research communications
Synthesis, II complex with 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline
and photophysical properties of a dinuclear MnaDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
A new quinoline derivative, namely, 6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline, C24H23N3 (QP), and its MnII complex aqua-1κO-di-μ-chlorido-1:2κ4Cl:Cl-dichlorido-1κCl,2κCl-bis[6-(diethylamino)-4-phenyl-2-(pyridin-2-yl)quinoline]-1κ2N1,N2;2κ2N1,N2-dimanganese(II), [Mn2Cl4(C24H23N3)2(H2O)] (MnQP), were synthesized. Their compositions have been determined with ESI-MS, IR, and 1H NMR spectroscopy. The crystal-structure determination of MnQP revealed a dinuclear complex with a central four-membered Mn2Cl2 ring. Both MnII atoms bind to an additional Cl atom and to two N atoms of the QP ligand. One MnII atom expands its coordination sphere with an extra water molecule, resulting in a distorted octahedral shape. The second MnII atom shows a distorted trigonal–bipyramidal shape. The UV–vis absorption and emission spectra of the examined compounds were studied. Furthermore, when investigating the aggregation-induced emission (AIE) properties, it was found that the fluorescent color changes from blue to green and eventually becomes yellow as the fraction of water in the THF/water mixture increases from 0% to 99%. In particular, these color and intensity changes are most pronounced at a water fraction of 60%. The contains disordered solvent molecules, which could not be modeled. The SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] was used to obtain information on the type and quantity of solvent molecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 molecules of ethanol in the These ethanol molecules are not considered in the given chemical formula and other crystal data.
CCDC reference: 2364423
1. Chemical context
Among et al., 2015; dos Santos et al., 2017). Currently, quinoline derivatives synthesized from multicomponent reactions including an aniline derivative, an aldehyde and a phenylalkyne with green catalysts are a trend that is receiving more attention due to a one-pot reaction with high yields. Moreover, by changing substituents in the components, it is possible to create many new derivatives of quinoline containing both aryl rings and long π-conjugation systems, and their application can be expanded (Sales et al., 2015; Sharghi et al., 2016). There are also many quinoline derivatives that have some interesting photophysical properties such as metal-ion recognition (Wang et al., 2020; Hojitsiriyanont et al., 2021; Mohanasundaram et al., 2021) or aggregation-induced emission (AIE) properties (Zhang et al., 2019; Shen et al., 2021; Hussain et al., 2022). In addition, some quinoline derivatives have been designed that contain electron-donating atoms, N,N-donor ligands, capable of forming chelate complexes with transition-metal ions. Complexes of this type of ligands not only have more diverse structures, but also a large number of superior properties compared to the free ligands, such as higher anticancer activities (Shakir et al., 2015; Wang et al., 2017; Hu et al., 2018) or better optical properties (Pathaw et al., 2021).
quinoline derivatives are of great interest because they have many interesting properties in terms of both biological and photophysical properties. For example, compounds consisting of quinine, chloroquine, amidiaquine and primaquine have antimalarial activity; 8-hydroxyquinoline is used to produce pesticides; some derivatives of quinoline are capable of emitting visible light (SalesIn this report, a new quinoline derivative, 6-(N,N-diethylamine)-4-phenyl-2(pyridin-2-yl)quinoline (QP), was synthesized via a one-pot reaction involving 4-N,N-diethylamineaniline, pyridine-2-carbaldehyde and phenylacetylene. The green catalyst used in this synthesis was montmorillonite (K-10; Fig. 1). For this compound, two electron-withdrawing groups – pyridine and phenyl – were introduced at positions C2 and C4 of the quinoline ring. In addition, an electron-donating group, N,N-diethylamino (–NEt2), was also incorporated to create an electron push–pull effect. This effect contributes to an intramolecular charge transfer (ICT) during excitation via photon absorption. Furthermore, the organic compound contains two N-donor atoms from the quinoline and pyridine rings. As a result, the ligand can form five-membered ring chelate complexes with transition-metal ions. More specifically, MnII, with a d5 semi-saturated is able to form complexes with various coordination numbers, ranging from 4 to 7 (Jin et al., 2011; Li et al., 2011; Konar et al., 2011; Wang et al., 2017; Sääsk et al., 2024). Therefore, when MnII interacts with the QP ligand, mononuclear and polynuclear complexes with different coordination numbers can be expected. The structure of the product complex, referred to as MnQP, was determined using single-crystal X-ray diffraction. Furthermore, the photophysical and aggregation-induced emission (AIE) properties of both QP and MnQP were investigated using UV–vis absorption and emission spectra.
2. Structural commentary
MnQP crystallizes in the triclinic P with one complex molecule in the (Fig. 2). The complex contains two MnII atoms, two QP ligands (denoted A and B, containing atoms N1 and N4, respectively), four chlorine atoms and one water molecule. Chlorine atom Cl1 is disordered over two positions with a refined occupancy ratio of Cl1A:Cl1B = 0.680 (8):0.320 (8). For the disordered ethyl group C34–C35, the occupancy ratio refined to 0.878 (4):0.122 (4). The contains disordered solvent molecules, which could not be modeled. The SQUEEZE procedure (Spek, 2015) was used to obtain information on the type and quantity of solvent molecules, which resulted in 44 electrons in a void volume of 274 Å3, corresponding to approximately 1.7 molecules of ethanol in the unit cell.
Two bridging chlorine atoms (Cl2, Cl3) connect the two central MnII atoms to form a four-membered rhomb-shaped ring. The metal⋯metal distance is 3.7412 (6) Å. Both MnII atoms have a different coordination environment, fivefold for Mn1 and sixfold for Mn2. The coordination sphere of Mn1 is best described as distorted trigonal–bipyramidal. The equatorial positions are occupied by nitrogen atom N3 at a distance of 2.215 (2) Å, and two chlorine atoms Cl1 and Cl3 at distances of, respectively, 2.382 (2) (for Cl1A), 2.337 (4) (for Cl1B) and 2.4501 (8) Å. The axial positions are occupied by chlorine atom Cl2 at a distance of 2.4974 (7) Å and nitrogen atom N1 at a distance of 2.286 (2) Å. The Mn2 ion exhibits a distorted octahedral coordination sphere, with the equatorial plane formed by three chlorine atoms Cl2, Cl3 and Cl4 at distances of 2.6269 (8), 2.5838 (8) and 2.4354 (8) Å, respectively, and one nitrogen atom N6, at a distance of 2.257 (2) Å. One axial position is occupied by water oxygen atom O1 at a distance of 2.213 (2) Å, the other by nitrogen atom N4 at a distance of 2.3087 (19) Å.
The planar quinoline ring in ligand A (r.m.s. deviation = 0.014 Å) makes a dihedral angle of 9.46 (8)° with pyridine ring N3/C20–C24 and 54.84 (10)° with phenyl ring C14–C19. In ligand B, the quinoline ring (r.m.s. deviation = 0.061 Å) makes a significantly larger dihedral angle with the pyridine ring N6/C44–C48 [23.39 (7)°] and a smaller one with phenyl ring C38–C43 [50.15 (8)°]. The two quinoline rings are mutually inclined at an angle of 53.07 (6)°. The sum of the bond angles around N2 [358.0 (5)°] and N5 [360.0 (3)°] indicate sp2 hybridization.
3. Supramolecular features
The crystal packing of MnQP is characterized by C—H⋯Cl and C—H⋯π interactions. Inversion dimers are formed by C12—H12A⋯Cl1B and C45—H45⋯Cl4 interactions. Both dimers are part of slabs forming chains parallel to the a axis through C23—H23⋯Cl3 interactions (Fig. 3, Table 1). The packing is further stabilized by four different types of C—H⋯π interactions (Fig. 4, Table 1).
The hydrogen atoms of water molecule O1 are not involved in hydrogen-bonding interactions. Significant π–π stacking interactions between rings of neighboring molecules were not observed in this structure.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016) indicated 347 compounds incorporating a four-membered Mn2Cl2 moiety. Of these compounds, 115 also have two N atoms that bond to the each MnII atom. The number of similar compounds further reduces to 69 when each MnII atom bonds to an additional Cl atom. Adding an additional O atom to one of the MnII atoms results in 12 complexes, all of which exhibit a of six with a distorted octahedral coordination environment for both MnII atoms, and a (pseudo) inversion center at the center of the Mn2Cl2 ring. For four complexes, the O atom is part of a water molecule, where the Mn—O distance varies between 2.141 and 2.274 Å [2.323 (2) Å in MnQP].
5. Photophysical properties
The UV–vis absorption and emission spectra of QP and MnQP (10 µM in THF) are shown in Fig. 5 and numerical data in Table 2. In the UV–vis spectra (Fig. 5a), both QP and MnQP exhibit three absorption bands with maxima at 294 nm, 351 nm, and 405 nm. These bands are attributed to the n→π* and π→π* transitions of the fused aromatic heterocycle. In the emission spectra (Fig. 5b), both the ligand and the complex emit light with a band at 472 nm, corresponding to blue light. Although the maximum absorption and emission wavelength do not change significantly between the ligand and the complex, the emission intensity of the complex is higher than that of the free ligand. This enhancement can be explained by the d5 of the central MnII ion, which forbids absorption of radiation in the visible range according to the Laporte rules. Additionally, the coordination of MnII with the ligand through two heterocyclic N atoms reduces rotation of the pyridine ring, leading to an increase in emission intensity from 55338 a.u. to 83395 a.u. compared to the free ligand.
|
The aggregation-induced emission (AIE) properties of QP and MnQP were investigated by recording (PL) spectra in THF/water mixtures with different water fractions (fw) at a concentration of 10 µM. The results show that their fluorescent color changes from blue to green and finally turns yellow under 365 nm UV light when the water fraction increases from 0% to 99%. For the QP ligand, the color and intensity changes are most pronounced at a 60% water ratio (see Fig. S6 in the electronic supporting information, ESI), and the same trend is observed for the MnQP complex (Fig. 6). This behavior can be explained by the following factors. As the water fraction in the THF–water mixture increases, the solubility of both the ligand and the complex decreases. This reduction in solubility leads to shorter distances between molecules, which in turn promotes π–π interactions between adjacent molecules. This interaction changes the electron density within the molecules, resulting in changes in the emission peak and intensity (Hong et al., 2009).
6. Synthesis and crystallization
Synthesis of 6-(N,N-diethylamine)-4-phenyl-2(pyridin-2-yl)quinoline (QP)
To a mixture of 4-N,N-diethylamineaniline (196.8 mg, 1.2 mmol), pyridine-2-carbaldehyde (128.4 mg, 1.2 mmol), and phenylacetylene (102.0 mg, 1.0 mmol) were added montmorillonite (K-10) (500 mg) and chloroform (1 ml). The resulting reaction mixture was stirred continuously at 373 K. After 24 h, the reaction mixture was cooled down to room temperature, and extracted three times with ethylacetate/water (v/v = 1:1). The collected organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure using a rotatory evaporator to remove the solvent. The residue was then adsorbed on silicagel and purified by silica gel with ethyl acetate/n-hexane (v/v = 1:10) to obtain QP as a dark-orange solid. The isolated yield of this reaction is 65%. The product is moderately soluble in ethanol, THF, CHCl3, and DMSO. ESI–MS: 356.3 (100%) = [QP + H]+. 1H NMR (600 MHz, CDCl3, δ ppm): 1.16 (6H, 3J = 7.2 Hz, t, 2 CH3), 3.80 (4H, 3J = 7.2 Hz, q, 2 CH2), 6.90 (1H, 4J = 3.0 Hz, d, Ar-H), 7.27 (1H, 3J = 6.0 Hz, 4J = 1.2 Hz, td, Ar-H), 7.32 (1H, 3J = 9.6 Hz, 4J = 3.0 Hz, dd, Ar-H), 7.45 (1H, 3J = 7.2 Hz, d, Ar-H), 7.49 (2H, 3J = 6.6 Hz, t, Ar-H), 7.60 (2H, 3J = 7.2 Hz, d, Ar-H), 7.82 (1H, 3J = 7.8 Hz, 4J = 1.8 Hz, td, Ar-H), 8.07 (1H, 3J = 9.6 Hz, d, Ar-H), 8.35 (1H, s, Ar-H), 8.59 (1H, 3J = 7.8 Hz, d, Ar-H), 8.67 (1H, 3J = 6.0 Hz, d, Ar-H). IR (KBr, cm−1): 2965 (νC—H aryl), 1615, 1585 (νC=C aryl), 1504, 1435 (νC=N aryl).
ESI–MS, FT–IR and 1H NMR spectra of QP are given in Figs. S1, S2 and S3, respectively, in the ESI.
Synthesis of [Mn2(QP)2Cl4(H2O)] (MnQP)
MnCl2·2H2O (35.64 mg, 0.22 mmol) was added to a QP solution (70.6 mg, 0.2 mmol in 3 ml of ethanol). The resulting mixture was stirred continuously at room temperature for 3 h and became dark yellow. The solution was evaporated slowly for 48 h to obtain yellow crystals of MnQP. The crystals were then filtered and washed with acetone. The yield was about 52%. The crystals are moderately soluble in ethanol, THF, CHCl3 and DMSO. ESI–MS: 729.3 (65%) = [Mn2(QP)2Cl4(H2O)-QP+2DMSO-H2O-H]+; 937.8 (20%) = [Mn2(QP)2Cl4(H2O)-Cl]+. IR (KBr, cm−1): 3407 (νO—H H2O), 2971 (νC—H aryl), 1614, 1599 (νC=C aryl), 1506, 1483 (νC=N aryl).
ESI–MS and FT–IR spectra of MnQP are given in Figs. S4 and S5, respectively, in the ESI.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) (1.5 for methyl groups). The Cl1 atom and ethyl group C34–C35 were found to be disordered over two positions with refined occupancies of 0.680 (8) and 0.320 (8) for Cl1, and 0.878 (4) and 0.122 (4) for ethyl group C34–C35. The H atoms of the water molecule were located in a difference electron-density map and refined with Uiso(H) = 1.5Ueq(O) and O—H distances restrained to 0.82 Å. RIGU and DELU restraints were used for atoms N2, Cl2 and Cl3 to impose reasonable relative motion of these atoms. Additional electron density was localized in voids (274 Å3 total potential accessible volume) summing up to 44 electrons, which corresponds to approximately 1.7 molecules of ethanol per The electron density associated with the disordered ethanol molecules was removed with the SQUEEZE (Spek, 2015) routine in PLATON (Spek, 2020). These ethanol molecules are not considered in the given chemical formula and other crystal data.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2364423
https://doi.org/10.1107/S2056989024006042/wm5726sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024006042/wm5726Isup2.hkl
ESI-MS, FT-IR and H-NMR spectra. DOI: https://doi.org/10.1107/S2056989024006042/wm5726sup3.pdf
[Mn2Cl4(C24H23N3)2(H2O)] | Z = 2 |
Mr = 976.60 | F(000) = 1008 |
Triclinic, P1 | Dx = 1.325 Mg m−3 |
a = 8.7491 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.2133 (3) Å | Cell parameters from 20239 reflections |
c = 21.3793 (5) Å | θ = 3.6–27.7° |
α = 88.914 (2)° | µ = 0.78 mm−1 |
β = 82.290 (2)° | T = 294 K |
γ = 88.989 (2)° | Plate, yellow |
V = 2448.48 (10) Å3 | 0.4 × 0.15 × 0.05 mm |
SuperNova, Single source at offset/far, Eos diffractometer | 9973 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 7946 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 15.9566 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) | k = −16→16 |
Tmin = 0.606, Tmax = 1.000 | l = −26→26 |
50282 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0889P)2 + 2.333P] where P = (Fo2 + 2Fc2)/3 |
S = 0.86 | (Δ/σ)max = 0.001 |
9973 reflections | Δρmax = 0.86 e Å−3 |
560 parameters | Δρmin = −0.47 e Å−3 |
18 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.35314 (5) | 0.65406 (3) | 0.22302 (2) | 0.03955 (12) | |
Cl1A | 0.3891 (5) | 0.7046 (2) | 0.11458 (10) | 0.0598 (4) | 0.680 (8) |
Cl1B | 0.3379 (8) | 0.7186 (4) | 0.1215 (2) | 0.0598 (4) | 0.320 (8) |
O1 | 0.0739 (3) | 0.8996 (2) | 0.25271 (12) | 0.0689 (7) | |
H1A | 0.101 (5) | 0.9574 (15) | 0.243 (2) | 0.103* | |
H1B | 0.072 (6) | 0.866 (3) | 0.2203 (14) | 0.103* | |
N1 | 0.3023 (2) | 0.49080 (16) | 0.20012 (10) | 0.0365 (5) | |
C1 | 0.1824 (3) | 0.4612 (2) | 0.17034 (12) | 0.0383 (5) | |
Mn2 | 0.17320 (4) | 0.84639 (3) | 0.33759 (2) | 0.03688 (12) | |
Cl2 | 0.44135 (8) | 0.81104 (5) | 0.26973 (3) | 0.04346 (16) | |
N2 | −0.1917 (3) | 0.3857 (2) | 0.07467 (15) | 0.0666 (8) | |
C2 | 0.0623 (3) | 0.5316 (2) | 0.16218 (14) | 0.0482 (7) | |
H2 | 0.066162 | 0.596571 | 0.177875 | 0.058* | |
Cl3 | 0.12894 (9) | 0.66307 (6) | 0.30488 (4) | 0.0539 (2) | |
N3 | 0.5448 (2) | 0.55925 (16) | 0.25097 (10) | 0.0388 (5) | |
C3 | −0.0584 (3) | 0.5064 (2) | 0.13192 (14) | 0.0506 (7) | |
H3 | −0.135308 | 0.554530 | 0.127541 | 0.061* | |
Cl4 | 0.25143 (9) | 1.01982 (6) | 0.35077 (4) | 0.05338 (19) | |
N4 | 0.1805 (2) | 0.79905 (15) | 0.44166 (9) | 0.0314 (4) | |
C4 | −0.0703 (3) | 0.4089 (2) | 0.10692 (13) | 0.0475 (7) | |
N5 | 0.6580 (3) | 0.5855 (2) | 0.53537 (11) | 0.0541 (6) | |
C5 | 0.0438 (3) | 0.3380 (2) | 0.11605 (13) | 0.0461 (6) | |
H5 | 0.035832 | 0.272545 | 0.101729 | 0.055* | |
N6 | −0.0657 (2) | 0.86758 (16) | 0.39068 (10) | 0.0374 (5) | |
C6 | 0.1720 (3) | 0.36243 (19) | 0.14655 (12) | 0.0379 (5) | |
C7 | 0.2938 (3) | 0.29213 (19) | 0.15545 (12) | 0.0391 (6) | |
C8 | 0.4082 (3) | 0.32372 (19) | 0.18789 (12) | 0.0392 (6) | |
H8 | 0.485393 | 0.278036 | 0.196120 | 0.047* | |
C9 | 0.4120 (3) | 0.42339 (19) | 0.20908 (11) | 0.0360 (5) | |
C10 | −0.3167 (4) | 0.4582 (3) | 0.06752 (15) | 0.0582 (8) | |
H10A | −0.338472 | 0.496987 | 0.105847 | 0.070* | |
H10B | −0.408843 | 0.421213 | 0.062418 | 0.070* | |
C11 | −0.2811 (5) | 0.5301 (3) | 0.01241 (18) | 0.0830 (12) | |
H11A | −0.260119 | 0.492405 | −0.025818 | 0.125* | |
H11B | −0.192547 | 0.569133 | 0.017930 | 0.125* | |
H11C | −0.368005 | 0.574673 | 0.009902 | 0.125* | |
C12 | −0.1760 (5) | 0.2956 (3) | 0.0310 (2) | 0.0854 (12) | |
H12A | −0.225658 | 0.311567 | −0.006007 | 0.103* | |
H12B | −0.067625 | 0.281812 | 0.017003 | 0.103* | |
C13 | −0.2449 (7) | 0.2072 (4) | 0.0624 (3) | 0.128 (2) | |
H13A | −0.199280 | 0.193234 | 0.100073 | 0.192* | |
H13B | −0.227740 | 0.150391 | 0.034807 | 0.192* | |
H13C | −0.353785 | 0.218854 | 0.073176 | 0.192* | |
C14 | 0.3028 (3) | 0.1878 (2) | 0.12996 (13) | 0.0426 (6) | |
C15 | 0.3031 (4) | 0.1708 (2) | 0.06598 (16) | 0.0604 (8) | |
H15 | 0.287552 | 0.224799 | 0.038894 | 0.073* | |
C16 | 0.3263 (5) | 0.0746 (3) | 0.04233 (19) | 0.0793 (12) | |
H16 | 0.325846 | 0.064160 | −0.000539 | 0.095* | |
C17 | 0.3502 (5) | −0.0066 (3) | 0.0820 (2) | 0.0773 (11) | |
H17 | 0.365477 | −0.071499 | 0.065966 | 0.093* | |
C18 | 0.3512 (4) | 0.0093 (2) | 0.14495 (19) | 0.0652 (9) | |
H18 | 0.368046 | −0.044899 | 0.171690 | 0.078* | |
C19 | 0.3273 (3) | 0.1054 (2) | 0.16911 (15) | 0.0509 (7) | |
H19 | 0.327561 | 0.115159 | 0.212065 | 0.061* | |
C20 | 0.5421 (3) | 0.45903 (19) | 0.24069 (11) | 0.0351 (5) | |
C21 | 0.6551 (3) | 0.3940 (2) | 0.25902 (14) | 0.0480 (7) | |
H21 | 0.651441 | 0.324875 | 0.252079 | 0.058* | |
C22 | 0.7730 (3) | 0.4332 (3) | 0.28766 (16) | 0.0555 (8) | |
H22 | 0.849573 | 0.390617 | 0.300053 | 0.067* | |
C23 | 0.7765 (3) | 0.5349 (2) | 0.29771 (15) | 0.0519 (7) | |
H23 | 0.855142 | 0.562503 | 0.316873 | 0.062* | |
C24 | 0.6613 (3) | 0.5953 (2) | 0.27886 (14) | 0.0470 (6) | |
H24 | 0.663814 | 0.664509 | 0.285689 | 0.056* | |
C25 | 0.3019 (3) | 0.75430 (18) | 0.46657 (11) | 0.0312 (5) | |
C26 | 0.4121 (3) | 0.6987 (2) | 0.42594 (12) | 0.0388 (6) | |
H26 | 0.404769 | 0.697817 | 0.382954 | 0.047* | |
C27 | 0.5282 (3) | 0.6468 (2) | 0.44870 (12) | 0.0435 (6) | |
H27 | 0.599206 | 0.611244 | 0.420730 | 0.052* | |
C28 | 0.5450 (3) | 0.6448 (2) | 0.51415 (12) | 0.0402 (6) | |
C29 | 0.4400 (3) | 0.70200 (19) | 0.55394 (11) | 0.0361 (5) | |
H29 | 0.450440 | 0.703967 | 0.596623 | 0.043* | |
C30 | 0.3186 (3) | 0.75706 (17) | 0.53179 (11) | 0.0314 (5) | |
C31 | 0.2053 (3) | 0.81444 (18) | 0.57144 (11) | 0.0313 (5) | |
C32 | 0.0798 (3) | 0.85298 (18) | 0.54550 (11) | 0.0336 (5) | |
H32 | 0.001934 | 0.887326 | 0.570944 | 0.040* | |
C33 | 0.0682 (3) | 0.84097 (17) | 0.48098 (11) | 0.0318 (5) | |
C34A | 0.7695 (5) | 0.5291 (3) | 0.49221 (17) | 0.0598 (4) | 0.878 (4) |
H34A | 0.716880 | 0.495813 | 0.461332 | 0.072* | 0.878 (4) |
H34B | 0.819456 | 0.477394 | 0.515525 | 0.072* | 0.878 (4) |
C35A | 0.8880 (5) | 0.5987 (3) | 0.45924 (17) | 0.0598 (4) | 0.878 (4) |
H35A | 0.837950 | 0.651735 | 0.437884 | 0.090* | 0.878 (4) |
H35B | 0.957178 | 0.561486 | 0.429056 | 0.090* | 0.878 (4) |
H35C | 0.945156 | 0.627778 | 0.489612 | 0.090* | 0.878 (4) |
C34B | 0.8079 (18) | 0.5859 (16) | 0.4945 (10) | 0.0598 (4) | 0.122 (4) |
H34C | 0.890775 | 0.589382 | 0.520309 | 0.072* | 0.122 (4) |
H34D | 0.813426 | 0.644931 | 0.466687 | 0.072* | 0.122 (4) |
C35B | 0.826 (3) | 0.4903 (17) | 0.4557 (9) | 0.0598 (4) | 0.122 (4) |
H35D | 0.828382 | 0.432266 | 0.483290 | 0.090* | 0.122 (4) |
H35E | 0.920930 | 0.492781 | 0.427229 | 0.090* | 0.122 (4) |
H35F | 0.741117 | 0.485305 | 0.431911 | 0.090* | 0.122 (4) |
C36 | 0.6734 (4) | 0.5767 (2) | 0.60222 (14) | 0.0530 (7) | |
H36A | 0.722257 | 0.511940 | 0.609811 | 0.064* | |
H36B | 0.571034 | 0.576515 | 0.626112 | 0.064* | |
C37 | 0.7654 (5) | 0.6594 (3) | 0.62720 (18) | 0.0799 (11) | |
H37A | 0.863950 | 0.664467 | 0.601628 | 0.120* | |
H37B | 0.779985 | 0.643394 | 0.670001 | 0.120* | |
H37C | 0.710372 | 0.722741 | 0.625797 | 0.120* | |
C38 | 0.2191 (3) | 0.83535 (18) | 0.63866 (11) | 0.0345 (5) | |
C39 | 0.3567 (3) | 0.8713 (2) | 0.65593 (12) | 0.0405 (6) | |
H39 | 0.443295 | 0.876552 | 0.625739 | 0.049* | |
C40 | 0.3653 (4) | 0.8991 (2) | 0.71739 (14) | 0.0514 (7) | |
H40 | 0.456951 | 0.924070 | 0.728097 | 0.062* | |
C41 | 0.2390 (4) | 0.8900 (3) | 0.76260 (14) | 0.0613 (9) | |
H41 | 0.245125 | 0.908451 | 0.803944 | 0.074* | |
C42 | 0.1030 (4) | 0.8535 (3) | 0.74660 (14) | 0.0589 (8) | |
H42 | 0.017851 | 0.846313 | 0.777370 | 0.071* | |
C43 | 0.0927 (3) | 0.8274 (2) | 0.68500 (13) | 0.0456 (6) | |
H43 | −0.000234 | 0.804239 | 0.674505 | 0.055* | |
C44 | −0.0744 (3) | 0.87005 (18) | 0.45391 (12) | 0.0338 (5) | |
C45 | −0.2125 (3) | 0.8899 (2) | 0.49184 (13) | 0.0416 (6) | |
H45 | −0.215800 | 0.893448 | 0.535407 | 0.050* | |
C46 | −0.3456 (3) | 0.9044 (2) | 0.46411 (15) | 0.0480 (7) | |
H46 | −0.439540 | 0.916770 | 0.488922 | 0.058* | |
C47 | −0.3376 (3) | 0.9002 (2) | 0.39932 (15) | 0.0495 (7) | |
H47 | −0.425572 | 0.909121 | 0.379625 | 0.059* | |
C48 | −0.1953 (3) | 0.8826 (2) | 0.36457 (14) | 0.0486 (7) | |
H48 | −0.189055 | 0.880983 | 0.320833 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0468 (2) | 0.0371 (2) | 0.0362 (2) | 0.00307 (17) | −0.01036 (17) | −0.00673 (16) |
Cl1A | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
Cl1B | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
O1 | 0.0712 (16) | 0.0835 (19) | 0.0555 (14) | 0.0005 (14) | −0.0230 (12) | 0.0105 (13) |
N1 | 0.0404 (11) | 0.0364 (11) | 0.0340 (10) | 0.0031 (9) | −0.0089 (9) | −0.0066 (8) |
C1 | 0.0423 (14) | 0.0410 (14) | 0.0331 (12) | 0.0003 (11) | −0.0100 (10) | −0.0046 (10) |
Mn2 | 0.0388 (2) | 0.0400 (2) | 0.0325 (2) | 0.00306 (16) | −0.00725 (15) | −0.00383 (15) |
Cl2 | 0.0467 (4) | 0.0396 (3) | 0.0439 (3) | −0.0031 (3) | −0.0039 (3) | −0.0069 (3) |
N2 | 0.0637 (17) | 0.0703 (19) | 0.0751 (19) | 0.0021 (14) | −0.0430 (15) | −0.0104 (14) |
C2 | 0.0512 (16) | 0.0470 (16) | 0.0492 (16) | 0.0089 (13) | −0.0165 (13) | −0.0126 (13) |
Cl3 | 0.0507 (4) | 0.0526 (4) | 0.0563 (4) | −0.0139 (3) | 0.0052 (3) | −0.0198 (3) |
N3 | 0.0409 (12) | 0.0381 (12) | 0.0386 (11) | −0.0021 (9) | −0.0085 (9) | −0.0060 (9) |
C3 | 0.0471 (16) | 0.0583 (18) | 0.0496 (16) | 0.0115 (13) | −0.0185 (13) | −0.0098 (13) |
Cl4 | 0.0548 (4) | 0.0441 (4) | 0.0592 (4) | −0.0025 (3) | 0.0015 (3) | −0.0111 (3) |
N4 | 0.0322 (10) | 0.0324 (10) | 0.0304 (10) | 0.0026 (8) | −0.0067 (8) | −0.0021 (8) |
C4 | 0.0497 (16) | 0.0528 (17) | 0.0427 (15) | −0.0033 (13) | −0.0154 (12) | −0.0023 (12) |
N5 | 0.0552 (15) | 0.0649 (16) | 0.0421 (13) | 0.0296 (12) | −0.0104 (11) | −0.0019 (11) |
C5 | 0.0550 (17) | 0.0411 (15) | 0.0457 (15) | −0.0044 (12) | −0.0185 (13) | −0.0030 (12) |
N6 | 0.0354 (11) | 0.0375 (11) | 0.0412 (12) | 0.0032 (9) | −0.0121 (9) | −0.0008 (9) |
C6 | 0.0451 (14) | 0.0363 (13) | 0.0331 (12) | −0.0010 (11) | −0.0083 (10) | −0.0004 (10) |
C7 | 0.0478 (15) | 0.0351 (13) | 0.0354 (13) | −0.0021 (11) | −0.0089 (11) | 0.0007 (10) |
C8 | 0.0441 (14) | 0.0345 (13) | 0.0405 (13) | 0.0018 (11) | −0.0110 (11) | 0.0000 (10) |
C9 | 0.0411 (13) | 0.0367 (13) | 0.0308 (12) | −0.0019 (10) | −0.0068 (10) | −0.0013 (10) |
C10 | 0.0467 (17) | 0.077 (2) | 0.0538 (18) | −0.0056 (15) | −0.0180 (14) | 0.0053 (16) |
C11 | 0.088 (3) | 0.102 (3) | 0.060 (2) | −0.006 (2) | −0.014 (2) | 0.018 (2) |
C12 | 0.088 (3) | 0.093 (3) | 0.087 (3) | −0.010 (2) | −0.054 (2) | −0.003 (2) |
C13 | 0.131 (5) | 0.113 (4) | 0.147 (5) | −0.035 (4) | −0.039 (4) | 0.000 (4) |
C14 | 0.0468 (15) | 0.0362 (14) | 0.0470 (15) | −0.0014 (11) | −0.0146 (12) | −0.0023 (11) |
C15 | 0.089 (2) | 0.0436 (17) | 0.0519 (17) | 0.0053 (16) | −0.0220 (16) | −0.0061 (13) |
C16 | 0.121 (3) | 0.057 (2) | 0.065 (2) | 0.010 (2) | −0.030 (2) | −0.0248 (18) |
C17 | 0.099 (3) | 0.0407 (18) | 0.095 (3) | 0.0075 (18) | −0.019 (2) | −0.0166 (18) |
C18 | 0.071 (2) | 0.0390 (17) | 0.087 (3) | 0.0017 (15) | −0.0154 (19) | 0.0088 (16) |
C19 | 0.0550 (17) | 0.0434 (16) | 0.0563 (17) | −0.0001 (13) | −0.0156 (14) | 0.0044 (13) |
C20 | 0.0344 (12) | 0.0385 (13) | 0.0320 (12) | −0.0027 (10) | −0.0028 (9) | −0.0015 (10) |
C21 | 0.0484 (16) | 0.0419 (15) | 0.0567 (17) | 0.0026 (12) | −0.0178 (13) | −0.0021 (13) |
C22 | 0.0441 (16) | 0.0583 (19) | 0.068 (2) | 0.0048 (14) | −0.0215 (14) | −0.0008 (15) |
C23 | 0.0396 (15) | 0.0601 (19) | 0.0588 (18) | −0.0070 (13) | −0.0156 (13) | −0.0073 (14) |
C24 | 0.0423 (15) | 0.0476 (16) | 0.0530 (16) | −0.0033 (12) | −0.0116 (12) | −0.0087 (13) |
C25 | 0.0295 (11) | 0.0319 (12) | 0.0323 (12) | 0.0025 (9) | −0.0050 (9) | −0.0002 (9) |
C26 | 0.0406 (14) | 0.0460 (15) | 0.0296 (12) | 0.0077 (11) | −0.0052 (10) | −0.0033 (10) |
C27 | 0.0388 (14) | 0.0531 (16) | 0.0383 (14) | 0.0148 (12) | −0.0051 (11) | −0.0078 (12) |
C28 | 0.0374 (13) | 0.0424 (15) | 0.0410 (14) | 0.0091 (11) | −0.0078 (11) | −0.0003 (11) |
C29 | 0.0380 (13) | 0.0403 (14) | 0.0303 (12) | 0.0075 (10) | −0.0069 (10) | −0.0001 (10) |
C30 | 0.0311 (11) | 0.0303 (12) | 0.0329 (12) | 0.0011 (9) | −0.0045 (9) | 0.0002 (9) |
C31 | 0.0313 (12) | 0.0308 (12) | 0.0317 (11) | −0.0003 (9) | −0.0039 (9) | −0.0013 (9) |
C32 | 0.0315 (12) | 0.0345 (13) | 0.0344 (12) | 0.0051 (10) | −0.0031 (9) | −0.0053 (10) |
C33 | 0.0314 (12) | 0.0298 (12) | 0.0346 (12) | 0.0024 (9) | −0.0061 (9) | −0.0012 (9) |
C34A | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
C35A | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
C34B | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
C35B | 0.0741 (13) | 0.0631 (8) | 0.0429 (6) | 0.0085 (8) | −0.0122 (7) | 0.0016 (5) |
C36 | 0.0552 (17) | 0.0551 (18) | 0.0505 (17) | 0.0177 (14) | −0.0166 (13) | 0.0058 (13) |
C37 | 0.083 (3) | 0.098 (3) | 0.061 (2) | −0.013 (2) | −0.0170 (19) | −0.004 (2) |
C38 | 0.0393 (13) | 0.0320 (12) | 0.0321 (12) | 0.0066 (10) | −0.0055 (10) | −0.0023 (9) |
C39 | 0.0430 (14) | 0.0402 (14) | 0.0391 (13) | 0.0027 (11) | −0.0088 (11) | −0.0007 (11) |
C40 | 0.0636 (19) | 0.0488 (17) | 0.0466 (16) | 0.0016 (14) | −0.0248 (14) | −0.0054 (13) |
C41 | 0.093 (3) | 0.0584 (19) | 0.0349 (15) | 0.0158 (18) | −0.0183 (16) | −0.0083 (13) |
C42 | 0.064 (2) | 0.070 (2) | 0.0378 (15) | 0.0162 (16) | 0.0062 (14) | −0.0025 (14) |
C43 | 0.0440 (15) | 0.0521 (17) | 0.0399 (14) | 0.0035 (12) | −0.0023 (11) | −0.0013 (12) |
C44 | 0.0326 (12) | 0.0291 (12) | 0.0407 (13) | 0.0011 (9) | −0.0089 (10) | −0.0025 (10) |
C45 | 0.0365 (13) | 0.0435 (15) | 0.0446 (14) | 0.0064 (11) | −0.0055 (11) | −0.0028 (11) |
C46 | 0.0317 (13) | 0.0477 (16) | 0.0632 (18) | 0.0058 (11) | −0.0037 (12) | 0.0046 (13) |
C47 | 0.0352 (14) | 0.0475 (16) | 0.069 (2) | 0.0007 (12) | −0.0213 (13) | 0.0081 (14) |
C48 | 0.0457 (16) | 0.0544 (17) | 0.0487 (16) | 0.0004 (13) | −0.0179 (13) | 0.0010 (13) |
Mn1—Cl1A | 2.382 (2) | C12—C13 | 1.437 (7) |
Mn1—Cl1B | 2.337 (4) | C13—H13A | 0.9600 |
Mn1—N1 | 2.286 (2) | C13—H13B | 0.9600 |
Mn1—Cl2 | 2.4974 (7) | C13—H13C | 0.9600 |
Mn1—Cl3 | 2.4501 (8) | C14—C15 | 1.390 (4) |
Mn1—N3 | 2.215 (2) | C14—C19 | 1.392 (4) |
C34Aa—H34A | 0.9700 | C15—H15 | 0.9300 |
C34Aa—H34B | 0.9700 | C15—C16 | 1.378 (5) |
C34Aa—C35A | 1.494 (6) | C16—H16 | 0.9300 |
C35Aa—H35A | 0.9600 | C16—C17 | 1.387 (5) |
C35Aa—H35B | 0.9600 | C17—H17 | 0.9300 |
C35Aa—H35C | 0.9600 | C17—C18 | 1.367 (5) |
C34Bb—H34C | 0.9700 | C18—H18 | 0.9300 |
C34Bb—H34D | 0.9700 | C18—C19 | 1.382 (5) |
C34Bb—C35B | 1.520 (10) | C19—H19 | 0.9300 |
C35Bb—H35D | 0.9600 | C20—C21 | 1.390 (4) |
C35Bb—H35E | 0.9600 | C21—H21 | 0.9300 |
C35Bb—H35F | 0.9600 | C21—C22 | 1.381 (4) |
O1—H1A | 0.816 (10) | C22—H22 | 0.9300 |
O1—H1B | 0.832 (10) | C22—C23 | 1.366 (4) |
O1—Mn2 | 2.213 (2) | C23—H23 | 0.9300 |
N1—C1 | 1.364 (3) | C23—C24 | 1.373 (4) |
N1—C9 | 1.328 (3) | C24—H24 | 0.9300 |
C1—C2 | 1.418 (4) | C25—C26 | 1.413 (3) |
C1—C6 | 1.418 (4) | C25—C30 | 1.423 (3) |
Mn2—Cl2 | 2.6269 (8) | C26—H26 | 0.9300 |
Mn2—Cl3 | 2.5838 (8) | C26—C27 | 1.354 (4) |
Mn2—Cl4 | 2.4354 (8) | C27—H27 | 0.9300 |
Mn2—N4 | 2.3087 (19) | C27—C28 | 1.426 (4) |
Mn2—N6 | 2.257 (2) | C28—C29 | 1.389 (4) |
N2—C4 | 1.383 (4) | C29—H29 | 0.9300 |
N2—C10 | 1.462 (4) | C29—C30 | 1.406 (3) |
N2—C12 | 1.521 (5) | C30—C31 | 1.432 (3) |
C2—H2 | 0.9300 | C31—C32 | 1.380 (3) |
C2—C3 | 1.360 (4) | C31—C38 | 1.490 (3) |
N3—C20 | 1.348 (3) | C32—H32 | 0.9300 |
N3—C24 | 1.346 (3) | C32—C33 | 1.409 (3) |
C3—H3 | 0.9300 | C33—C44 | 1.485 (3) |
C3—C4 | 1.415 (4) | C36—H36A | 0.9700 |
N4—C25 | 1.371 (3) | C36—H36B | 0.9700 |
N4—C33 | 1.325 (3) | C36—C37 | 1.515 (5) |
C4—C5 | 1.387 (4) | C37—H37A | 0.9600 |
N5—C28 | 1.370 (3) | C37—H37B | 0.9600 |
N5—C34A | 1.455 (4) | C37—H37C | 0.9600 |
N5—C34B | 1.474 (10) | C38—C39 | 1.398 (4) |
N5—C36 | 1.456 (4) | C38—C43 | 1.387 (4) |
C5—H5 | 0.9300 | C39—H39 | 0.9300 |
C5—C6 | 1.415 (4) | C39—C40 | 1.383 (4) |
N6—C44 | 1.345 (3) | C40—H40 | 0.9300 |
N6—C48 | 1.339 (3) | C40—C41 | 1.373 (5) |
C6—C7 | 1.431 (4) | C41—H41 | 0.9300 |
C7—C8 | 1.367 (4) | C41—C42 | 1.379 (5) |
C7—C14 | 1.489 (4) | C42—H42 | 0.9300 |
C8—H8 | 0.9300 | C42—C43 | 1.383 (4) |
C8—C9 | 1.403 (4) | C43—H43 | 0.9300 |
C9—C20 | 1.487 (3) | C44—C45 | 1.386 (3) |
C10—H10A | 0.9700 | C45—H45 | 0.9300 |
C10—H10B | 0.9700 | C45—C46 | 1.385 (4) |
C10—C11 | 1.502 (5) | C46—H46 | 0.9300 |
C11—H11A | 0.9600 | C46—C47 | 1.380 (4) |
C11—H11B | 0.9600 | C47—H47 | 0.9300 |
C11—H11C | 0.9600 | C47—C48 | 1.380 (4) |
C12—H12A | 0.9700 | C48—H48 | 0.9300 |
C12—H12B | 0.9700 | ||
CL1Aa—Mn1—Cl2 | 99.12 (6) | N2—C12—H12A | 109.4 |
N1—Mn1—Cl1A | 92.70 (8) | N2—C12—H12B | 109.4 |
CL1Bb—Mn1—Cl2 | 97.93 (15) | H12A—C12—H12B | 108.0 |
CL1Aa—Mn1—Cl3 | 132.16 (10) | C13—C12—N2 | 111.0 (4) |
N1—Mn1—Cl1B | 95.38 (16) | C13—C12—H12A | 109.4 |
N1—Mn1—Cl2 | 165.37 (6) | C13—C12—H12B | 109.4 |
N1—Mn1—Cl3 | 92.21 (6) | C12—C13—H13A | 109.5 |
Cl3—Mn1—Cl2 | 86.25 (2) | C12—C13—H13B | 109.5 |
N3—Mn1—Cl1A | 113.64 (12) | C12—C13—H13C | 109.5 |
N3—Mn1—Cl1B | 125.41 (18) | H13A—C13—H13B | 109.5 |
N3—Mn1—N1 | 73.33 (8) | H13A—C13—H13C | 109.5 |
N3—Mn1—Cl2 | 93.91 (6) | H13B—C13—H13C | 109.5 |
N3—Mn1—Cl3 | 113.33 (6) | C15—C14—C7 | 121.4 (2) |
CL1Bb—Mn1—Cl3 | 120.46 (18) | C15—C14—C19 | 118.2 (3) |
H1A—O1—H1B | 111 (5) | C19—C14—C7 | 120.0 (2) |
C35Aa—C34Aa—H34A | 109.6 | C14—C15—H15 | 119.7 |
H34Aa—C34Aa—H34B | 108.1 | C16—C15—C14 | 120.6 (3) |
Mn2—O1—H1A | 110 (4) | C16—C15—H15 | 119.7 |
C35Aa—C34Aa—H34B | 109.6 | C15—C16—H16 | 119.8 |
C34Aa—C35Aa—H35A | 109.5 | C15—C16—C17 | 120.4 (4) |
H35Aa—C35Aa—H35B | 109.5 | C17—C16—H16 | 119.8 |
C34Aa—C35Aa—H35B | 109.5 | C16—C17—H17 | 120.3 |
H35Ba—C35Aa—H35C | 109.5 | C18—C17—C16 | 119.5 (3) |
H35Aa—C35Aa—H35C | 109.5 | C18—C17—H17 | 120.3 |
Mn2—O1—H1B | 125 (3) | C17—C18—H18 | 119.8 |
C1—N1—Mn1 | 125.31 (17) | C17—C18—C19 | 120.5 (3) |
C9—N1—Mn1 | 115.29 (16) | C19—C18—H18 | 119.8 |
C9—N1—C1 | 118.7 (2) | C14—C19—H19 | 119.6 |
N1—C1—C2 | 119.2 (2) | C18—C19—C14 | 120.8 (3) |
N1—C1—C6 | 123.0 (2) | C18—C19—H19 | 119.6 |
C6—C1—C2 | 117.8 (2) | N3—C20—C9 | 116.1 (2) |
O1—Mn2—Cl2 | 91.02 (8) | N3—C20—C21 | 121.2 (2) |
O1—Mn2—Cl3 | 88.16 (8) | C21—C20—C9 | 122.8 (2) |
O1—Mn2—Cl4 | 87.81 (8) | C20—C21—H21 | 120.4 |
O1—Mn2—N4 | 158.31 (9) | C22—C21—C20 | 119.2 (3) |
O1—Mn2—N6 | 86.49 (9) | C22—C21—H21 | 120.4 |
Cl3—Mn2—Cl2 | 80.95 (2) | C21—C22—H22 | 120.2 |
Cl4—Mn2—Cl2 | 89.05 (3) | C23—C22—C21 | 119.7 (3) |
Cl4—Mn2—Cl3 | 169.15 (3) | C23—C22—H22 | 120.2 |
N4—Mn2—Cl2 | 110.53 (5) | C22—C23—H23 | 120.8 |
N4—Mn2—Cl3 | 92.69 (5) | C22—C23—C24 | 118.5 (3) |
N4—Mn2—Cl4 | 94.77 (5) | C24—C23—H23 | 120.8 |
N6—Mn2—Cl2 | 175.19 (6) | N3—C24—C23 | 123.2 (3) |
N6—Mn2—Cl3 | 94.86 (6) | N3—C24—H24 | 118.4 |
N6—Mn2—Cl4 | 94.95 (6) | C23—C24—H24 | 118.4 |
N6—Mn2—N4 | 71.83 (7) | N4—C25—C26 | 118.3 (2) |
Mn1—Cl2—Mn2 | 93.75 (2) | N4—C25—C30 | 123.3 (2) |
C34Aa—C35Aa—H35C | 109.5 | C26—C25—C30 | 118.4 (2) |
C35Bb—C34Bb—H34C | 109.7 | C25—C26—H26 | 119.5 |
H34Cb—C34Bb—H34D | 108.2 | C27—C26—C25 | 120.9 (2) |
C35Bb—C34Bb—H34D | 109.7 | C27—C26—H26 | 119.5 |
C34Bb—C35Bb—H35D | 109.5 | C26—C27—H27 | 118.9 |
H35Db—C35Bb—H35E | 109.5 | C26—C27—C28 | 122.1 (2) |
C34Bb—C35Bb—H35E | 109.5 | C28—C27—H27 | 118.9 |
H35Db—C35Bb—H35F | 109.5 | N5—C28—C27 | 119.8 (2) |
C34Bb—C35Bb—H35F | 109.5 | N5—C28—C29 | 123.0 (2) |
H35Eb—C35Bb—H35F | 109.5 | C29—C28—C27 | 117.1 (2) |
C34Aa—N5—C36 | 116.7 (2) | C28—C29—H29 | 118.9 |
C4—N2—C10 | 122.0 (3) | C28—C29—C30 | 122.1 (2) |
C4—N2—C12 | 119.2 (3) | C30—C29—H29 | 118.9 |
C10—N2—C12 | 116.8 (3) | C25—C30—C31 | 116.8 (2) |
C1—C2—H2 | 119.3 | C29—C30—C25 | 119.2 (2) |
C3—C2—C1 | 121.5 (3) | C29—C30—C31 | 124.0 (2) |
C3—C2—H2 | 119.3 | C30—C31—C38 | 122.7 (2) |
Mn1—Cl3—Mn2 | 95.97 (3) | C32—C31—C30 | 118.1 (2) |
C20—N3—Mn1 | 117.72 (16) | C32—C31—C38 | 119.2 (2) |
C24—N3—Mn1 | 124.00 (19) | C31—C32—H32 | 119.6 |
C24—N3—C20 | 118.3 (2) | C31—C32—C33 | 120.9 (2) |
C2—C3—H3 | 119.1 | C33—C32—H32 | 119.6 |
C2—C3—C4 | 121.8 (3) | N4—C33—C32 | 122.1 (2) |
C4—C3—H3 | 119.1 | N4—C33—C44 | 116.2 (2) |
C25—N4—Mn2 | 126.91 (15) | C32—C33—C44 | 121.6 (2) |
C33—N4—Mn2 | 113.09 (15) | N5—C36—H36A | 108.5 |
C33—N4—C25 | 118.2 (2) | N5—C36—H36B | 108.5 |
N2—C4—C3 | 120.9 (3) | N5—C36—C37 | 115.2 (3) |
N2—C4—C5 | 121.6 (3) | H36A—C36—H36B | 107.5 |
C5—C4—C3 | 117.6 (3) | C37—C36—H36A | 108.5 |
N5—C34Aa—H34A | 109.6 | C37—C36—H36B | 108.5 |
N5—C34Aa—H34B | 109.6 | C36—C37—H37A | 109.5 |
N5—C34Aa—C35A | 110.2 (3) | C36—C37—H37B | 109.5 |
C28—N5—C34A | 121.7 (2) | C36—C37—H37C | 109.5 |
C28—N5—C34B | 115.0 (11) | H37A—C37—H37B | 109.5 |
C28—N5—C36 | 121.6 (2) | H37A—C37—H37C | 109.5 |
C36—N5—C34B | 112.9 (10) | H37B—C37—H37C | 109.5 |
C4—C5—H5 | 119.1 | C39—C38—C31 | 120.8 (2) |
C4—C5—C6 | 121.9 (3) | C43—C38—C31 | 120.9 (2) |
C6—C5—H5 | 119.1 | C43—C38—C39 | 118.1 (2) |
C44—N6—Mn2 | 115.72 (15) | C38—C39—H39 | 119.6 |
C48—N6—Mn2 | 125.71 (19) | C40—C39—C38 | 120.8 (3) |
C48—N6—C44 | 118.5 (2) | C40—C39—H39 | 119.6 |
C1—C6—C7 | 117.1 (2) | C39—C40—H40 | 119.9 |
C5—C6—C1 | 119.4 (2) | C41—C40—C39 | 120.1 (3) |
C5—C6—C7 | 123.5 (2) | C41—C40—H40 | 119.9 |
C6—C7—C14 | 123.1 (2) | C40—C41—H41 | 120.1 |
C8—C7—C6 | 117.9 (2) | C40—C41—C42 | 119.9 (3) |
C8—C7—C14 | 119.0 (2) | C42—C41—H41 | 120.1 |
C7—C8—H8 | 119.2 | C41—C42—H42 | 119.9 |
C7—C8—C9 | 121.6 (2) | C41—C42—C43 | 120.3 (3) |
C9—C8—H8 | 119.2 | C43—C42—H42 | 119.9 |
N1—C9—C8 | 121.6 (2) | C38—C43—H43 | 119.6 |
N1—C9—C20 | 117.1 (2) | C42—C43—C38 | 120.8 (3) |
C8—C9—C20 | 121.3 (2) | C42—C43—H43 | 119.6 |
N2—C10—H10A | 108.8 | N6—C44—C33 | 116.4 (2) |
N2—C10—H10B | 108.8 | N6—C44—C45 | 121.5 (2) |
N2—C10—C11 | 113.6 (3) | C45—C44—C33 | 121.8 (2) |
H10A—C10—H10B | 107.7 | C44—C45—H45 | 120.4 |
C11—C10—H10A | 108.8 | C46—C45—C44 | 119.2 (3) |
C11—C10—H10B | 108.8 | C46—C45—H45 | 120.4 |
C10—C11—H11A | 109.5 | C45—C46—H46 | 120.3 |
C10—C11—H11B | 109.5 | C47—C46—C45 | 119.4 (3) |
C10—C11—H11C | 109.5 | C47—C46—H46 | 120.3 |
H11A—C11—H11B | 109.5 | C46—C47—H47 | 121.0 |
H11A—C11—H11C | 109.5 | C46—C47—C48 | 118.1 (3) |
N5—C34Bb—H34C | 109.7 | C48—C47—H47 | 121.0 |
N5—C34Bb—H34D | 109.7 | N6—C48—C47 | 123.3 (3) |
N5—C34Bb—C35B | 109.7 (10) | N6—C48—H48 | 118.4 |
H11B—C11—H11C | 109.5 | C47—C48—H48 | 118.4 |
Mn1—N1—C1—C2 | −12.0 (3) | C15—C14—C19—C18 | 0.0 (5) |
Mn1—N1—C1—C6 | 167.64 (18) | C15—C16—C17—C18 | −0.2 (7) |
Mn1—N1—C9—C8 | −169.87 (18) | C16—C17—C18—C19 | 0.5 (6) |
Mn1—N1—C9—C20 | 8.1 (3) | C17—C18—C19—C14 | −0.4 (5) |
Mn1—N3—C20—C9 | 2.2 (3) | C19—C14—C15—C16 | 0.3 (5) |
Mn1—N3—C20—C21 | −177.6 (2) | C20—N3—C24—C23 | −0.5 (4) |
Mn1—N3—C24—C23 | 177.8 (2) | C20—C21—C22—C23 | 0.2 (5) |
N1—C1—C2—C3 | 178.9 (3) | C21—C22—C23—C24 | 0.1 (5) |
N1—C1—C6—C5 | −179.8 (2) | C22—C23—C24—N3 | 0.0 (5) |
N1—C1—C6—C7 | 0.6 (4) | C24—N3—C20—C9 | −179.3 (2) |
N1—C9—C20—N3 | −7.1 (3) | C24—N3—C20—C21 | 0.8 (4) |
N1—C9—C20—C21 | 172.8 (2) | C25—N4—C33—C32 | 8.8 (3) |
C1—N1—C9—C8 | 1.0 (4) | C25—N4—C33—C44 | −168.2 (2) |
C1—N1—C9—C20 | 179.0 (2) | C25—C26—C27—C28 | 0.4 (4) |
C1—C2—C3—C4 | −0.2 (5) | C25—C30—C31—C32 | 7.1 (3) |
C1—C6—C7—C8 | 2.2 (4) | C25—C30—C31—C38 | −171.8 (2) |
C1—C6—C7—C14 | −176.5 (2) | C26—C25—C30—C29 | −2.2 (3) |
Mn2—N4—C25—C26 | −24.3 (3) | C26—C25—C30—C31 | 179.7 (2) |
Mn2—N4—C25—C30 | 158.73 (17) | C26—C27—C28—N5 | 175.5 (3) |
Mn2—N4—C33—C32 | −156.83 (18) | C26—C27—C28—C29 | −2.5 (4) |
Mn2—N4—C33—C44 | 26.1 (2) | C27—C28—C29—C30 | 2.2 (4) |
Mn2—N6—C44—C33 | −10.3 (3) | C28—N5—C34Bb—C35Bb | −101.4 (18) |
Mn2—N6—C44—C45 | 175.29 (19) | C28—N5—C34Aa—C35Aa | 75.9 (4) |
Mn2—N6—C48—C47 | −176.6 (2) | C28—N5—C36—C37 | −84.6 (4) |
N2—C4—C5—C6 | 177.2 (3) | C28—C29—C30—C25 | 0.1 (4) |
C2—C1—C6—C5 | −0.1 (4) | C28—C29—C30—C31 | 178.0 (2) |
C2—C1—C6—C7 | −179.7 (2) | C29—C30—C31—C32 | −170.8 (2) |
C2—C3—C4—N2 | −178.1 (3) | C29—C30—C31—C38 | 10.3 (4) |
C2—C3—C4—C5 | 2.0 (5) | C30—C25—C26—C27 | 2.0 (4) |
N3—C20—C21—C22 | −0.7 (4) | C30—C31—C32—C33 | −3.5 (3) |
C3—C4—C5—C6 | −2.9 (4) | C30—C31—C38—C39 | 48.1 (3) |
N4—C25—C26—C27 | −175.1 (2) | C30—C31—C38—C43 | −137.0 (3) |
N4—C25—C30—C29 | 174.8 (2) | C31—C32—C33—N4 | −4.8 (4) |
N4—C25—C30—C31 | −3.3 (3) | C31—C32—C33—C44 | 172.0 (2) |
N4—C33—C44—N6 | −11.2 (3) | C31—C38—C39—C40 | 174.3 (2) |
N4—C33—C44—C45 | 163.2 (2) | C31—C38—C43—C42 | −175.6 (3) |
C4—N2—C10—C11 | 85.2 (4) | C32—C31—C38—C39 | −130.8 (3) |
C4—N2—C12—C13 | 96.5 (5) | C32—C31—C38—C43 | 44.1 (3) |
C4—C5—C6—C1 | 2.0 (4) | C32—C33—C44—N6 | 171.7 (2) |
C4—C5—C6—C7 | −178.4 (3) | C32—C33—C44—C45 | −13.9 (4) |
N5—C28—C29—C30 | −175.7 (3) | C33—N4—C25—C26 | 172.3 (2) |
C5—C6—C7—C8 | −177.4 (3) | C33—N4—C25—C30 | −4.7 (3) |
C5—C6—C7—C14 | 3.9 (4) | C34Aa—N5—C28—C27 | 4.3 (5) |
N6—C44—C45—C46 | 2.1 (4) | C34Bb—N5—C28—C27 | 41.2 (9) |
C6—C1—C2—C3 | −0.8 (4) | C34Aa—N5—C28—C29 | −177.9 (3) |
C6—C7—C8—C9 | −3.4 (4) | C34Bb—N5—C28—C29 | −140.9 (8) |
C6—C7—C14—C15 | 56.2 (4) | C33—C44—C45—C46 | −172.1 (2) |
C6—C7—C14—C19 | −130.4 (3) | C36—N5—C34Bb—C35Bb | 112.9 (17) |
C7—C8—C9—N1 | 1.9 (4) | C36—N5—C34Aa—C35Aa | −103.5 (3) |
C7—C8—C9—C20 | −176.0 (2) | C36—N5—C28—C27 | −176.4 (3) |
C7—C14—C15—C16 | 173.8 (3) | C36—N5—C28—C29 | 1.5 (5) |
C7—C14—C19—C18 | −173.5 (3) | C38—C31—C32—C33 | 175.4 (2) |
C8—C7—C14—C15 | −122.5 (3) | C34Aa—N5—C36—C37 | 94.8 (4) |
C8—C7—C14—C19 | 50.9 (4) | C34Bb—N5—C36—C37 | 58.5 (9) |
C8—C9—C20—N3 | 170.9 (2) | C38—C39—C40—C41 | 1.2 (4) |
C8—C9—C20—C21 | −9.2 (4) | C39—C38—C43—C42 | −0.6 (4) |
C9—N1—C1—C2 | 178.1 (2) | C39—C40—C41—C42 | −0.3 (5) |
C9—N1—C1—C6 | −2.2 (4) | C40—C41—C42—C43 | −1.0 (5) |
C9—C20—C21—C22 | 179.4 (3) | C41—C42—C43—C38 | 1.4 (5) |
C10—N2—C4—C3 | −3.1 (5) | C43—C38—C39—C40 | −0.7 (4) |
C10—N2—C4—C5 | 176.8 (3) | C44—N6—C48—C47 | −0.1 (4) |
C10—N2—C12—C13 | −99.2 (4) | C44—C45—C46—C47 | −1.0 (4) |
C12—N2—C4—C3 | 160.4 (3) | C45—C46—C47—C48 | −0.6 (4) |
C12—N2—C4—C5 | −19.8 (5) | C46—C47—C48—N6 | 1.2 (5) |
C12—N2—C10—C11 | −78.6 (4) | C48—N6—C44—C33 | 172.9 (2) |
C14—C7—C8—C9 | 175.3 (2) | C48—N6—C44—C45 | −1.5 (4) |
C14—C15—C16—C17 | −0.2 (6) |
Cg1–Cg4 are the centroids of the C1–C6, C38–C43, N3/C20–C24 and C25–C30 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···Cl1Bi | 0.97 | 2.81 | 3.734 (7) | 158 |
C23—H23···Cl3ii | 0.93 | 2.74 | 3.567 (3) | 149 |
C45—H45···Cl4iii | 0.93 | 2.69 | 3.563 (3) | 157 |
C11—H11A···Cg1i | 0.96 | 2.97 | 3.585 (4) | 123 |
C21—H21···Cg2iv | 0.93 | 2.89 | 3.642 (3) | 139 |
C36—H36B···Cg3iv | 0.97 | 2.96 | 3.845 (3) | 153 |
C35B—H35D···Cg4iv | 0.96 | 2.84 | 3.45 (2) | 122 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+1, −z+1. |
Compound | Absorption | Emission | Stokes shift | |
λabs(nm) / ε (10-3 M-1.cm-1) | λem (nm) | Intensity (a.u.) | Δν (cm-1) | |
QP | 294 (21); 351 (10); 405 (11) | 472 | 55338 | 7303 |
MnQP | 294 (36); 351 (18); 405 (19) | 472 | 83395 | 7340 |
Acknowledgements
The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
Funding information
Funding for this research was provided by: Herculesstichting (grant No. AKUL/09/0035 to Luc Van Meervelt).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hojitsiriyanont, J., Chaibuth, P., Boonkitpatarakul, K., Ruangpornvisuti, V., Palaga, T., Chainok, K. & Sukwattanasinitt, M. (2021). J. Photochem. Photobiol. Chem. 415, 113307. CSD CrossRef Google Scholar
Hong, Y., Lam, J. W. Y. & Tang, B. Z. (2009). Chem. Commun. pp. 4332–4353. Web of Science CrossRef Google Scholar
Hu, K., Liu, C., Li, J. & Liang, F. (2018). Med. Chem. Commun. 9, 1663–1672. CSD CrossRef CAS Google Scholar
Hussain, S., Muhammad Junaid, H., Tahir Waseem, M., Rauf, W., Jabbar Shaikh, A. & Anjum Shahzad, S. (2022). Spectrochim. Acta A Mol. Biomol. Spectrosc. 272, 121021. CrossRef Google Scholar
Jin, J., Xu, W., Jia, M.-J., Zhao, J.-J., Yu, J.-H. & Xu, J.-Q. (2011). Inorg. Chim. Acta, 378, 72–80. CSD CrossRef CAS Google Scholar
Konar, S., Jana, A., Das, K., Ray, S., Chatterjee, S., Golen, J. A., Rheingold, A. L. & Kar, S. K. (2011). Polyhedron, 30, 2801–2808. CSD CrossRef CAS Google Scholar
Li, G.-B., Liu, J.-M., Cai, Y.-P. & Su, C.-Y. (2011). Cryst. Growth Des. 11, 276302772. Google Scholar
Mohanasundaram, D., Bhaskar, R., Gangatharan Vinoth Kumar, G., Rajesh, J. & Rajagopal, G. (2021). Microchem. J. 164, 106030. CrossRef Google Scholar
Pathaw, L., Maheshwaran, D., Nagendraraj, T., Khamrang, T., Velusamy, M. & Mayilmurugan, R. (2021). Inorg. Chim. Acta, 514, 119999. CSD CrossRef Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sääsk, V., Chen, Y.-A., Huang, T.-F., Ting, L.-Y., Luo, T.-A., Fujii, S., Põhako–Esko, K., Yoshida, M., Kato, M., Wu, T.-L. & Chou, H.-H. (2024). Eur. J. Inorg. Chem. 27, e202300562. Google Scholar
Sales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G. & Merlo, A. A. (2015). J. Braz. Chem. Soc. 26, 562–571. CAS Google Scholar
Santos, G. C. dos, Servilha, R. O., de Oliveira, E. F., Lavarda, F. C., Ximenes, V. F. & da Silva-Filho, L. C. (2017). J. Fluoresc. 27, 1709–1720. CrossRef PubMed Google Scholar
Shakir, M., Hanif, S., Sherwani, M. A., Mohammad, O. & Al-Resayes, S. I. (2015). J. Mol. Struct. 1092, 143–159. CrossRef CAS Google Scholar
Sharghi, H., Aberi, M. & Aboonajmi, J. (2016). J. Iran. Chem. Soc. 13, 2229–2237. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, Y., Li, M., Zhao, W., Wang, Y., Lu, H. & Chen, C. (2021). Mater. Chem. Front. 5, 834–842. CSD CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wang, F.-Y., Xi, Q.-Y., Huang, K.-B., Tang, X.-M., Chen, Z.-F., Liu, Y.-C. & Liang, H. (2017). J. Inorg. Biochem. 169, 23–31. CSD CrossRef CAS PubMed Google Scholar
Wang, J.-T., Pei, Y.-Y., Yan, M.-Y., Li, Y.-G., Yang, G.-G., Qu, C.-H., Luo, W., Wang, J. & Li, Q.-F. (2020). Microchem. J., Part B, 160, 105776. Google Scholar
Zhang, L., Wang, Y.-F., Li, M., Gaop, Q.-Y. & Chen, C.-F. (2019). Chin. Chem. Lett. 32, 740–744. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.