research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-bromo­ethyl­ammonium bromide – a possible side product upon synthesis of hybrid perovskites

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: alex.semenikhin@knu.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 May 2024; accepted 11 June 2024; online 18 June 2024)

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter­actions, which constitute 62.6% of the overall close atom contacts.

1. Chemical context

Hybrid perovskites have emerged as a class of highly promising compounds for a wide array of applications in optoelectronics and photovoltaics due to their semiconducting properties. Among these, perovskites with a tri-periodic arrangement have garnered significant attention owing to their optimal bandgap width (Dey et al., 2021[Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., Kshirsagar, A. S., Wang, Z., Yin, J., Wang, Y., Quan, L. N., Yan, F., Gao, M., Li, X., Shamsi, J., Debnath, T., Cao, M., Scheel, M. A., Kumar, S., Steele, J. A., Gerhard, M., Chouhan, L., Xu, K., Wu, X. G., Li, Y., Zhang, Y., Dutta, A., Han, C., Vincon, I., Rogach, A. L., Nag, A., Samanta, A., Korgel, B. A., Shih, C. J., Gamelin, D. R., Son, D. H., Zeng, H., Zhong, H., Sun, H., Demir, H. V., Scheblykin, I. G., Mora-Seró, I., Stolarczyk, J. K., Zhang, J. Z., Feldmann, J., Hofkens, J., Luther, J. M., Pérez-Prieto, J., Li, L., Manna, L., Bodnarchuk, M. I., Kovalenko, M. V., Roeffaers, M. B. J., Pradhan, N., Mohammed, O. F., Bakr, O. M., Yang, P., Müller-Buschbaum, P., Kamat, P. V., Bao, Q., Zhang, Q., Krahne, R., Galian, R. E., Stranks, S. D., Bals, S., Biju, V., Tisdale, W. A., Yan, Y., Hoye, R. L. Z. & Polavarapu, L. (2021). ACS Nano, 15, 10775-10981.]; Liu et al., 2021[Liu, X.-K., Xu, W., Bai, S., Jin, Y., Wang, J., Friend, R. H. & Gao, F. (2021). Nat. Mater. 20, 10-21.]; Hassan et al., 2021[Hassan, Y., Park, J. H., Crawford, M. L., Sadhanala, A., Lee, J., Sadighian, J. C., Mosconi, E., Shivanna, R., Radicchi, E., Jeong, M., Yang, C., Choi, H., Park, S. H., Song, M. H., De Angelis, F., Wong, C. Y., Friend, R. H., Lee, B. R. & Snaith, H. J. (2021). Nature, 591, 72-77.]; Yoo et al., 2021[Yoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y., Rotermund, F., Kim, Y.-K., Moon, C. S., Jeon, N. J., Correa-Baena, J.-P., Bulović, V., Shin, S. S., Bawendi, M. G. & Seo, J. (2021). Nature, 590, 587-593.]). Notably, the aziridinium cation (AzrH) has recently been shown to support such perovskite structures. In the form (AzrH)BX3 (B = Pb, Sn; X = Br, I; Petrosova et al., 2022[Petrosova, H. R., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2022). Chem. Commun. 58, 5745-5748.]; Kucheriv et al., 2023[Kucheriv, O. I., Sirenko, V. Y., Petrosova, H. R., Pavlenko, V. A., Shova, S. & Gural'skiy, I. A. (2023). Inorg. Chem. Front. 10, 6953-6963.]), these perovskites display promising physical properties (Mączka et al., 2023[Mączka, M., Ptak, M., Gągor, A., Zaręba, J. K., Liang, X., Balčiūnas, S., Semenikhin, O. A., Kucheriv, O. I., Gural'skiy, I. A., Shova, S., Walsh, A., Banys, J. & Šimėnas, M. (2023). Chem. Mater. 35, 9725-9738.]; Stefańska et al., 2022[Stefańska, D., Ptak, M. & Mączka, M. (2022). Molecules, 27, 7949-7960.]), and nanomaterials based on them offer potential for various applications (Semenikhin et al., 2023[Semenikhin, O. A., Kucheriv, O. I., Sacarescu, L., Shova, S. & Gural'skiy, I. A. (2023). Chem. Commun. 59, 3566-3569.]; Bodnarchuk et al., 2024[Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., Aebli, M., Mir, S. H., Masciocchi, N., Erni, R., Chakraborty, S., Guagliardi, A., Rainò, G. & Kovalenko, M. V. (2024). ACS Nano, 18, 5684-5697.]).

The high reactivity of aziridine poses a synthetic challenge as it can undergo ring-opening in acidic environments, leading to the formation of perovskites with low periodicity such as (X(CH2)2NH3)2n(BX)4n (B = Pb, Sn; X = Br, I; Skorokhod et al., 2023[Skorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873-2883.]; Song et al., 2022[Song, Z., Yu, B., Wei, J., Li, C., Liu, G. & Dang, Y. (2022). Inorg. Chem. 61, 6943-6952.]; Sourisseau et al., 2007[Sourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Buzaré, J.-Y. & Legein, C. (2007). Inorg. Chem. 46, 6148-6154.]; Lemmerer & Billing, 2010[Lemmerer, A. & Billing, D. G. (2010). CrystEngComm, 12, 1290-1301.]) and 2-bromo­ethyl­ammonium bromide as a side product. However, these perovskite materials also often manifest physical properties that are as well worth exploring.

In this study, we present the crystal structure analysis and Hirshfeld surface analysis of an organic–inorganic hybrid salt, C2H7BrN+Br. While this organic cation has previously been incorporated into various hybrid perovskite structures, its halide salt counterpart remains unexplored, representing a significant gap in analysis of these materials. Knowledge of its structure is also important for the phase analysis of studied aziridinium-based materials.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in a solvent-free form and consists of one organic cation and one bromide anion in the asymmetric unit (Fig. 1[link]). The backbone of the cation, N1, C2, C1, Br1, has a torsion angle of −64.8 (2)°, with the atoms positioned in a gauche conformation. The N1—C2 and C1—C2 bonds have lengths of 1.480 (3) and 1.513 (4) Å, respectively. These values are typical for protonated alk­ylamines and consistent with previous reports (Ishida, 2000[Ishida, H. (2000). Z. Naturforsch. Teil A, 55, 769-771.]). The C1—Br1 length is 1.953 (3) Å, which is also a typical value for C—X length in alkyl halides (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Tailor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Figure 1]
Figure 1
The asymmetric unit of 2-bromo­ethyl­ammonium bromide with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the hydrogen bond between the cation and anion.

3. Inter­molecular features

Fig. 2[link] shows a view of the structure along the b axis, which illustrates the inter­molecular organization through N—H⋯Br hydrogen bonds, revealing that each bromide anion is the acceptor of four contacts with NH3+ groups. Corresponding numerical data are given in Table 1[link]. Our analysis uncovered different patterns of hydrogen-bonding inter­actions. Specifically, N1—H1A⋯Br2 and N1—H1B⋯Br2i [symmetry code: (i) −x + 1, −y + 1, −z + 1] inter­actions demonstrate typical classical behavior, with angles of 156.1° and 156.2°, and DA distances of 3.3010 (19) Å and 3.381 (2) Å, respectively. In contrast, N1—H1C⋯Br2ii and N1—H1C⋯Br2iii [symmetry codes: (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]] contacts exhibit weaker inter­actions, with longer DA distances of 3.3904 (19) and 3.4292 (18) Å, and angles of 125.1° and 140.3°. Fig. 3[link] shows that the arrangement of cations and anions leads to the formation of double layers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br2 0.85 2.51 3.3010 (19) 156
N1—H1B⋯Br2i 0.85 2.59 3.381 (2) 156
N1—H1C⋯Br2ii 0.85 2.83 3.3904 (19) 125
N1—H1C⋯Br2iii 0.85 2.73 3.4292 (18) 140
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Projection of the crystal structure along the b axis, showing the hydrogen-bonding inter­actions with the anion being an acceptor of four N—H⋯Br hydrogen bonds.
[Figure 3]
Figure 3
Space-filling model of the title compound showing the organization into double layers extending parallel to (100).

4. Hirshfeld analysis

The inter­molecular inter­actions in 2-bromo­ethyl­ammonium bromide were analyzed using Hirshfeld surface calculations, employing CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Results are plotted over the dnorm range between −0.4077 and +1.2052 a.u. (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). A three-dimensional model of the Hirshfeld surface (Fig. 4[link]) highlights strong Br⋯H/H⋯Br contacts, exhibiting a cation volume of 103.45 Å, a surface area of 119.7 Å, a globularity of 0.890, and an asphericity of 0.059. Additionally, two-dimensional fingerprint plots were generated, illustrating all specific inter­molecular contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Fig. 5[link] shows Br⋯H/H⋯Br, Br⋯Br inter­actions, and all inter­actions present in the structure with meaningful inter­molecular contacts. In the crystal packing, Br⋯H inter­actions predominate, constituting 62.6% of the overall close atom contacts, while Br⋯Br inter­actions contribute with 2.6%, and H⋯H contacts account for 34.8%, indicating no additional inter­actions involving the heteroatoms.

[Figure 4]
Figure 4
Three-dimensional model of the Hirshfeld surface for 2-bromo­ethyl­ammonium bromide mapped over dnorm, representing strong inter­molecular inter­actions. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of 2-bromo­ethyl­ammonium bromide showing (a) all inter­actions, (b) Br⋯H/H⋯Br and (c) Br⋯Br inter­actions (di and de are the closest inter­nal and external distances in Å on the Hirshfeld surface) and (d) their percentage contributions.

5. Synthesis and crystallization

All chemicals were purchased from Enamine Ltd (Kyiv, Ukraine) and used without any further purification. Aziridine (258.4 µl, 5 mmol) was added dropwise under stirring to 2 ml of conc. HBr, gradually heated to 353 K until water evaporation occurred and colorless crystals formed. The obtained crystals were left under Paratone(R) oil until the X-ray measurement.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed at calculated positions with Uiso(H) = 1.2Ueq(C,N). Hydrogens atom of CH2 group were included in idealized positions (C—H = 0.99 Å).

Table 2
Experimental details

Crystal data
Chemical formula C2H7BrN+·Br
Mr 204.91
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 7.8966 (4), 8.3394 (4), 9.0089 (4)
β (°) 100.546 (5)
V3) 583.24 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.75
Crystal size (mm) 0.15 × 0.05 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.451, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4504, 1453, 1242
Rint 0.024
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.04
No. of reflections 1453
No. of parameters 49
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.47
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-Bromoethylammonium bromide top
Crystal data top
C2H7BrN+·BrF(000) = 384
Mr = 204.91Dx = 2.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8966 (4) ÅCell parameters from 2526 reflections
b = 8.3394 (4) Åθ = 2.6–30.0°
c = 9.0089 (4) ŵ = 13.75 mm1
β = 100.546 (5)°T = 200 K
V = 583.24 (5) Å3Plate, clear intense colourless
Z = 40.15 × 0.05 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1453 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source1242 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.0000 pixels mm-1θmax = 30.3°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 1011
Tmin = 0.451, Tmax = 1.000l = 1212
4504 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.56 e Å3
1453 reflectionsΔρmin = 0.47 e Å3
49 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0055 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.62288 (3)0.21658 (3)0.52611 (2)0.02586 (10)
Br10.80287 (4)0.89002 (3)0.82138 (3)0.03709 (11)
N10.6130 (3)0.5414 (2)0.7338 (2)0.0252 (4)
H1A0.5825 (5)0.4579 (15)0.6819 (15)0.030*
H1B0.5747 (6)0.6239 (14)0.6835 (16)0.030*
H1C0.5728 (7)0.5380 (17)0.8149 (12)0.030*
C20.8034 (3)0.5490 (3)0.7706 (3)0.0265 (5)
H2A0.8484560.5754380.6780110.032*
H2B0.8489040.4424080.8061240.032*
C10.8670 (4)0.6727 (3)0.8908 (3)0.0333 (6)
H1D0.9939350.6654230.9189540.040*
H1E0.8177600.6493280.9819060.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.03128 (17)0.02218 (16)0.02435 (15)0.00045 (10)0.00574 (11)0.00179 (9)
Br10.02685 (18)0.03231 (18)0.0526 (2)0.00574 (11)0.00868 (13)0.00512 (11)
N10.0289 (12)0.0227 (10)0.0238 (10)0.0008 (9)0.0048 (9)0.0001 (8)
C20.0235 (14)0.0286 (13)0.0286 (12)0.0067 (11)0.0076 (10)0.0059 (10)
C10.0256 (15)0.0420 (15)0.0294 (13)0.0019 (13)0.0023 (11)0.0071 (11)
Geometric parameters (Å, º) top
Br1—C11.953 (3)C2—H2A0.9900
N1—H1A0.849 (12)C2—H2B0.9900
N1—H1B0.849 (12)C2—C11.513 (4)
N1—H1C0.849 (12)C1—H1D0.9900
N1—C21.480 (3)C1—H1E0.9900
H1A—N1—H1B109.5H2A—C2—H2B107.9
H1A—N1—H1C109.5C1—C2—H2A109.1
H1B—N1—H1C109.5C1—C2—H2B109.1
C2—N1—H1A109.5Br1—C1—H1D109.3
C2—N1—H1B109.5Br1—C1—H1E109.3
C2—N1—H1C109.5C2—C1—Br1111.77 (17)
N1—C2—H2A109.1C2—C1—H1D109.3
N1—C2—H2B109.1C2—C1—H1E109.3
N1—C2—C1112.4 (2)H1D—C1—H1E107.9
N1—C2—C1—Br164.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.852.513.3010 (19)156
N1—H1B···Br2i0.852.593.381 (2)156
N1—H1C···Br2ii0.852.833.3904 (19)125
N1—H1C···Br2iii0.852.733.4292 (18)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by the EURIZON project, which is funded by the European Union (grant No. 871072).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Tailor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Google Scholar
First citationBodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., Aebli, M., Mir, S. H., Masciocchi, N., Erni, R., Chakraborty, S., Guagliardi, A., Rainò, G. & Kovalenko, M. V. (2024). ACS Nano, 18, 5684–5697.  CAS PubMed Google Scholar
First citationDey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., Kshirsagar, A. S., Wang, Z., Yin, J., Wang, Y., Quan, L. N., Yan, F., Gao, M., Li, X., Shamsi, J., Debnath, T., Cao, M., Scheel, M. A., Kumar, S., Steele, J. A., Gerhard, M., Chouhan, L., Xu, K., Wu, X. G., Li, Y., Zhang, Y., Dutta, A., Han, C., Vincon, I., Rogach, A. L., Nag, A., Samanta, A., Korgel, B. A., Shih, C. J., Gamelin, D. R., Son, D. H., Zeng, H., Zhong, H., Sun, H., Demir, H. V., Scheblykin, I. G., Mora-Seró, I., Stolarczyk, J. K., Zhang, J. Z., Feldmann, J., Hofkens, J., Luther, J. M., Pérez-Prieto, J., Li, L., Manna, L., Bodnarchuk, M. I., Kovalenko, M. V., Roeffaers, M. B. J., Pradhan, N., Mohammed, O. F., Bakr, O. M., Yang, P., Müller-Buschbaum, P., Kamat, P. V., Bao, Q., Zhang, Q., Krahne, R., Galian, R. E., Stranks, S. D., Bals, S., Biju, V., Tisdale, W. A., Yan, Y., Hoye, R. L. Z. & Polavarapu, L. (2021). ACS Nano, 15, 10775–10981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHassan, Y., Park, J. H., Crawford, M. L., Sadhanala, A., Lee, J., Sadighian, J. C., Mosconi, E., Shivanna, R., Radicchi, E., Jeong, M., Yang, C., Choi, H., Park, S. H., Song, M. H., De Angelis, F., Wong, C. Y., Friend, R. H., Lee, B. R. & Snaith, H. J. (2021). Nature, 591, 72–77.  CrossRef CAS PubMed Google Scholar
First citationIshida, H. (2000). Z. Naturforsch. Teil A, 55, 769–771.  CAS Google Scholar
First citationKucheriv, O. I., Sirenko, V. Y., Petrosova, H. R., Pavlenko, V. A., Shova, S. & Gural'skiy, I. A. (2023). Inorg. Chem. Front. 10, 6953–6963.  CSD CrossRef CAS Google Scholar
First citationLemmerer, A. & Billing, D. G. (2010). CrystEngComm, 12, 1290–1301.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-K., Xu, W., Bai, S., Jin, Y., Wang, J., Friend, R. H. & Gao, F. (2021). Nat. Mater. 20, 10–21.  CrossRef CAS PubMed Google Scholar
First citationMączka, M., Ptak, M., Gągor, A., Zaręba, J. K., Liang, X., Balčiūnas, S., Semenikhin, O. A., Kucheriv, O. I., Gural'skiy, I. A., Shova, S., Walsh, A., Banys, J. & Šimėnas, M. (2023). Chem. Mater. 35, 9725–9738.  PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPetrosova, H. R., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2022). Chem. Commun. 58, 5745–5748.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSemenikhin, O. A., Kucheriv, O. I., Sacarescu, L., Shova, S. & Gural'skiy, I. A. (2023). Chem. Commun. 59, 3566–3569.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873–2883.  CSD CrossRef CAS Google Scholar
First citationSong, Z., Yu, B., Wei, J., Li, C., Liu, G. & Dang, Y. (2022). Inorg. Chem. 61, 6943–6952.  CSD CrossRef ICSD CAS PubMed Google Scholar
First citationSourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Buzaré, J.-Y. & Legein, C. (2007). Inorg. Chem. 46, 6148–6154.  CSD CrossRef PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefańska, D., Ptak, M. & Mączka, M. (2022). Molecules, 27, 7949–7960.  PubMed Google Scholar
First citationYoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y., Rotermund, F., Kim, Y.-K., Moon, C. S., Jeon, N. J., Correa-Baena, J.-P., Bulović, V., Shin, S. S., Bawendi, M. G. & Seo, J. (2021). Nature, 590, 587–593.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds