citationKostova, I. (2009). Anticancer Agents Med. Chem. 9, 827–842.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J., Xing, Y. H., Ge, M. F., Wang, C. G., Li, Z. P. & Niu, S. Y. (2009). J. Struct. Chem. 50, 532–538.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakinen, M. W. & Brady, M. J. (2002). J. Biol. Chem. 277, 12215–12220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoman, P., Macias, R., Luque, A. & Gutiérrez-Zorrilla, J. M. (1992). Mater. Res. Bull. 27, 573–580.  CSD CrossRef CAS Google Scholar
First citationRuzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647–651.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R., Neerupama, G. K., Sharma, P. & Sachar, R. (2014). Chem. Sci. Trans. 3, 1099–1109.  Google Scholar
First citationSmith, M. D., Blau, M. S., Chang, B. K., Tran, T. T., Zeller, M., Halasyamani, P. Sh., Schrier, J. & Norquist, A. J. (2012). J. Solid State Chem. 195, 86–93.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, A. K. & Mehdi, M. Z. (2005). Diabet. Med. 22, 2–13.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTyrselová, J., Kuchta, L. & Pavelcík, F. (1996). Acta Cryst. C52, 17–19.  CSD CrossRef IUCr Journals Google Scholar
First citationTyršelová, J. & Pavelčík, F. (1992). Acta Cryst. C48, 1207–1209.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-M., Li, J.-H., Han, J. & Liu, H.-L. (2007). Acta Cryst. E63, m2189.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, J. P., Zhao, J. W., Niu, J. Y. & Bo, Y. (2004). Jiegou Huaxue, 23, 655.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWutkowski, A., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 753–758.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds