research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and photophysical properties of a dinuclear MnII complex with 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline

crossmark logo

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 June 2024; accepted 21 June 2024; online 28 June 2024)

A new quinoline derivative, namely, 6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-di­chlorido-1κCl,2κCl-bis­[6-(di­ethyl­amino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water mol­ecule, resulting in a distorted octa­hedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell. These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Among heterocyclic compounds, quinoline derivatives are of great inter­est because they have many inter­esting properties in terms of both biological and photophysical properties. For example, compounds consisting of quinine, chloro­quine, amidiaquine and primaquine have anti­malarial activity; 8-hy­droxy­quinoline is used to produce pesticides; some derivatives of quinoline are capable of emitting visible light (Sales et al., 2015[Sales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G. & Merlo, A. A. (2015). J. Braz. Chem. Soc. 26, 562-571.]; dos Santos et al., 2017[Santos, G. C. dos, Servilha, R. O., de Oliveira, E. F., Lavarda, F. C., Ximenes, V. F. & da Silva-Filho, L. C. (2017). J. Fluoresc. 27, 1709-1720.]). Currently, quinoline derivatives synthesized from multicomponent reactions including an aniline derivative, an aldehyde and a phenyl­alkyne with green catalysts are a trend that is receiving more attention due to a one-pot reaction with high yields. Moreover, by changing substituents in the components, it is possible to create many new derivatives of quinoline containing both aryl rings and long π-conjugation systems, and their application can be expanded (Sales et al., 2015[Sales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G. & Merlo, A. A. (2015). J. Braz. Chem. Soc. 26, 562-571.]; Sharghi et al., 2016[Sharghi, H., Aberi, M. & Aboonajmi, J. (2016). J. Iran. Chem. Soc. 13, 2229-2237.]). There are also many quinoline derivatives that have some inter­esting photophysical properties such as metal-ion recognition (Wang et al., 2020[Wang, J.-T., Pei, Y.-Y., Yan, M.-Y., Li, Y.-G., Yang, G.-G., Qu, C.-H., Luo, W., Wang, J. & Li, Q.-F. (2020). Microchem. J., Part B, 160, 105776.]; Hojitsiriyanont et al., 2021[Hojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K. & Sukwattanasinitt, M. (2021). J. Photochem. Photobiol. Chem. 415, 113307.]; Mohanasundaram et al., 2021[Mohanasundaram, D., Bhaskar, R., Gangatharan Vinoth Kumar, G., Rajesh, J. & Rajagopal, G. (2021). Microchem. J. 164, 106030.]) or aggregation-induced emission (AIE) properties (Zhang et al., 2019[Zhang, L., Wang, Y.-F., Li, M., Gaop, Q.-Y. & Chen, C.-F. (2019). Chin. Chem. Lett. 32, 740-744.]; Shen et al., 2021[Shen, Y., Li, M., Zhao, W., Wang, Y., Lu, H. & Chen, C. (2021). Mater. Chem. Front. 5, 834-842.]; Hussain et al., 2022[Hussain, S., Muhammad Junaid, H., Tahir Waseem, M., Rauf, W., Jabbar Shaikh, A. & Anjum Shahzad, S. (2022). Spectrochim. Acta A Mol. Biomol. Spectrosc. 272, 121021.]). In addition, some quinoline derivatives have been designed that contain electron-donating atoms, N,N-donor ligands, capable of forming chelate complexes with transition-metal ions. Complexes of this type of ligands not only have more diverse structures, but also a large number of superior properties compared to the free ligands, such as higher anti­cancer activities (Shakir et al., 2015[Shakir, M., Hanif, S., Sherwani, M. A., Mohammad, O. & Al-Resayes, S. I. (2015). J. Mol. Struct. 1092, 143-159.]; Wang et al., 2017[Wang, F.-Y., Xi, Q.-Y., Huang, K.-B., Tang, X.-M., Chen, Z.-F., Liu, Y.-C. & Liang, H. (2017). J. Inorg. Biochem. 169, 23-31.]; Hu et al., 2018[Hu, K., Liu, C., Li, J. & Liang, F. (2018). Med. Chem. Commun. 9, 1663-1672.]) or better optical properties (Pathaw et al., 2021[Pathaw, L., Maheshwaran, D., Nagendraraj, T., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2021). Inorg. Chim. Acta, 514, 119999.]).

[Scheme 1]

In this report, a new quinoline derivative, 6-(N,N-di­ethyl­amine)-4-phenyl-2(pyridin-2-yl)quinoline (QP), was synthesized via a one-pot reaction involving 4-N,N-di­ethylamine­aniline, pyridine-2-carbaldehyde and phenyl­acetyl­ene. The green catalyst used in this synthesis was montmorillonite (K-10; Fig. 1[link]). For this compound, two electron-withdrawing groups – pyridine and phenyl – were introduced at positions C2 and C4 of the quinoline ring. In addition, an electron-donating group, N,N-di­ethyl­amino (–NEt2), was also incorporated to create an electron push–pull effect. This effect contributes to an intra­molecular charge transfer (ICT) during excitation via photon absorption. Furthermore, the organic compound contains two N-donor atoms from the quinoline and pyridine rings. As a result, the ligand can form five-membered ring chelate complexes with transition-metal ions. More specifically, MnII, with a d5 semi-saturated electronic configuration, is able to form complexes with various coord­ination numbers, ranging from 4 to 7 (Jin et al., 2011[Jin, J., Xu, W., Jia, M.-J., Zhao, J.-J., Yu, J.-H. & Xu, J.-Q. (2011). Inorg. Chim. Acta, 378, 72-80.]; Li et al., 2011[Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 276302772.]; Konar et al., 2011[Konar, S., Jana, A., Das, K., Ray, S., Chatterjee, S., Golen, J. A., Rheingold, A. L. & Kar, S. K. (2011). Polyhedron, 30, 2801-2808.]; Wang et al., 2017[Wang, F.-Y., Xi, Q.-Y., Huang, K.-B., Tang, X.-M., Chen, Z.-F., Liu, Y.-C. & Liang, H. (2017). J. Inorg. Biochem. 169, 23-31.]; Sääsk et al., 2024[Sääsk, V., Chen, Y.-A., Huang, T.-F., Ting, L.-Y., Luo, T.-A., Fujii, S., Põhako-Esko, K., Yoshida, M., Kato, M., Wu, T.-L. & Chou, H.-H. (2024). Eur. J. Inorg. Chem. 27, e202300562.]). Therefore, when MnII inter­acts with the QP ligand, mononuclear and polynuclear complexes with different coordination numbers can be expected. The structure of the product complex, referred to as MnQP, was determined using single-crystal X-ray diffraction. Furthermore, the photophysical and aggregation-induced emission (AIE) properties of both QP and MnQP were investigated using UV–vis absorption and emission spectra.

[Figure 1]
Figure 1
Synthesis scheme of QP and title compound MnQP.

2. Structural commentary

MnQP crystallizes in the triclinic space group P[\overline{1}] with one complex mol­ecule in the asymmetric unit (Fig. 2[link]). The complex contains two MnII atoms, two QP ligands (denoted A and B, containing atoms N1 and N4, respectively), four chlorine atoms and one water mol­ecule. Chlorine atom Cl1 is disordered over two positions with a refined occupancy ratio of Cl1A:Cl1B = 0.680 (8):0.320 (8). For the disordered ethyl group C34–C35, the occupancy ratio refined to 0.878 (4):0.122 (4). The crystal structure contains disordered solvent mol­ecules, which could not be modeled. The SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used to obtain information on the type and qu­antity of solvent mol­ecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 mol­ecules of ethanol in the unit cell.

[Figure 2]
Figure 2
The mol­ecular structure of MnQP with complete labeling of non-hydrogen atoms. Displacement ellipsoids are shown at the 30% probability level. For the Cl atom Cl1 and ethyl group C34–C35, only the part with the higher occupancy is shown.

Two bridging chlorine atoms (Cl2, Cl3) connect the two central MnII atoms to form a four-membered rhomb-shaped ring. The metal⋯metal distance is 3.7412 (6) Å. Both MnII atoms have a different coordination environment, fivefold for Mn1 and sixfold for Mn2. The coordination sphere of Mn1 is best described as distorted trigonal–bipyramidal. The equatorial positions are occupied by nitro­gen atom N3 at a distance of 2.215 (2) Å, and two chlorine atoms Cl1 and Cl3 at distances of, respectively, 2.382 (2) (for Cl1A), 2.337 (4) (for Cl1B) and 2.4501 (8) Å. The axial positions are occupied by chlorine atom Cl2 at a distance of 2.4974 (7) Å and nitro­gen atom N1 at a distance of 2.286 (2) Å. The Mn2 ion exhibits a distorted octa­hedral coordination sphere, with the equatorial plane formed by three chlorine atoms Cl2, Cl3 and Cl4 at distances of 2.6269 (8), 2.5838 (8) and 2.4354 (8) Å, respectively, and one nitro­gen atom N6, at a distance of 2.257 (2) Å. One axial position is occupied by water oxygen atom O1 at a distance of 2.213 (2) Å, the other by nitro­gen atom N4 at a distance of 2.3087 (19) Å.

The planar quinoline ring in ligand A (r.m.s. deviation = 0.014 Å) makes a dihedral angle of 9.46 (8)° with pyridine ring N3/C20–C24 and 54.84 (10)° with phenyl ring C14–C19. In ligand B, the quinoline ring (r.m.s. deviation = 0.061 Å) makes a significantly larger dihedral angle with the pyridine ring N6/C44–C48 [23.39 (7)°] and a smaller one with phenyl ring C38–C43 [50.15 (8)°]. The two quinoline rings are mutually inclined at an angle of 53.07 (6)°. The sum of the bond angles around N2 [358.0 (5)°] and N5 [360.0 (3)°] indicate sp2 hybridization.

3. Supra­molecular features

The crystal packing of MnQP is characterized by C—H⋯Cl and C—H⋯π inter­actions. Inversion dimers are formed by C12—H12A⋯Cl1B and C45—H45⋯Cl4 inter­actions. Both dimers are part of slabs forming chains parallel to the a axis through C23—H23⋯Cl3 inter­actions (Fig. 3[link], Table 1[link]). The packing is further stabilized by four different types of C—H⋯π inter­actions (Fig. 4[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1Cg4 are the centroids of the C1–C6, C38–C43, N3/C20–C24 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Cl1Bi 0.97 2.81 3.734 (7) 158
C23—H23⋯Cl3ii 0.93 2.74 3.567 (3) 149
C45—H45⋯Cl4iii 0.93 2.69 3.563 (3) 157
C11—H11ACg1i 0.96 2.97 3.585 (4) 123
C21—H21⋯Cg2iv 0.93 2.89 3.642 (3) 139
C36—H36BCg3iv 0.97 2.96 3.845 (3) 153
C35B—H35DCg4iv 0.96 2.84 3.45 (2) 122
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [x+1, y, z]; (iii) [-x, -y+2, -z+1]; (iv) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Packing diagram for MnQP showing C—H⋯Cl inter­actions (green lines) between mol­ecules. For clarity, only those H atoms involved in hydrogen bonding are shown. Symmetry codes are given in Table 1[link].
[Figure 4]
Figure 4
Packing diagram for MnQP showing the C—H⋯π inter­actions (orange lines) between mol­ecules. For clarity, only those H atoms involved in the inter­actions are shown. Symmetry codes are given in Table 1[link].

The hydrogen atoms of water mol­ecule O1 are not involved in hydrogen-bonding inter­actions. Significant ππ stacking inter­actions between rings of neighboring mol­ecules were not observed in this structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 347 compounds incorporating a four-membered Mn2Cl2 moiety. Of these compounds, 115 also have two N atoms that bond to the each MnII atom. The number of similar compounds further reduces to 69 when each MnII atom bonds to an additional Cl atom. Adding an additional O atom to one of the MnII atoms results in 12 complexes, all of which exhibit a coordination number of six with a distorted octa­hedral coordination environment for both MnII atoms, and a (pseudo) inversion center at the center of the Mn2Cl2 ring. For four complexes, the O atom is part of a water mol­ecule, where the Mn—O distance varies between 2.141 and 2.274 Å [2.323 (2) Å in MnQP].

5. Photophysical properties

The UV–vis absorption and emission spectra of QP and MnQP (10 µM in THF) are shown in Fig. 5[link] and numerical data in Table 2[link]. In the UV–vis spectra (Fig. 5[link]a), both QP and MnQP exhibit three absorption bands with maxima at 294 nm, 351 nm, and 405 nm. These bands are attributed to the nπ* and ππ* transitions of the fused aromatic heterocycle. In the emission spectra (Fig. 5[link]b), both the ligand and the complex emit light with a band at 472 nm, corresponding to blue light. Although the maximum absorption and emission wavelength do not change significantly between the ligand and the complex, the emission intensity of the complex is higher than that of the free ligand. This enhancement can be explained by the d5 electronic configuration of the central MnII ion, which forbids absorption of radiation in the visible range according to the Laporte rules. Additionally, the coordination of MnII with the ligand through two heterocyclic N atoms reduces rotation of the pyridine ring, leading to an increase in emission intensity from 55338 a.u. to 83395 a.u. compared to the free ligand.

Table 2
Photophysical data for QP and MnQP (in THF, 10 µM)

Compound Absorption Emission   Stokes shift
  λABS(nm) / ɛ (10−3 M−1.cm−1) λem (nm) Intensity (a.u.) Δν (cm−1)
QP 294 (21); 351 (10); 405 (11) 472 55338 7303
MnQP 294 (36); 351 (18); 405 (19) 472 83395 7340
[Figure 5]
Figure 5
(a) UV–vis absorption and (b) emission spectra of QP and MnQP (10 µM in THF, λex = 360 nm).

The aggregation-induced emission (AIE) properties of QP and MnQP were investigated by recording photoluminescence (PL) spectra in THF/water mixtures with different water fractions (fw) at a concentration of 10 µM. The results show that their fluorescent color changes from blue to green and finally turns yellow under 365 nm UV light when the water fraction increases from 0% to 99%. For the QP ligand, the color and intensity changes are most pronounced at a 60% water ratio (see Fig. S6 in the electronic supporting information, ESI), and the same trend is observed for the MnQP complex (Fig. 6[link]). This behavior can be explained by the following factors. As the water fraction in the THF–water mixture increases, the solubility of both the ligand and the complex decreases. This reduction in solubility leads to shorter distances between mol­ecules, which in turn promotes ππ inter­actions between adjacent mol­ecules. This inter­action changes the electron density within the mol­ecules, resulting in changes in the emission peak and intensity (Hong et al., 2009[Hong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332-4353.]).

[Figure 6]
Figure 6
(a) Emission spectra and (b) fluorescent color change of MnQP with a concentration of 10 µM in different fractions of water in a THF–water mixture.

6. Synthesis and crystallization

Synthesis of 6-(N,N-di­ethyl­amine)-4-phenyl-2(pyridin-2-yl)quinoline (QP)

To a mixture of 4-N,N-di­ethyl­amine­aniline (196.8 mg, 1.2 mmol), pyridine-2-carbaldehyde (128.4 mg, 1.2 mmol), and phenyl­acetyl­ene (102.0 mg, 1.0 mmol) were added montmorillonite (K-10) (500 mg) and chloro­form (1 ml). The resulting reaction mixture was stirred continuously at 373 K. After 24 h, the reaction mixture was cooled down to room temperature, and extracted three times with ethyl­acetate/water (v/v = 1:1). The collected organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure using a rotatory evaporator to remove the solvent. The residue was then adsorbed on silicagel and purified by silica gel column chromatography with ethyl­ acetate/n-hexane (v/v = 1:10) to obtain QP as a dark-orange solid. The isolated yield of this cyclization reaction is 65%. The product is moderately soluble in ethanol, THF, CHCl3, and DMSO. ESI–MS: 356.3 (100%) = [QP + H]+. 1H NMR (600 MHz, CDCl3, δ ppm): 1.16 (6H, 3J = 7.2 Hz, t, 2 CH3), 3.80 (4H, 3J = 7.2 Hz, q, 2 CH2), 6.90 (1H, 4J = 3.0 Hz, d, Ar-H), 7.27 (1H, 3J = 6.0 Hz, 4J = 1.2 Hz, td, Ar-H), 7.32 (1H, 3J = 9.6 Hz, 4J = 3.0 Hz, dd, Ar-H), 7.45 (1H, 3J = 7.2 Hz, d, Ar-H), 7.49 (2H, 3J = 6.6 Hz, t, Ar-H), 7.60 (2H, 3J = 7.2 Hz, d, Ar-H), 7.82 (1H, 3J = 7.8 Hz, 4J = 1.8 Hz, td, Ar-H), 8.07 (1H, 3J = 9.6 Hz, d, Ar-H), 8.35 (1H, s, Ar-H), 8.59 (1H, 3J = 7.8 Hz, d, Ar-H), 8.67 (1H, 3J = 6.0 Hz, d, Ar-H). IR (KBr, cm−1): 2965 (νC—H ar­yl), 1615, 1585 (νC=C ar­yl), 1504, 1435 (νC=N ar­yl).

ESI–MS, FT–IR and 1H NMR spectra of QP are given in Figs. S1, S2 and S3, respectively, in the ESI.

Synthesis of [Mn2(QP)2Cl4(H2O)] (MnQP)

MnCl2·2H2O (35.64 mg, 0.22 mmol) was added to a QP solution (70.6 mg, 0.2 mmol in 3 ml of ethanol). The resulting mixture was stirred continuously at room temperature for 3 h and became dark yellow. The solution was evaporated slowly for 48 h to obtain yellow crystals of MnQP. The crystals were then filtered and washed with acetone. The yield was about 52%. The crystals are moderately soluble in ethanol, THF, CHCl3 and DMSO. ESI–MS: 729.3 (65%) = [Mn2(QP)2Cl4(H2O)-QP+2DMSO-H2O-H]+; 937.8 (20%) = [Mn2(QP)2Cl4(H2O)-Cl]+. IR (KBr, cm−1): 3407 (νO—H H2O), 2971 (νC—H ar­yl), 1614, 1599 (νC=C ar­yl), 1506, 1483 (νC=N ar­yl).

ESI–MS and FT–IR spectra of MnQP are given in Figs. S4 and S5, respectively, in the ESI.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) (1.5 for methyl groups). The Cl1 atom and ethyl group C34–C35 were found to be disordered over two positions with refined occupancies of 0.680 (8) and 0.320 (8) for Cl1, and 0.878 (4) and 0.122 (4) for ethyl group C34–C35. The H atoms of the water mol­ecule were located in a difference electron-density map and refined with Uiso(H) = 1.5Ueq(O) and O—H distances restrained to 0.82 Å. RIGU and DELU restraints were used for atoms N2, Cl2 and Cl3 to impose reasonable relative motion of these atoms. Additional electron density was localized in voids (274 Å3 total potential accessible volume) summing up to 44 electrons, which corresponds to approximately 1.7 mol­ecules of ethanol per unit cell. The electron density associated with the disordered ethanol mol­ecules was removed with the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). These ethanol mol­ecules are not considered in the given chemical formula and other crystal data.

Table 3
Experimental details

Crystal data
Chemical formula [Mn2Cl4(C24H23N3)2(H2O)]
Mr 976.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 8.7491 (2), 13.2133 (3), 21.3793 (5)
α, β, γ (°) 88.914 (2), 82.290 (2), 88.989 (2)
V3) 2448.48 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.4 × 0.15 × 0.05
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.606, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 50282, 9973, 7946
Rint 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 0.86
No. of reflections 9973
No. of parameters 560
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.47
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Aqua-1κO-di-µ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II) top
Crystal data top
[Mn2Cl4(C24H23N3)2(H2O)]Z = 2
Mr = 976.60F(000) = 1008
Triclinic, P1Dx = 1.325 Mg m3
a = 8.7491 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2133 (3) ÅCell parameters from 20239 reflections
c = 21.3793 (5) Åθ = 3.6–27.7°
α = 88.914 (2)°µ = 0.78 mm1
β = 82.290 (2)°T = 294 K
γ = 88.989 (2)°Plate, yellow
V = 2448.48 (10) Å30.4 × 0.15 × 0.05 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
9973 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source7946 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 15.9566 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 1616
Tmin = 0.606, Tmax = 1.000l = 2626
50282 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0889P)2 + 2.333P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
9973 reflectionsΔρmax = 0.86 e Å3
560 parametersΔρmin = 0.47 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.35314 (5)0.65406 (3)0.22302 (2)0.03955 (12)
Cl1A0.3891 (5)0.7046 (2)0.11458 (10)0.0598 (4)0.680 (8)
Cl1B0.3379 (8)0.7186 (4)0.1215 (2)0.0598 (4)0.320 (8)
O10.0739 (3)0.8996 (2)0.25271 (12)0.0689 (7)
H1A0.101 (5)0.9574 (15)0.243 (2)0.103*
H1B0.072 (6)0.866 (3)0.2203 (14)0.103*
N10.3023 (2)0.49080 (16)0.20012 (10)0.0365 (5)
C10.1824 (3)0.4612 (2)0.17034 (12)0.0383 (5)
Mn20.17320 (4)0.84639 (3)0.33759 (2)0.03688 (12)
Cl20.44135 (8)0.81104 (5)0.26973 (3)0.04346 (16)
N20.1917 (3)0.3857 (2)0.07467 (15)0.0666 (8)
C20.0623 (3)0.5316 (2)0.16218 (14)0.0482 (7)
H20.0661620.5965710.1778750.058*
Cl30.12894 (9)0.66307 (6)0.30488 (4)0.0539 (2)
N30.5448 (2)0.55925 (16)0.25097 (10)0.0388 (5)
C30.0584 (3)0.5064 (2)0.13192 (14)0.0506 (7)
H30.1353080.5545300.1275410.061*
Cl40.25143 (9)1.01982 (6)0.35077 (4)0.05338 (19)
N40.1805 (2)0.79905 (15)0.44166 (9)0.0314 (4)
C40.0703 (3)0.4089 (2)0.10692 (13)0.0475 (7)
N50.6580 (3)0.5855 (2)0.53537 (11)0.0541 (6)
C50.0438 (3)0.3380 (2)0.11605 (13)0.0461 (6)
H50.0358320.2725450.1017290.055*
N60.0657 (2)0.86758 (16)0.39068 (10)0.0374 (5)
C60.1720 (3)0.36243 (19)0.14655 (12)0.0379 (5)
C70.2938 (3)0.29213 (19)0.15545 (12)0.0391 (6)
C80.4082 (3)0.32372 (19)0.18789 (12)0.0392 (6)
H80.4853930.2780360.1961200.047*
C90.4120 (3)0.42339 (19)0.20908 (11)0.0360 (5)
C100.3167 (4)0.4582 (3)0.06752 (15)0.0582 (8)
H10A0.3384720.4969870.1058470.070*
H10B0.4088430.4212130.0624180.070*
C110.2811 (5)0.5301 (3)0.01241 (18)0.0830 (12)
H11A0.2601190.4924050.0258180.125*
H11B0.1925470.5691330.0179300.125*
H11C0.3680050.5746730.0099020.125*
C120.1760 (5)0.2956 (3)0.0310 (2)0.0854 (12)
H12A0.2256580.3115670.0060070.103*
H12B0.0676250.2818120.0170030.103*
C130.2449 (7)0.2072 (4)0.0624 (3)0.128 (2)
H13A0.1992800.1932340.1000730.192*
H13B0.2277400.1503910.0348070.192*
H13C0.3537850.2188540.0731760.192*
C140.3028 (3)0.1878 (2)0.12996 (13)0.0426 (6)
C150.3031 (4)0.1708 (2)0.06598 (16)0.0604 (8)
H150.2875520.2247990.0388940.073*
C160.3263 (5)0.0746 (3)0.04233 (19)0.0793 (12)
H160.3258460.0641600.0005390.095*
C170.3502 (5)0.0066 (3)0.0820 (2)0.0773 (11)
H170.3654770.0714990.0659660.093*
C180.3512 (4)0.0093 (2)0.14495 (19)0.0652 (9)
H180.3680460.0448990.1716900.078*
C190.3273 (3)0.1054 (2)0.16911 (15)0.0509 (7)
H190.3275610.1151590.2120650.061*
C200.5421 (3)0.45903 (19)0.24069 (11)0.0351 (5)
C210.6551 (3)0.3940 (2)0.25902 (14)0.0480 (7)
H210.6514410.3248750.2520790.058*
C220.7730 (3)0.4332 (3)0.28766 (16)0.0555 (8)
H220.8495730.3906170.3000530.067*
C230.7765 (3)0.5349 (2)0.29771 (15)0.0519 (7)
H230.8551420.5625030.3168730.062*
C240.6613 (3)0.5953 (2)0.27886 (14)0.0470 (6)
H240.6638140.6645090.2856890.056*
C250.3019 (3)0.75430 (18)0.46657 (11)0.0312 (5)
C260.4121 (3)0.6987 (2)0.42594 (12)0.0388 (6)
H260.4047690.6978170.3829540.047*
C270.5282 (3)0.6468 (2)0.44870 (12)0.0435 (6)
H270.5992060.6112440.4207300.052*
C280.5450 (3)0.6448 (2)0.51415 (12)0.0402 (6)
C290.4400 (3)0.70200 (19)0.55394 (11)0.0361 (5)
H290.4504400.7039670.5966230.043*
C300.3186 (3)0.75706 (17)0.53179 (11)0.0314 (5)
C310.2053 (3)0.81444 (18)0.57144 (11)0.0313 (5)
C320.0798 (3)0.85298 (18)0.54550 (11)0.0336 (5)
H320.0019340.8873260.5709440.040*
C330.0682 (3)0.84097 (17)0.48098 (11)0.0318 (5)
C34A0.7695 (5)0.5291 (3)0.49221 (17)0.0598 (4)0.878 (4)
H34A0.7168800.4958130.4613320.072*0.878 (4)
H34B0.8194560.4773940.5155250.072*0.878 (4)
C35A0.8880 (5)0.5987 (3)0.45924 (17)0.0598 (4)0.878 (4)
H35A0.8379500.6517350.4378840.090*0.878 (4)
H35B0.9571780.5614860.4290560.090*0.878 (4)
H35C0.9451560.6277780.4896120.090*0.878 (4)
C34B0.8079 (18)0.5859 (16)0.4945 (10)0.0598 (4)0.122 (4)
H34C0.8907750.5893820.5203090.072*0.122 (4)
H34D0.8134260.6449310.4666870.072*0.122 (4)
C35B0.826 (3)0.4903 (17)0.4557 (9)0.0598 (4)0.122 (4)
H35D0.8283820.4322660.4832900.090*0.122 (4)
H35E0.9209300.4927810.4272290.090*0.122 (4)
H35F0.7411170.4853050.4319110.090*0.122 (4)
C360.6734 (4)0.5767 (2)0.60222 (14)0.0530 (7)
H36A0.7222570.5119400.6098110.064*
H36B0.5710340.5765150.6261120.064*
C370.7654 (5)0.6594 (3)0.62720 (18)0.0799 (11)
H37A0.8639500.6644670.6016280.120*
H37B0.7799850.6433940.6700010.120*
H37C0.7103720.7227410.6257970.120*
C380.2191 (3)0.83535 (18)0.63866 (11)0.0345 (5)
C390.3567 (3)0.8713 (2)0.65593 (12)0.0405 (6)
H390.4432950.8765520.6257390.049*
C400.3653 (4)0.8991 (2)0.71739 (14)0.0514 (7)
H400.4569510.9240700.7280970.062*
C410.2390 (4)0.8900 (3)0.76260 (14)0.0613 (9)
H410.2451250.9084510.8039440.074*
C420.1030 (4)0.8535 (3)0.74660 (14)0.0589 (8)
H420.0178510.8463130.7773700.071*
C430.0927 (3)0.8274 (2)0.68500 (13)0.0456 (6)
H430.0002340.8042390.6745050.055*
C440.0744 (3)0.87005 (18)0.45391 (12)0.0338 (5)
C450.2125 (3)0.8899 (2)0.49184 (13)0.0416 (6)
H450.2158000.8934480.5354070.050*
C460.3456 (3)0.9044 (2)0.46411 (15)0.0480 (7)
H460.4395400.9167700.4889220.058*
C470.3376 (3)0.9002 (2)0.39932 (15)0.0495 (7)
H470.4255720.9091210.3796250.059*
C480.1953 (3)0.8826 (2)0.36457 (14)0.0486 (7)
H480.1890550.8809830.3208330.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0468 (2)0.0371 (2)0.0362 (2)0.00307 (17)0.01036 (17)0.00673 (16)
Cl1A0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
Cl1B0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
O10.0712 (16)0.0835 (19)0.0555 (14)0.0005 (14)0.0230 (12)0.0105 (13)
N10.0404 (11)0.0364 (11)0.0340 (10)0.0031 (9)0.0089 (9)0.0066 (8)
C10.0423 (14)0.0410 (14)0.0331 (12)0.0003 (11)0.0100 (10)0.0046 (10)
Mn20.0388 (2)0.0400 (2)0.0325 (2)0.00306 (16)0.00725 (15)0.00383 (15)
Cl20.0467 (4)0.0396 (3)0.0439 (3)0.0031 (3)0.0039 (3)0.0069 (3)
N20.0637 (17)0.0703 (19)0.0751 (19)0.0021 (14)0.0430 (15)0.0104 (14)
C20.0512 (16)0.0470 (16)0.0492 (16)0.0089 (13)0.0165 (13)0.0126 (13)
Cl30.0507 (4)0.0526 (4)0.0563 (4)0.0139 (3)0.0052 (3)0.0198 (3)
N30.0409 (12)0.0381 (12)0.0386 (11)0.0021 (9)0.0085 (9)0.0060 (9)
C30.0471 (16)0.0583 (18)0.0496 (16)0.0115 (13)0.0185 (13)0.0098 (13)
Cl40.0548 (4)0.0441 (4)0.0592 (4)0.0025 (3)0.0015 (3)0.0111 (3)
N40.0322 (10)0.0324 (10)0.0304 (10)0.0026 (8)0.0067 (8)0.0021 (8)
C40.0497 (16)0.0528 (17)0.0427 (15)0.0033 (13)0.0154 (12)0.0023 (12)
N50.0552 (15)0.0649 (16)0.0421 (13)0.0296 (12)0.0104 (11)0.0019 (11)
C50.0550 (17)0.0411 (15)0.0457 (15)0.0044 (12)0.0185 (13)0.0030 (12)
N60.0354 (11)0.0375 (11)0.0412 (12)0.0032 (9)0.0121 (9)0.0008 (9)
C60.0451 (14)0.0363 (13)0.0331 (12)0.0010 (11)0.0083 (10)0.0004 (10)
C70.0478 (15)0.0351 (13)0.0354 (13)0.0021 (11)0.0089 (11)0.0007 (10)
C80.0441 (14)0.0345 (13)0.0405 (13)0.0018 (11)0.0110 (11)0.0000 (10)
C90.0411 (13)0.0367 (13)0.0308 (12)0.0019 (10)0.0068 (10)0.0013 (10)
C100.0467 (17)0.077 (2)0.0538 (18)0.0056 (15)0.0180 (14)0.0053 (16)
C110.088 (3)0.102 (3)0.060 (2)0.006 (2)0.014 (2)0.018 (2)
C120.088 (3)0.093 (3)0.087 (3)0.010 (2)0.054 (2)0.003 (2)
C130.131 (5)0.113 (4)0.147 (5)0.035 (4)0.039 (4)0.000 (4)
C140.0468 (15)0.0362 (14)0.0470 (15)0.0014 (11)0.0146 (12)0.0023 (11)
C150.089 (2)0.0436 (17)0.0519 (17)0.0053 (16)0.0220 (16)0.0061 (13)
C160.121 (3)0.057 (2)0.065 (2)0.010 (2)0.030 (2)0.0248 (18)
C170.099 (3)0.0407 (18)0.095 (3)0.0075 (18)0.019 (2)0.0166 (18)
C180.071 (2)0.0390 (17)0.087 (3)0.0017 (15)0.0154 (19)0.0088 (16)
C190.0550 (17)0.0434 (16)0.0563 (17)0.0001 (13)0.0156 (14)0.0044 (13)
C200.0344 (12)0.0385 (13)0.0320 (12)0.0027 (10)0.0028 (9)0.0015 (10)
C210.0484 (16)0.0419 (15)0.0567 (17)0.0026 (12)0.0178 (13)0.0021 (13)
C220.0441 (16)0.0583 (19)0.068 (2)0.0048 (14)0.0215 (14)0.0008 (15)
C230.0396 (15)0.0601 (19)0.0588 (18)0.0070 (13)0.0156 (13)0.0073 (14)
C240.0423 (15)0.0476 (16)0.0530 (16)0.0033 (12)0.0116 (12)0.0087 (13)
C250.0295 (11)0.0319 (12)0.0323 (12)0.0025 (9)0.0050 (9)0.0002 (9)
C260.0406 (14)0.0460 (15)0.0296 (12)0.0077 (11)0.0052 (10)0.0033 (10)
C270.0388 (14)0.0531 (16)0.0383 (14)0.0148 (12)0.0051 (11)0.0078 (12)
C280.0374 (13)0.0424 (15)0.0410 (14)0.0091 (11)0.0078 (11)0.0003 (11)
C290.0380 (13)0.0403 (14)0.0303 (12)0.0075 (10)0.0069 (10)0.0001 (10)
C300.0311 (11)0.0303 (12)0.0329 (12)0.0011 (9)0.0045 (9)0.0002 (9)
C310.0313 (12)0.0308 (12)0.0317 (11)0.0003 (9)0.0039 (9)0.0013 (9)
C320.0315 (12)0.0345 (13)0.0344 (12)0.0051 (10)0.0031 (9)0.0053 (10)
C330.0314 (12)0.0298 (12)0.0346 (12)0.0024 (9)0.0061 (9)0.0012 (9)
C34A0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
C35A0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
C34B0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
C35B0.0741 (13)0.0631 (8)0.0429 (6)0.0085 (8)0.0122 (7)0.0016 (5)
C360.0552 (17)0.0551 (18)0.0505 (17)0.0177 (14)0.0166 (13)0.0058 (13)
C370.083 (3)0.098 (3)0.061 (2)0.013 (2)0.0170 (19)0.004 (2)
C380.0393 (13)0.0320 (12)0.0321 (12)0.0066 (10)0.0055 (10)0.0023 (9)
C390.0430 (14)0.0402 (14)0.0391 (13)0.0027 (11)0.0088 (11)0.0007 (11)
C400.0636 (19)0.0488 (17)0.0466 (16)0.0016 (14)0.0248 (14)0.0054 (13)
C410.093 (3)0.0584 (19)0.0349 (15)0.0158 (18)0.0183 (16)0.0083 (13)
C420.064 (2)0.070 (2)0.0378 (15)0.0162 (16)0.0062 (14)0.0025 (14)
C430.0440 (15)0.0521 (17)0.0399 (14)0.0035 (12)0.0023 (11)0.0013 (12)
C440.0326 (12)0.0291 (12)0.0407 (13)0.0011 (9)0.0089 (10)0.0025 (10)
C450.0365 (13)0.0435 (15)0.0446 (14)0.0064 (11)0.0055 (11)0.0028 (11)
C460.0317 (13)0.0477 (16)0.0632 (18)0.0058 (11)0.0037 (12)0.0046 (13)
C470.0352 (14)0.0475 (16)0.069 (2)0.0007 (12)0.0213 (13)0.0081 (14)
C480.0457 (16)0.0544 (17)0.0487 (16)0.0004 (13)0.0179 (13)0.0010 (13)
Geometric parameters (Å, º) top
Mn1—Cl1A2.382 (2)C12—C131.437 (7)
Mn1—Cl1B2.337 (4)C13—H13A0.9600
Mn1—N12.286 (2)C13—H13B0.9600
Mn1—Cl22.4974 (7)C13—H13C0.9600
Mn1—Cl32.4501 (8)C14—C151.390 (4)
Mn1—N32.215 (2)C14—C191.392 (4)
C34Aa—H34A0.9700C15—H150.9300
C34Aa—H34B0.9700C15—C161.378 (5)
C34Aa—C35A1.494 (6)C16—H160.9300
C35Aa—H35A0.9600C16—C171.387 (5)
C35Aa—H35B0.9600C17—H170.9300
C35Aa—H35C0.9600C17—C181.367 (5)
C34Bb—H34C0.9700C18—H180.9300
C34Bb—H34D0.9700C18—C191.382 (5)
C34Bb—C35B1.520 (10)C19—H190.9300
C35Bb—H35D0.9600C20—C211.390 (4)
C35Bb—H35E0.9600C21—H210.9300
C35Bb—H35F0.9600C21—C221.381 (4)
O1—H1A0.816 (10)C22—H220.9300
O1—H1B0.832 (10)C22—C231.366 (4)
O1—Mn22.213 (2)C23—H230.9300
N1—C11.364 (3)C23—C241.373 (4)
N1—C91.328 (3)C24—H240.9300
C1—C21.418 (4)C25—C261.413 (3)
C1—C61.418 (4)C25—C301.423 (3)
Mn2—Cl22.6269 (8)C26—H260.9300
Mn2—Cl32.5838 (8)C26—C271.354 (4)
Mn2—Cl42.4354 (8)C27—H270.9300
Mn2—N42.3087 (19)C27—C281.426 (4)
Mn2—N62.257 (2)C28—C291.389 (4)
N2—C41.383 (4)C29—H290.9300
N2—C101.462 (4)C29—C301.406 (3)
N2—C121.521 (5)C30—C311.432 (3)
C2—H20.9300C31—C321.380 (3)
C2—C31.360 (4)C31—C381.490 (3)
N3—C201.348 (3)C32—H320.9300
N3—C241.346 (3)C32—C331.409 (3)
C3—H30.9300C33—C441.485 (3)
C3—C41.415 (4)C36—H36A0.9700
N4—C251.371 (3)C36—H36B0.9700
N4—C331.325 (3)C36—C371.515 (5)
C4—C51.387 (4)C37—H37A0.9600
N5—C281.370 (3)C37—H37B0.9600
N5—C34A1.455 (4)C37—H37C0.9600
N5—C34B1.474 (10)C38—C391.398 (4)
N5—C361.456 (4)C38—C431.387 (4)
C5—H50.9300C39—H390.9300
C5—C61.415 (4)C39—C401.383 (4)
N6—C441.345 (3)C40—H400.9300
N6—C481.339 (3)C40—C411.373 (5)
C6—C71.431 (4)C41—H410.9300
C7—C81.367 (4)C41—C421.379 (5)
C7—C141.489 (4)C42—H420.9300
C8—H80.9300C42—C431.383 (4)
C8—C91.403 (4)C43—H430.9300
C9—C201.487 (3)C44—C451.386 (3)
C10—H10A0.9700C45—H450.9300
C10—H10B0.9700C45—C461.385 (4)
C10—C111.502 (5)C46—H460.9300
C11—H11A0.9600C46—C471.380 (4)
C11—H11B0.9600C47—H470.9300
C11—H11C0.9600C47—C481.380 (4)
C12—H12A0.9700C48—H480.9300
C12—H12B0.9700
CL1Aa—Mn1—Cl299.12 (6)N2—C12—H12A109.4
N1—Mn1—Cl1A92.70 (8)N2—C12—H12B109.4
CL1Bb—Mn1—Cl297.93 (15)H12A—C12—H12B108.0
CL1Aa—Mn1—Cl3132.16 (10)C13—C12—N2111.0 (4)
N1—Mn1—Cl1B95.38 (16)C13—C12—H12A109.4
N1—Mn1—Cl2165.37 (6)C13—C12—H12B109.4
N1—Mn1—Cl392.21 (6)C12—C13—H13A109.5
Cl3—Mn1—Cl286.25 (2)C12—C13—H13B109.5
N3—Mn1—Cl1A113.64 (12)C12—C13—H13C109.5
N3—Mn1—Cl1B125.41 (18)H13A—C13—H13B109.5
N3—Mn1—N173.33 (8)H13A—C13—H13C109.5
N3—Mn1—Cl293.91 (6)H13B—C13—H13C109.5
N3—Mn1—Cl3113.33 (6)C15—C14—C7121.4 (2)
CL1Bb—Mn1—Cl3120.46 (18)C15—C14—C19118.2 (3)
H1A—O1—H1B111 (5)C19—C14—C7120.0 (2)
C35Aa—C34Aa—H34A109.6C14—C15—H15119.7
H34Aa—C34Aa—H34B108.1C16—C15—C14120.6 (3)
Mn2—O1—H1A110 (4)C16—C15—H15119.7
C35Aa—C34Aa—H34B109.6C15—C16—H16119.8
C34Aa—C35Aa—H35A109.5C15—C16—C17120.4 (4)
H35Aa—C35Aa—H35B109.5C17—C16—H16119.8
C34Aa—C35Aa—H35B109.5C16—C17—H17120.3
H35Ba—C35Aa—H35C109.5C18—C17—C16119.5 (3)
H35Aa—C35Aa—H35C109.5C18—C17—H17120.3
Mn2—O1—H1B125 (3)C17—C18—H18119.8
C1—N1—Mn1125.31 (17)C17—C18—C19120.5 (3)
C9—N1—Mn1115.29 (16)C19—C18—H18119.8
C9—N1—C1118.7 (2)C14—C19—H19119.6
N1—C1—C2119.2 (2)C18—C19—C14120.8 (3)
N1—C1—C6123.0 (2)C18—C19—H19119.6
C6—C1—C2117.8 (2)N3—C20—C9116.1 (2)
O1—Mn2—Cl291.02 (8)N3—C20—C21121.2 (2)
O1—Mn2—Cl388.16 (8)C21—C20—C9122.8 (2)
O1—Mn2—Cl487.81 (8)C20—C21—H21120.4
O1—Mn2—N4158.31 (9)C22—C21—C20119.2 (3)
O1—Mn2—N686.49 (9)C22—C21—H21120.4
Cl3—Mn2—Cl280.95 (2)C21—C22—H22120.2
Cl4—Mn2—Cl289.05 (3)C23—C22—C21119.7 (3)
Cl4—Mn2—Cl3169.15 (3)C23—C22—H22120.2
N4—Mn2—Cl2110.53 (5)C22—C23—H23120.8
N4—Mn2—Cl392.69 (5)C22—C23—C24118.5 (3)
N4—Mn2—Cl494.77 (5)C24—C23—H23120.8
N6—Mn2—Cl2175.19 (6)N3—C24—C23123.2 (3)
N6—Mn2—Cl394.86 (6)N3—C24—H24118.4
N6—Mn2—Cl494.95 (6)C23—C24—H24118.4
N6—Mn2—N471.83 (7)N4—C25—C26118.3 (2)
Mn1—Cl2—Mn293.75 (2)N4—C25—C30123.3 (2)
C34Aa—C35Aa—H35C109.5C26—C25—C30118.4 (2)
C35Bb—C34Bb—H34C109.7C25—C26—H26119.5
H34Cb—C34Bb—H34D108.2C27—C26—C25120.9 (2)
C35Bb—C34Bb—H34D109.7C27—C26—H26119.5
C34Bb—C35Bb—H35D109.5C26—C27—H27118.9
H35Db—C35Bb—H35E109.5C26—C27—C28122.1 (2)
C34Bb—C35Bb—H35E109.5C28—C27—H27118.9
H35Db—C35Bb—H35F109.5N5—C28—C27119.8 (2)
C34Bb—C35Bb—H35F109.5N5—C28—C29123.0 (2)
H35Eb—C35Bb—H35F109.5C29—C28—C27117.1 (2)
C34Aa—N5—C36116.7 (2)C28—C29—H29118.9
C4—N2—C10122.0 (3)C28—C29—C30122.1 (2)
C4—N2—C12119.2 (3)C30—C29—H29118.9
C10—N2—C12116.8 (3)C25—C30—C31116.8 (2)
C1—C2—H2119.3C29—C30—C25119.2 (2)
C3—C2—C1121.5 (3)C29—C30—C31124.0 (2)
C3—C2—H2119.3C30—C31—C38122.7 (2)
Mn1—Cl3—Mn295.97 (3)C32—C31—C30118.1 (2)
C20—N3—Mn1117.72 (16)C32—C31—C38119.2 (2)
C24—N3—Mn1124.00 (19)C31—C32—H32119.6
C24—N3—C20118.3 (2)C31—C32—C33120.9 (2)
C2—C3—H3119.1C33—C32—H32119.6
C2—C3—C4121.8 (3)N4—C33—C32122.1 (2)
C4—C3—H3119.1N4—C33—C44116.2 (2)
C25—N4—Mn2126.91 (15)C32—C33—C44121.6 (2)
C33—N4—Mn2113.09 (15)N5—C36—H36A108.5
C33—N4—C25118.2 (2)N5—C36—H36B108.5
N2—C4—C3120.9 (3)N5—C36—C37115.2 (3)
N2—C4—C5121.6 (3)H36A—C36—H36B107.5
C5—C4—C3117.6 (3)C37—C36—H36A108.5
N5—C34Aa—H34A109.6C37—C36—H36B108.5
N5—C34Aa—H34B109.6C36—C37—H37A109.5
N5—C34Aa—C35A110.2 (3)C36—C37—H37B109.5
C28—N5—C34A121.7 (2)C36—C37—H37C109.5
C28—N5—C34B115.0 (11)H37A—C37—H37B109.5
C28—N5—C36121.6 (2)H37A—C37—H37C109.5
C36—N5—C34B112.9 (10)H37B—C37—H37C109.5
C4—C5—H5119.1C39—C38—C31120.8 (2)
C4—C5—C6121.9 (3)C43—C38—C31120.9 (2)
C6—C5—H5119.1C43—C38—C39118.1 (2)
C44—N6—Mn2115.72 (15)C38—C39—H39119.6
C48—N6—Mn2125.71 (19)C40—C39—C38120.8 (3)
C48—N6—C44118.5 (2)C40—C39—H39119.6
C1—C6—C7117.1 (2)C39—C40—H40119.9
C5—C6—C1119.4 (2)C41—C40—C39120.1 (3)
C5—C6—C7123.5 (2)C41—C40—H40119.9
C6—C7—C14123.1 (2)C40—C41—H41120.1
C8—C7—C6117.9 (2)C40—C41—C42119.9 (3)
C8—C7—C14119.0 (2)C42—C41—H41120.1
C7—C8—H8119.2C41—C42—H42119.9
C7—C8—C9121.6 (2)C41—C42—C43120.3 (3)
C9—C8—H8119.2C43—C42—H42119.9
N1—C9—C8121.6 (2)C38—C43—H43119.6
N1—C9—C20117.1 (2)C42—C43—C38120.8 (3)
C8—C9—C20121.3 (2)C42—C43—H43119.6
N2—C10—H10A108.8N6—C44—C33116.4 (2)
N2—C10—H10B108.8N6—C44—C45121.5 (2)
N2—C10—C11113.6 (3)C45—C44—C33121.8 (2)
H10A—C10—H10B107.7C44—C45—H45120.4
C11—C10—H10A108.8C46—C45—C44119.2 (3)
C11—C10—H10B108.8C46—C45—H45120.4
C10—C11—H11A109.5C45—C46—H46120.3
C10—C11—H11B109.5C47—C46—C45119.4 (3)
C10—C11—H11C109.5C47—C46—H46120.3
H11A—C11—H11B109.5C46—C47—H47121.0
H11A—C11—H11C109.5C46—C47—C48118.1 (3)
N5—C34Bb—H34C109.7C48—C47—H47121.0
N5—C34Bb—H34D109.7N6—C48—C47123.3 (3)
N5—C34Bb—C35B109.7 (10)N6—C48—H48118.4
H11B—C11—H11C109.5C47—C48—H48118.4
Mn1—N1—C1—C212.0 (3)C15—C14—C19—C180.0 (5)
Mn1—N1—C1—C6167.64 (18)C15—C16—C17—C180.2 (7)
Mn1—N1—C9—C8169.87 (18)C16—C17—C18—C190.5 (6)
Mn1—N1—C9—C208.1 (3)C17—C18—C19—C140.4 (5)
Mn1—N3—C20—C92.2 (3)C19—C14—C15—C160.3 (5)
Mn1—N3—C20—C21177.6 (2)C20—N3—C24—C230.5 (4)
Mn1—N3—C24—C23177.8 (2)C20—C21—C22—C230.2 (5)
N1—C1—C2—C3178.9 (3)C21—C22—C23—C240.1 (5)
N1—C1—C6—C5179.8 (2)C22—C23—C24—N30.0 (5)
N1—C1—C6—C70.6 (4)C24—N3—C20—C9179.3 (2)
N1—C9—C20—N37.1 (3)C24—N3—C20—C210.8 (4)
N1—C9—C20—C21172.8 (2)C25—N4—C33—C328.8 (3)
C1—N1—C9—C81.0 (4)C25—N4—C33—C44168.2 (2)
C1—N1—C9—C20179.0 (2)C25—C26—C27—C280.4 (4)
C1—C2—C3—C40.2 (5)C25—C30—C31—C327.1 (3)
C1—C6—C7—C82.2 (4)C25—C30—C31—C38171.8 (2)
C1—C6—C7—C14176.5 (2)C26—C25—C30—C292.2 (3)
Mn2—N4—C25—C2624.3 (3)C26—C25—C30—C31179.7 (2)
Mn2—N4—C25—C30158.73 (17)C26—C27—C28—N5175.5 (3)
Mn2—N4—C33—C32156.83 (18)C26—C27—C28—C292.5 (4)
Mn2—N4—C33—C4426.1 (2)C27—C28—C29—C302.2 (4)
Mn2—N6—C44—C3310.3 (3)C28—N5—C34Bb—C35Bb101.4 (18)
Mn2—N6—C44—C45175.29 (19)C28—N5—C34Aa—C35Aa75.9 (4)
Mn2—N6—C48—C47176.6 (2)C28—N5—C36—C3784.6 (4)
N2—C4—C5—C6177.2 (3)C28—C29—C30—C250.1 (4)
C2—C1—C6—C50.1 (4)C28—C29—C30—C31178.0 (2)
C2—C1—C6—C7179.7 (2)C29—C30—C31—C32170.8 (2)
C2—C3—C4—N2178.1 (3)C29—C30—C31—C3810.3 (4)
C2—C3—C4—C52.0 (5)C30—C25—C26—C272.0 (4)
N3—C20—C21—C220.7 (4)C30—C31—C32—C333.5 (3)
C3—C4—C5—C62.9 (4)C30—C31—C38—C3948.1 (3)
N4—C25—C26—C27175.1 (2)C30—C31—C38—C43137.0 (3)
N4—C25—C30—C29174.8 (2)C31—C32—C33—N44.8 (4)
N4—C25—C30—C313.3 (3)C31—C32—C33—C44172.0 (2)
N4—C33—C44—N611.2 (3)C31—C38—C39—C40174.3 (2)
N4—C33—C44—C45163.2 (2)C31—C38—C43—C42175.6 (3)
C4—N2—C10—C1185.2 (4)C32—C31—C38—C39130.8 (3)
C4—N2—C12—C1396.5 (5)C32—C31—C38—C4344.1 (3)
C4—C5—C6—C12.0 (4)C32—C33—C44—N6171.7 (2)
C4—C5—C6—C7178.4 (3)C32—C33—C44—C4513.9 (4)
N5—C28—C29—C30175.7 (3)C33—N4—C25—C26172.3 (2)
C5—C6—C7—C8177.4 (3)C33—N4—C25—C304.7 (3)
C5—C6—C7—C143.9 (4)C34Aa—N5—C28—C274.3 (5)
N6—C44—C45—C462.1 (4)C34Bb—N5—C28—C2741.2 (9)
C6—C1—C2—C30.8 (4)C34Aa—N5—C28—C29177.9 (3)
C6—C7—C8—C93.4 (4)C34Bb—N5—C28—C29140.9 (8)
C6—C7—C14—C1556.2 (4)C33—C44—C45—C46172.1 (2)
C6—C7—C14—C19130.4 (3)C36—N5—C34Bb—C35Bb112.9 (17)
C7—C8—C9—N11.9 (4)C36—N5—C34Aa—C35Aa103.5 (3)
C7—C8—C9—C20176.0 (2)C36—N5—C28—C27176.4 (3)
C7—C14—C15—C16173.8 (3)C36—N5—C28—C291.5 (5)
C7—C14—C19—C18173.5 (3)C38—C31—C32—C33175.4 (2)
C8—C7—C14—C15122.5 (3)C34Aa—N5—C36—C3794.8 (4)
C8—C7—C14—C1950.9 (4)C34Bb—N5—C36—C3758.5 (9)
C8—C9—C20—N3170.9 (2)C38—C39—C40—C411.2 (4)
C8—C9—C20—C219.2 (4)C39—C38—C43—C420.6 (4)
C9—N1—C1—C2178.1 (2)C39—C40—C41—C420.3 (5)
C9—N1—C1—C62.2 (4)C40—C41—C42—C431.0 (5)
C9—C20—C21—C22179.4 (3)C41—C42—C43—C381.4 (5)
C10—N2—C4—C33.1 (5)C43—C38—C39—C400.7 (4)
C10—N2—C4—C5176.8 (3)C44—N6—C48—C470.1 (4)
C10—N2—C12—C1399.2 (4)C44—C45—C46—C471.0 (4)
C12—N2—C4—C3160.4 (3)C45—C46—C47—C480.6 (4)
C12—N2—C4—C519.8 (5)C46—C47—C48—N61.2 (5)
C12—N2—C10—C1178.6 (4)C48—N6—C44—C33172.9 (2)
C14—C7—C8—C9175.3 (2)C48—N6—C44—C451.5 (4)
C14—C15—C16—C170.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg1Cg4 are the centroids of the C1–C6, C38–C43, N3/C20–C24 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cl1Bi0.972.813.734 (7)158
C23—H23···Cl3ii0.932.743.567 (3)149
C45—H45···Cl4iii0.932.693.563 (3)157
C11—H11A···Cg1i0.962.973.585 (4)123
C21—H21···Cg2iv0.932.893.642 (3)139
C36—H36B···Cg3iv0.972.963.845 (3)153
C35B—H35D···Cg4iv0.962.843.45 (2)122
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1.
Photophysical data for QP and MnQP (in THF, 10 µM) top
CompoundAbsorptionEmissionStokes shift
λabs(nm) / ε (10-3 M-1.cm-1)λem (nm)Intensity (a.u.)Δν (cm-1)
QP294 (21); 351 (10); 405 (11)472553387303
MnQP294 (36); 351 (18); 405 (19)472833957340
 

Acknowledgements

The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

Funding information

Funding for this research was provided by: Herculesstichting (grant No. AKUL/09/0035 to Luc Van Meervelt).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K. & Sukwattanasinitt, M. (2021). J. Photochem. Photobiol. Chem. 415, 113307.  CSD CrossRef Google Scholar
First citationHong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332–4353.  Web of Science CrossRef Google Scholar
First citationHu, K., Liu, C., Li, J. & Liang, F. (2018). Med. Chem. Commun. 9, 1663–1672.  CSD CrossRef CAS Google Scholar
First citationHussain, S., Muhammad Junaid, H., Tahir Waseem, M., Rauf, W., Jabbar Shaikh, A. & Anjum Shahzad, S. (2022). Spectrochim. Acta A Mol. Biomol. Spectrosc. 272, 121021.  CrossRef Google Scholar
First citationJin, J., Xu, W., Jia, M.-J., Zhao, J.-J., Yu, J.-H. & Xu, J.-Q. (2011). Inorg. Chim. Acta, 378, 72–80.  CSD CrossRef CAS Google Scholar
First citationKonar, S., Jana, A., Das, K., Ray, S., Chatterjee, S., Golen, J. A., Rheingold, A. L. & Kar, S. K. (2011). Polyhedron, 30, 2801–2808.  CSD CrossRef CAS Google Scholar
First citationLi, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 276302772.  Google Scholar
First citationMohanasundaram, D., Bhaskar, R., Gangatharan Vinoth Kumar, G., Rajesh, J. & Rajagopal, G. (2021). Microchem. J. 164, 106030.  CrossRef Google Scholar
First citationPathaw, L., Maheshwaran, D., Nagendraraj, T., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2021). Inorg. Chim. Acta, 514, 119999.  CSD CrossRef Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSääsk, V., Chen, Y.-A., Huang, T.-F., Ting, L.-Y., Luo, T.-A., Fujii, S., Põhako–Esko, K., Yoshida, M., Kato, M., Wu, T.-L. & Chou, H.-H. (2024). Eur. J. Inorg. Chem. 27, e202300562.  Google Scholar
First citationSales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G. & Merlo, A. A. (2015). J. Braz. Chem. Soc. 26, 562–571.  CAS Google Scholar
First citationSantos, G. C. dos, Servilha, R. O., de Oliveira, E. F., Lavarda, F. C., Ximenes, V. F. & da Silva-Filho, L. C. (2017). J. Fluoresc. 27, 1709–1720.  CrossRef PubMed Google Scholar
First citationShakir, M., Hanif, S., Sherwani, M. A., Mohammad, O. & Al-Resayes, S. I. (2015). J. Mol. Struct. 1092, 143–159.  CrossRef CAS Google Scholar
First citationSharghi, H., Aberi, M. & Aboonajmi, J. (2016). J. Iran. Chem. Soc. 13, 2229–2237.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Y., Li, M., Zhao, W., Wang, Y., Lu, H. & Chen, C. (2021). Mater. Chem. Front. 5, 834–842.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, F.-Y., Xi, Q.-Y., Huang, K.-B., Tang, X.-M., Chen, Z.-F., Liu, Y.-C. & Liang, H. (2017). J. Inorg. Biochem. 169, 23–31.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, J.-T., Pei, Y.-Y., Yan, M.-Y., Li, Y.-G., Yang, G.-G., Qu, C.-H., Luo, W., Wang, J. & Li, Q.-F. (2020). Microchem. J., Part B, 160, 105776.  Google Scholar
First citationZhang, L., Wang, Y.-F., Li, M., Gaop, Q.-Y. & Chen, C.-F. (2019). Chin. Chem. Lett. 32, 740–744.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds