research communications
and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: alex.semenikhin@knu.ua
This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic P21/c, featuring one organic cation and one bromide anion in its with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts.
Keywords: crystal structure; Hirshfeld surface analysis; 2-bromoethylamine hydrobromide; hybrid perovskite.
CCDC reference: 2362029
1. Chemical context
Hybrid perovskites have emerged as a class of highly promising compounds for a wide array of applications in optoelectronics and photovoltaics due to their semiconducting properties. Among these, perovskites with a tri-periodic arrangement have garnered significant attention owing to their optimal bandgap width (Dey et al., 2021; Liu et al., 2021; Hassan et al., 2021; Yoo et al., 2021). Notably, the aziridinium cation (AzrH) has recently been shown to support such perovskite structures. In the form (AzrH)BX3 (B = Pb, Sn; X = Br, I; Petrosova et al., 2022; Kucheriv et al., 2023), these perovskites display promising physical properties (Mączka et al., 2023; Stefańska et al., 2022), and nanomaterials based on them offer potential for various applications (Semenikhin et al., 2023; Bodnarchuk et al., 2024).
The high reactivity of aziridine poses a synthetic challenge as it can undergo ring-opening in acidic environments, leading to the formation of perovskites with low periodicity such as (X(CH2)2NH3)2n(BX)4n (B = Pb, Sn; X = Br, I; Skorokhod et al., 2023; Song et al., 2022; Sourisseau et al., 2007; Lemmerer & Billing, 2010) and 2-bromoethylammonium bromide as a side product. However, these perovskite materials also often manifest physical properties that are as well worth exploring.
In this study, we present the 2H7BrN+Br−. While this organic cation has previously been incorporated into various hybrid perovskite structures, its halide salt counterpart remains unexplored, representing a significant gap in analysis of these materials. Knowledge of its structure is also important for the phase analysis of studied aziridinium-based materials.
analysis and Hirshfeld surface analysis of an organic–inorganic hybrid salt, C2. Structural commentary
The title compound crystallizes in a solvent-free form and consists of one organic cation and one bromide anion in the ). The backbone of the cation, N1, C2, C1, Br1, has a torsion angle of −64.8 (2)°, with the atoms positioned in a gauche conformation. The N1—C2 and C1—C2 bonds have lengths of 1.480 (3) and 1.513 (4) Å, respectively. These values are typical for protonated alkylamines and consistent with previous reports (Ishida, 2000). The C1—Br1 length is 1.953 (3) Å, which is also a typical value for C—X length in alkyl halides (Allen et al., 1987).
(Fig. 13. Intermolecular features
Fig. 2 shows a view of the structure along the b axis, which illustrates the intermolecular organization through N—H⋯Br hydrogen bonds, revealing that each bromide anion is the acceptor of four contacts with NH3+ groups. Corresponding numerical data are given in Table 1. Our analysis uncovered different patterns of hydrogen-bonding interactions. Specifically, N1—H1A⋯Br2 and N1—H1B⋯Br2i [symmetry code: (i) −x + 1, −y + 1, −z + 1] interactions demonstrate typical classical behavior, with angles of 156.1° and 156.2°, and D⋯A distances of 3.3010 (19) Å and 3.381 (2) Å, respectively. In contrast, N1—H1C⋯Br2ii and N1—H1C⋯Br2iii [symmetry codes: (ii) x, −y + , z + ; (iii) −x + 1, y + , −z + ] contacts exhibit weaker interactions, with longer D⋯A distances of 3.3904 (19) and 3.4292 (18) Å, and angles of 125.1° and 140.3°. Fig. 3 shows that the arrangement of cations and anions leads to the formation of double layers.
4. Hirshfeld analysis
The intermolecular interactions in 2-bromoethylammonium bromide were analyzed using Hirshfeld surface calculations, employing CrystalExplorer (Spackman et al., 2021). Results are plotted over the dnorm range between −0.4077 and +1.2052 a.u. (Spackman & Jayatilaka, 2009). A three-dimensional model of the Hirshfeld surface (Fig. 4) highlights strong Br⋯H/H⋯Br contacts, exhibiting a cation volume of 103.45 Å, a surface area of 119.7 Å, a globularity of 0.890, and an asphericity of 0.059. Additionally, two-dimensional fingerprint plots were generated, illustrating all specific intermolecular contacts (McKinnon et al., 2007). Fig. 5 shows Br⋯H/H⋯Br, Br⋯Br interactions, and all interactions present in the structure with meaningful intermolecular contacts. In the crystal packing, Br⋯H interactions predominate, constituting 62.6% of the overall close atom contacts, while Br⋯Br interactions contribute with 2.6%, and H⋯H contacts account for 34.8%, indicating no additional interactions involving the heteroatoms.
5. Synthesis and crystallization
All chemicals were purchased from Enamine Ltd (Kyiv, Ukraine) and used without any further purification. Aziridine (258.4 µl, 5 mmol) was added dropwise under stirring to 2 ml of conc. HBr, gradually heated to 353 K until water evaporation occurred and colorless crystals formed. The obtained crystals were left under Paratone(R) oil until the X-ray measurement.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed at calculated positions with Uiso(H) = 1.2Ueq(C,N). Hydrogens atom of CH2 group were included in idealized positions (C—H = 0.99 Å).
details are summarized in Table 2Supporting information
CCDC reference: 2362029
https://doi.org/10.1107/S2056989024005619/wm5723sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024005619/wm5723Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024005619/wm5723Isup3.cml
C2H7BrN+·Br− | F(000) = 384 |
Mr = 204.91 | Dx = 2.334 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8966 (4) Å | Cell parameters from 2526 reflections |
b = 8.3394 (4) Å | θ = 2.6–30.0° |
c = 9.0089 (4) Å | µ = 13.75 mm−1 |
β = 100.546 (5)° | T = 200 K |
V = 583.24 (5) Å3 | Plate, clear intense colourless |
Z = 4 | 0.15 × 0.05 × 0.02 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 1453 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 1242 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 30.3°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) | k = −10→11 |
Tmin = 0.451, Tmax = 1.000 | l = −12→12 |
4504 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.028P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.56 e Å−3 |
1453 reflections | Δρmin = −0.47 e Å−3 |
49 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0055 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br2 | 0.62288 (3) | 0.21658 (3) | 0.52611 (2) | 0.02586 (10) | |
Br1 | 0.80287 (4) | 0.89002 (3) | 0.82138 (3) | 0.03709 (11) | |
N1 | 0.6130 (3) | 0.5414 (2) | 0.7338 (2) | 0.0252 (4) | |
H1A | 0.5825 (5) | 0.4579 (15) | 0.6819 (15) | 0.030* | |
H1B | 0.5747 (6) | 0.6239 (14) | 0.6835 (16) | 0.030* | |
H1C | 0.5728 (7) | 0.5380 (17) | 0.8149 (12) | 0.030* | |
C2 | 0.8034 (3) | 0.5490 (3) | 0.7706 (3) | 0.0265 (5) | |
H2A | 0.848456 | 0.575438 | 0.678011 | 0.032* | |
H2B | 0.848904 | 0.442408 | 0.806124 | 0.032* | |
C1 | 0.8670 (4) | 0.6727 (3) | 0.8908 (3) | 0.0333 (6) | |
H1D | 0.993935 | 0.665423 | 0.918954 | 0.040* | |
H1E | 0.817760 | 0.649328 | 0.981906 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.03128 (17) | 0.02218 (16) | 0.02435 (15) | 0.00045 (10) | 0.00574 (11) | −0.00179 (9) |
Br1 | 0.02685 (18) | 0.03231 (18) | 0.0526 (2) | −0.00574 (11) | 0.00868 (13) | −0.00512 (11) |
N1 | 0.0289 (12) | 0.0227 (10) | 0.0238 (10) | 0.0008 (9) | 0.0048 (9) | 0.0001 (8) |
C2 | 0.0235 (14) | 0.0286 (13) | 0.0286 (12) | 0.0067 (11) | 0.0076 (10) | 0.0059 (10) |
C1 | 0.0256 (15) | 0.0420 (15) | 0.0294 (13) | −0.0019 (13) | −0.0023 (11) | 0.0071 (11) |
Br1—C1 | 1.953 (3) | C2—H2A | 0.9900 |
N1—H1A | 0.849 (12) | C2—H2B | 0.9900 |
N1—H1B | 0.849 (12) | C2—C1 | 1.513 (4) |
N1—H1C | 0.849 (12) | C1—H1D | 0.9900 |
N1—C2 | 1.480 (3) | C1—H1E | 0.9900 |
H1A—N1—H1B | 109.5 | H2A—C2—H2B | 107.9 |
H1A—N1—H1C | 109.5 | C1—C2—H2A | 109.1 |
H1B—N1—H1C | 109.5 | C1—C2—H2B | 109.1 |
C2—N1—H1A | 109.5 | Br1—C1—H1D | 109.3 |
C2—N1—H1B | 109.5 | Br1—C1—H1E | 109.3 |
C2—N1—H1C | 109.5 | C2—C1—Br1 | 111.77 (17) |
N1—C2—H2A | 109.1 | C2—C1—H1D | 109.3 |
N1—C2—H2B | 109.1 | C2—C1—H1E | 109.3 |
N1—C2—C1 | 112.4 (2) | H1D—C1—H1E | 107.9 |
N1—C2—C1—Br1 | −64.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br2 | 0.85 | 2.51 | 3.3010 (19) | 156 |
N1—H1B···Br2i | 0.85 | 2.59 | 3.381 (2) | 156 |
N1—H1C···Br2ii | 0.85 | 2.83 | 3.3904 (19) | 125 |
N1—H1C···Br2iii | 0.85 | 2.73 | 3.4292 (18) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2. |
Funding information
Funding for this research was provided by the EURIZON project, which is funded by the European Union (grant No. 871072).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Tailor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19. CrossRef Google Scholar
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., Aebli, M., Mir, S. H., Masciocchi, N., Erni, R., Chakraborty, S., Guagliardi, A., Rainò, G. & Kovalenko, M. V. (2024). ACS Nano, 18, 5684–5697. CAS PubMed Google Scholar
Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., Kshirsagar, A. S., Wang, Z., Yin, J., Wang, Y., Quan, L. N., Yan, F., Gao, M., Li, X., Shamsi, J., Debnath, T., Cao, M., Scheel, M. A., Kumar, S., Steele, J. A., Gerhard, M., Chouhan, L., Xu, K., Wu, X. G., Li, Y., Zhang, Y., Dutta, A., Han, C., Vincon, I., Rogach, A. L., Nag, A., Samanta, A., Korgel, B. A., Shih, C. J., Gamelin, D. R., Son, D. H., Zeng, H., Zhong, H., Sun, H., Demir, H. V., Scheblykin, I. G., Mora-Seró, I., Stolarczyk, J. K., Zhang, J. Z., Feldmann, J., Hofkens, J., Luther, J. M., Pérez-Prieto, J., Li, L., Manna, L., Bodnarchuk, M. I., Kovalenko, M. V., Roeffaers, M. B. J., Pradhan, N., Mohammed, O. F., Bakr, O. M., Yang, P., Müller-Buschbaum, P., Kamat, P. V., Bao, Q., Zhang, Q., Krahne, R., Galian, R. E., Stranks, S. D., Bals, S., Biju, V., Tisdale, W. A., Yan, Y., Hoye, R. L. Z. & Polavarapu, L. (2021). ACS Nano, 15, 10775–10981. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hassan, Y., Park, J. H., Crawford, M. L., Sadhanala, A., Lee, J., Sadighian, J. C., Mosconi, E., Shivanna, R., Radicchi, E., Jeong, M., Yang, C., Choi, H., Park, S. H., Song, M. H., De Angelis, F., Wong, C. Y., Friend, R. H., Lee, B. R. & Snaith, H. J. (2021). Nature, 591, 72–77. CrossRef CAS PubMed Google Scholar
Ishida, H. (2000). Z. Naturforsch. Teil A, 55, 769–771. CAS Google Scholar
Kucheriv, O. I., Sirenko, V. Y., Petrosova, H. R., Pavlenko, V. A., Shova, S. & Gural'skiy, I. A. (2023). Inorg. Chem. Front. 10, 6953–6963. CSD CrossRef CAS Google Scholar
Lemmerer, A. & Billing, D. G. (2010). CrystEngComm, 12, 1290–1301. Web of Science CSD CrossRef CAS Google Scholar
Liu, X.-K., Xu, W., Bai, S., Jin, Y., Wang, J., Friend, R. H. & Gao, F. (2021). Nat. Mater. 20, 10–21. CrossRef CAS PubMed Google Scholar
Mączka, M., Ptak, M., Gągor, A., Zaręba, J. K., Liang, X., Balčiūnas, S., Semenikhin, O. A., Kucheriv, O. I., Gural'skiy, I. A., Shova, S., Walsh, A., Banys, J. & Šimėnas, M. (2023). Chem. Mater. 35, 9725–9738. PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Petrosova, H. R., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2022). Chem. Commun. 58, 5745–5748. CSD CrossRef CAS Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Semenikhin, O. A., Kucheriv, O. I., Sacarescu, L., Shova, S. & Gural'skiy, I. A. (2023). Chem. Commun. 59, 3566–3569. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873–2883. CSD CrossRef CAS Google Scholar
Song, Z., Yu, B., Wei, J., Li, C., Liu, G. & Dang, Y. (2022). Inorg. Chem. 61, 6943–6952. CSD CrossRef ICSD CAS PubMed Google Scholar
Sourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Buzaré, J.-Y. & Legein, C. (2007). Inorg. Chem. 46, 6148–6154. CSD CrossRef PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stefańska, D., Ptak, M. & Mączka, M. (2022). Molecules, 27, 7949–7960. PubMed Google Scholar
Yoo, J. J., Seo, G., Chua, M. R., Park, T. G., Lu, Y., Rotermund, F., Kim, Y.-K., Moon, C. S., Jeon, N. J., Correa-Baena, J.-P., Bulović, V., Shin, S. S., Bawendi, M. G. & Seo, J. (2021). Nature, 590, 587–593. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.