1. Chemical context
The first X-ray structural results on pyridine complexes of gold(I) were reported by the group of Strähle (Adams et al., 1982), one of the pioneers of structural gold chemistry, who established that the compounds with stoichiometry (py)AuX (py = pyridine, X = Cl and I) were in fact ionic, [Au(py)2]+[AuX2]−. In both compounds, the ions were linked by short Au⋯Au contacts to form tetranuclear chains anion⋯cation⋯cation⋯anion, with a linear sequence Au⋯Au⋯Au⋯Au for X = I but a zigzag for X = Cl. For X = I, the Au⋯Au distances were shorter (peripheral 2.990, central 3.291 Å) than for X = Cl (3.249, 3.416 Å). Such contacts have now proved to be quite common for AuI centres and have been intensively studied, in particular by Schmidbaur, who termed them ‘aurophilic contacts’ (see e.g. Schmidbaur & Schier, 2008, 2012). We recently redetermined the structure of the iodine derivative, using the improved methods now available, as a student project and obtained Au⋯Au distances of 2.9784 (3) and 3.2575 (5) Å (Döring et al., 2018).
Our series of publications ‘Gold complexes with amine ligands’ consists of sixteen numbered publications (and several, mostly earlier, publications that were not numbered). Parts 12–15, published recently (Döring & Jones, 2023a,b, 2024a,b), involved complexes of cyclic secondary amines. We have employed the term ‘amine’ liberally to include aza-aromatics, mostly pyridine or substituted pyridines. Some time ago, we investigated complexes of substituted pyridines with gold(I) halides and reported the structures of the following compounds: chlorido(2-methylpyridine)gold(I), a molecular complex that forms an almost linear chain polymer via Au⋯Au contacts of 3.1960 (4) Å; bis(3-methylpyridine)gold(I) dichloridoaurate(I), which also forms a chain polymer, in which alternating anions and cations are linked by Au⋯Au contacts of 3.1538 (12) Å, with Au⋯Au⋯Au angles of 180° and 158.25° at the gold atoms of the cations and anions, respectively (Jones & Ahrens, 1998); bis(3-bromopyridine)gold(I) dichloridoaurate(I), which forms zigzag tetranuclear units of the form anion⋯cation⋯cation⋯anion, with Au⋯Au contacts of 3.2681 (7) and 3.3113 (10) Å (Freytag & Jones, 2000); and the isotypic compounds bis(4-methylpyridine)gold(I) dichloridoaurate(I) and bis(4-methylpyridine)gold(I) dibromidoaurate(I), which form linear trinuclear aggregates anion⋯cation⋯anion with Au⋯Au contacts of 3.1874 (2) or 3.1796 (2) Å, respectively (the second cation forms no aurophilic contacts) (Döring & Jones, 2013a). The structure of bis(4-methylpyridine)gold(I) dichloridoaurate(I) had previously been reported by Lin et al. (2008) but was redetermined to resolve a space group problem. It is noteworthy that the ionic complexes [L2Au][AuX2] (L = pyridine ligand, X = halogen) are commoner than the molecular LAuX (see also Section 4). We have found corresponding derivatives with pseudohalogens to be exclusively ionic for thiocyanates (Döring & Jones, 2014 and Strey et al., 2018), whereas cyanides were exclusively molecular (Döring & Jones, 2013b). One of us (PGJ) was also peripherally involved in research on organometallic complexes of gold, several of which contained pyridine ligands; this research centred on the groups of Laguna (Zaragoza) and Vicente (Murcia), see e.g. Barranco et al. (2004) and Vicente et al. (1998).
We have now returned to complexes involving pyridine ligands. In this publication we describe the structures of four gold(I) halide derivatives of empirical formula LAuX, all of which proved to be ionic compounds of the form [AuL2]+[AuX2]− (L = substituted pyridine, X = Cl or Br), together with one by-product. The next publication (in preparation) will describe complexes of the form LAuX3 for the same ligand type.
The reader should note that the trivial names picoline (= methylpyridine) and lutidine (= dimethylpyridine) have often been used (also by us) in the literature.
2. Structural commentary
We note at the outset that, for compounds consisting of more than one residue, it is to some extent arbitrary which aspects belong to the Structural commentary and which to the Supramolecular features (next section). In this section we describe only structural aspects within the asymmetric unit, extended where necessary to generate complete ions.
The structure of bis(2-methylpyridine)gold(I) dibromidoaurate(I) (1), which crystallizes in space group C2/c with Z = 4, is shown in Fig. 1, with selected dimensions in Table 1. The corresponding chlorido derivative (Jones & Ahrens, 1998) is molecular rather than ionic; it is not clear which factors determine the ionic or molecular nature of compounds with stoichiometry LAuX, and we did not attempt to find alternative forms of the compounds described here (e.g. by carrying out extensive recrystallization experiments). Both gold atoms lie on the twofold axis (0, y, 0.75) and are connected by an aurophilic contact of 3.1904 (4) Å. The coordination axes N11—Au1—N11′ and Br1—Au2—Br1′ are approximately perpendicular to each other across the Au⋯Au contact (see torsion angles in Table 1). The interplanar angle of the two rings is 4.31 (2)°, with the methyl groups on opposite sides of the rings.
Au1—N11 | 2.027 (3) | Au1—Au2i | 3.1937 (4) | Au1—Au2 | 3.1907 (4) | Au2—Br1 | 2.3951 (4) | | | | | N11—Au1—N11ii | 179.35 (19) | Br1—Au2—Au1 | 90.282 (12) | N11—Au1—Au2 | 89.67 (9) | Br1—Au2—Au1iii | 89.718 (12) | N11—Au1—Au2i | 90.33 (9) | Au1—Au2—Au1iii | 180.0 | Au2—Au1—Au2i | 180.0 | C16—N11—C12 | 119.7 (3) | Br1—Au2—Br1ii | 179.44 (2) | | | | | | | N11ii—Au1—Au2—Br1 | 70.36 (9) | N11—Au1—Au2—Br1 | −109.64 (9) | Symmetry codes: (i) ; (ii) ; (iii) . | |
| Figure 1 The structure of compound 1 in the crystal, showing the asymmetric unit (labelled) extended by symmetry. The dashed line represents an aurophilic attraction. Ellipsoids correspond to 50% probability levels. |
The structure of bis(3-methylpyridine)gold(I) dibromidoaurate(I) (2), which crystallizes in space group C2/m with Z = 2, is shown in Fig. 2, with selected dimensions in Table 2. It is not isotypic to the chlorido derivative (Jones & Ahrens, 1998; see next section). Both gold atoms of 2 lie on special positions with symmetry 2/m, and all other atoms except for one methyl hydrogen (see Refinement) in mirror planes at y = 0 or 0.5. The gold atoms are connected by an aurophilic contact of 3.22048 (6) Å. Again, the coordination axes at the gold atoms are approximately perpendicular to each other (see torsion angles in Table 2). The crystallographic symmetry means that the coordination at both gold atoms is exactly linear, the rings are exactly coplanar, and the coordination axes are exactly perpendicular to the Au⋯Au contacts while roughly perpendicular to each other.
Au1—N11 | 2.021 (3) | Au2—Br1 | 2.3906 (3) | Au1—Au2 | 3.2205 (1) | | | | | | | N11—Au1—N11i | 180.0 | Br1—Au2—Au1 | 90.0 | Au2—Au1—Au2ii | 180.0 | Au1—Au2—Au1iv | 180.0 | Br1iii—Au2—Br1 | 180.0 | C16—N11—C12 | 118.9 (3) | | | | | N11—Au1—Au2—Br1 | −106.73 (8) | N11i—Au1—Au2—Br1 | 73.27 (8) | Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . | |
| Figure 2 The structure of compound 2 in the crystal, showing the asymmetric unit (labelled) extended by symmetry. The dashed line represents an aurophilic attraction. Ellipsoids correspond to 50% probability levels. |
The structure of bis(3,5-dimethylpyridine)gold(I) dichloridoaurate(I) (3), which crystallizes in space group P with Z = 2, is shown in Fig. 3, with selected dimensions in Table 3. The cation lies on a general position, and there are two independent anions in which the gold atoms lie on inversion centres. There are no aurophilic contacts within the asymmetric unit. The interplanar angle between the rings is 8.61 (9)°, which corresponds to an out-of-plane bend about the gold atom rather than a mutual rotation around the N—Au—N coordination axis. Bis(3,5-dimethylpyridine)gold(I) dibromidoaurate(I) (4; Fig. 4, Table 4) is isotypic to 3; its interplanar angle is 7.8 (1)°.
Au1—N11 | 2.013 (3) | Au2—Cl1 | 2.2551 (9) | Au1—N21 | 2.016 (3) | Au3—Cl2 | 2.2617 (9) | Au1—Au1i | 3.3495 (3) | | | | | | | N11—Au1—N21 | 176.33 (10) | Cl2—Au3—Cl2iii | 180.0 | N11—Au1—Au1i | 75.62 (7) | C16—N11—C12 | 119.4 (3) | Cl1—Au2—Cl1ii | 180.0 | C26—N21—C22 | 119.0 (3) | Symmetry codes: (i) ; (ii) ; (iii) . | |
Au1—N11 | 2.012 (3) | Au2—Br1 | 2.3775 (5) | Au1—N21 | 2.016 (4) | Au3—Br2 | 2.3789 (5) | Au1—Au1i | 3.4400 (3) | | | | | | | N11—Au1—N21 | 176.50 (13) | C12—N11—C16 | 119.1 (4) | Br1—Au2—Br1ii | 180.0 | C26—N21—C22 | 119.1 (4) | Br2iii—Au3—Br2 | 180.0 | | | Symmetry codes: (i) ; (ii) ; (iii) . | |
| Figure 3 The structure of compound 3 in the crystal, showing the asymmetric unit (labelled) extended by symmetry. Ellipsoids correspond to 50% probability levels. Dashed lines indicate short H⋯Cl contacts. |
| Figure 4 The structure of compound 4 in the crystal, showing the asymmetric unit (labelled) extended by symmetry. Ellipsoids correspond to 50% probability levels. Dashed lines indicate short H⋯Br contacts. |
We did not succeed in making any further compounds (cf. Freytag & Jones, 2000) in which a bromopyridine was coordinated to gold. Attempts to make bis(2-bromopyridine)gold(I) dibromidoaurate(I) (or the corresponding neutral molecule) led instead to 2-bromopyridine 2-bromopyridinium dibromidoaurate(I) (5; Fig. 5), possibly because of small amounts of adventitious water. Compound 5 crystallizes in space group P with Z = 2; all atoms lie on general positions. The 2-bromopyridinium cation is linked to the 2-bromopyridine molecule by an N—H⋯N hydrogen bond. The NH hydrogen atom was refined freely, and there are no signs of disorder of this atom. The ring angle at the nitrogen atom is 5° larger for the cation than for the neutral molecule (Table 5), and the interplanar angle between the rings is 1.9 (2)°.
Au1—Br1 | 2.3790 (4) | N11—C16 | 1.346 (4) | Au1—Br2 | 2.3851 (4) | N21—C22 | 1.327 (4) | N11—C12 | 1.345 (4) | N21—C26 | 1.352 (4) | | | | | Br1—Au1—Br2 | 178.713 (12) | C22—N21—C26 | 116.2 (3) | C12—N11—C16 | 121.2 (3) | | | | |
| Figure 5 The structure of compound 5 in the crystal. Ellipsoids correspond to 50% probability levels. The dashed lines indicate a hydrogen bond (thick) and short Au⋯Br and Br⋯Br contacts (thin). |
The bond lengths and angles in compounds 1–5 may be considered normal. The [L2Au]+ cations and the [AuX2]− anions are linear at the gold atom, with maximum deviations of ca 3.5° for the cations of 3 and 4. The six independent Au—Br bond lengths range from 2.3775 (5) to 2.3951 (4) Å. The Au—N bond lengths in 1–4 are almost constant at 2.012 (3)–2.027 (3) Å, as are the C—N—C angles at 118.9 (3)–119.7 (3)°, appreciably wider than in free pyridine (116.4–116.8° in four independent molecules; Mootz & Wussow, 1981).
The related structure of 3-bromopyridine 3-bromopyridinium dibromidoaurate(I) (6) was determined; it crystallizes in space group C2/c with Z = 4, with the gold atom on an inversion centre at (0.25, 0.25, 0.5). However, the NH hydrogen atom is disordered over a twofold axis connecting both bromopyridine residues (and was refined freely as a ‘half’ hydrogen atom). The U values of the bromopyridine site were somewhat high, which probably indicates that this residue is also disordered, over two closely adjacent positions corresponding to a superposition of the cation and the neutral molecule. For this reason, we do not discuss this structure here, but have deposited it (with all faults) for the interested reader (Döring & Jones, 2024c).
3. Supramolecular features
Hydrogen bonds, mostly of the type C—H⋯X, for all structures are given in Tables 6–10. These include several borderline cases that are not discussed explicitly.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C17—H17B⋯Br1iv | 0.98 | 3.01 | 3.971 (4) | 167 | C14—H14⋯Au2v | 0.95 | 2.75 | 3.581 (4) | 147 | Symmetry codes: (iv) ; (v) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C15—H15⋯Br1v | 0.95 | 2.97 | 3.822 (3) | 151 | C14—H14⋯Au2vi | 0.95 | 2.66 | 3.604 (3) | 171 | Symmetry codes: (v) ; (vi) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C18—H18C⋯Cl1 | 0.98 | 2.95 | 3.881 (4) | 160 | C28—H28B⋯Cl1iv | 0.98 | 2.96 | 3.934 (4) | 173 | C12—H12⋯Cl2 | 0.95 | 2.78 | 3.689 (3) | 160 | C22—H22⋯Cl2 | 0.95 | 2.77 | 3.670 (3) | 159 | C26—H26⋯Cl2v | 0.95 | 2.86 | 3.787 (3) | 164 | C26—H26⋯Au3v | 0.95 | 3.01 | 3.844 (3) | 148 | C26—H26⋯Au3i | 0.95 | 3.01 | 3.844 (3) | 148 | C17—H17A⋯Cl2vi | 0.98 | 3.00 | 3.941 (4) | 162 | Symmetry codes: (i) ; (iv) ; (v) ; (vi) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C14—H14⋯Br1 | 0.95 | 3.08 | 3.961 (4) | 155 | C18—H18B⋯Br1 | 0.98 | 3.08 | 4.008 (5) | 159 | C27—H27B⋯Br1i | 0.98 | 3.06 | 4.029 (5) | 172 | C27—H27C⋯Br1iv | 0.98 | 3.10 | 3.955 (5) | 147 | C28—H28A⋯Br1v | 0.98 | 3.05 | 4.026 (5) | 173 | C12—H12⋯Br2 | 0.95 | 2.86 | 3.771 (4) | 160 | C17—H17A⋯Br2vi | 0.98 | 3.02 | 3.911 (4) | 151 | C22—H22⋯Br2 | 0.95 | 2.86 | 3.755 (4) | 158 | C26—H26⋯Br2vii | 0.95 | 3.01 | 3.933 (4) | 166 | Symmetry codes: (i) ; (iv) ; (v) ; (vi) ; (vii) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N11—H11⋯N21 | 0.87 (4) | 1.99 (4) | 2.861 (4) | 174 (4) | C16—H16⋯Br1 | 0.95 | 2.88 | 3.675 (3) | 142 | C13—H13⋯Br2i | 0.95 | 2.93 | 3.853 (3) | 163 | C26—H26⋯Br2ii | 0.95 | 2.99 | 3.843 (3) | 151 | C26—H26⋯Br3 | 0.95 | 2.87 | 3.616 (3) | 136 | C16—H16⋯Br4 | 0.95 | 2.83 | 3.584 (3) | 137 | Symmetry codes: (i) ; (ii) . | |
Compound 1: A second aurophilic contact, Au1⋯Au2(x, −1 + y, z) = 3.1937 (4) Å, connects the gold atoms to form infinite chains of alternating anions and cations parallel to the b axis (Fig. 6). The Au⋯Au⋯Au angles are exactly 180° by symmetry. Adjacent chains are linked by the short contact H14⋯Au2, 2.75 Å, which could be classed as a hydrogen bond with gold as acceptor, to complete a layer structure parallel to the ab plane; for a detailed discussion of H⋯Au hydrogen bonds, see Schmidbaur (2019) and Schmidbaur et al. (2014). An alternative layer structure, parallel to the ac plane, is shown in Fig. 7; it involves the H⋯Au contacts and also borderline Br1⋯Br1′ contacts of 3.8543 (9) Å over inversion centres. The C-centring operator can be seen to move (e.g.) Au2 by b/2 into the paper and a/2 diagonally in the plane of the paper, thus placing it under Au1 to propagate the Au⋯Au chain.
| Figure 6 Packing diagram of compound 1 viewed perpendicular to the ab plane in the region z ≃ 0.75. Dashed lines indicate Au⋯Au contacts (thick) or H⋯Au contacts (thin). Atom labels indicate the asymmetric unit. In all packing diagrams, the hydrogen atoms not involved in significant contacts are omitted. |
| Figure 7 Packing diagram of compound 1 viewed perpendicular to the bc plane in the region y ≃ 0.5. Dashed lines indicate Br⋯Br or H⋯Au contacts. |
Compound 2: The packing is closely related to that of 1. The aurophilic contacts are now equivalent and again connect the gold atoms to form infinite chains parallel to the b axis (Fig. 8). Adjacent chains are again linked by the short contact H14⋯Au2 (2.66 Å) to complete the layer structure parallel to the ab plane. The packing in layers parallel to the ac plane is also repeated, but the c axis is halved, so that adjacent cations (vertically displaced in Fig. 9) are translationally equivalent. The Br1⋯Br1′ contact is 3.8489 (7) Å via the operator −x, 1 − y, 1 − z.
| Figure 8 Packing diagram of compound 2 viewed perpendicular to the ab plane in the region z ≃ 0. Dashed lines indicate Au⋯Au contacts (thick) or H⋯Au contacts (thin). Atom labels indicate the asymmetric unit. Hydrogen atoms not involved in H⋯Au contacts are omitted. |
| Figure 9 Packing diagram of compound 2 viewed perpendicular to the bc plane in the region y ≃ 0. Dashed lines indicate Br⋯Br or H⋯Au contacts. |
The close similarity between Figs. 7 and 9 is evident. The structures of compounds 1 and 2 are effectively the same (except for the position of the methyl substituent and the small shifts associated with this), except that 1 has the higher formal symmetry. The usage of the term ‘isostructural’ in the crystallographic literature has often been inconsistent, but previously one might have defined the two structures as (nearly) isostructural (closely similar connectivity including the secondary contacts) but not isotypic (because of the different cells and space group). The IUCr (2019) has however defined the terms ‘isostructural’ and ‘isotypic’ as synonymous: ‘Two crystals are said to be isostructural if they have the same structure, but not necessarily the same cell dimensions nor the same chemical composition, and with a ‘comparable’ variability in the atomic coordinates to that of the cell dimensions and chemical composition … One also speaks of isostructural series, or of isostructural polymorphs or isostructural phase transitions. The term isotypic is synonymous with isostructural’ (their italics). Bombicz (2024) has recently commented: ‘… the definition of isostructurality is not explicit about several issues. Are the corresponding structures required to have the same stoichiometry, Z′, symmetry elements and the same space group?’, and we have pointed out the presence of some significant differences in formally isotypic structures (Upmann et al., 2024). We too would suggest that the definitions need further amendment and/or clarification.
The packing of bis(3-methylpyridine)gold(I) dichloridoaurate(I) (Jones & Ahrens, 1998) is not closely related to those of compounds 1 and 2, although it too crystallizes in a C-centred monoclinic space group (C2/c). The chains of alternating cations and anions parallel to the c axis were described in the original publication. However, at the time ‘weak’ hydrogen bonds were not generally discussed, so we rectify that omission here. Fig. 10 shows the formation of a layer structure parallel to (101), whereby two ‘weak’ H⋯Cl hydrogen bonds (2.71, 2.81 Å) connect the ions. In contrast to 1 and 2, there are no very short and linear C—H⋯Au contacts.
| Figure 10 Packing diagram of bis(3-methylpyridine)gold(I) dichloridoaurate(I) (Jones & Ahrens, 1998) viewed perpendicular to (101). Dashed lines indicate H⋯Cl (thin) or Au⋯Au (thick) contacts. The Au⋯Au⋯Au chains propagate parallel to the c axis, and only short sections of these chains are visible in this view. |
Compound 3: The shortest contacts between residues, H12⋯Cl2 and H22⋯Cl2 (Table 8) lie within the asymmetric unit and are shown in Fig. 3. An aurophilic contact Au1⋯Au1(−x, 1 − y, 1 − z) of 3.3495 (3) Å connects the cations in pairs. Fig. 11 shows the association of cations and Au3 anions, which are connected by the three shortest H⋯Cl contacts (all to Cl2), to form a ribbon structure parallel to the b axis and lying in a plane parallel to (20). The shortest H⋯Cl1 contacts are > 2.94 Å and involve methyl hydrogens; they are not drawn explicitly. The view parallel to the b axis (Fig. 12) shows the aurophilic contacts between adjacent ribbons.
| Figure 11 Packing diagram of compound 3 viewed perpendicular to (20), centred approximately on (1/4, 1/2, 1/2). Dashed lines indicate H⋯Cl contacts. Atom labels indicate the asymmetric unit. Hydrogen atoms not involved in H⋯Cl contacts are omitted. |
| Figure 12 Packing diagram of compound 3 viewed parallel to the b axis. Hydrogen atoms are omitted. Dashed lines indicate Au⋯Au contacts; the Au3 anions left and right have been omitted to show these contacts more clearly. |
Compound 4 is isotypic to compound 3, so that the packing diagrams are practically the same (but with Br instead of Cl). The Au1⋯Au1 contact is 3.4400 (3) Å.
Compound 5: Several short contacts lie within the asymmetric unit; Br1⋯Br4 = 3.6947 (5) Å and Au1⋯Br4 = 3.5636 (4) Å are shown explicitly in Fig. 5, where the probable ‘weak’ hydrogen bonds H16⋯Br4, H16⋯Br1 and H26⋯Br3 (Table 10) are not drawn but can be easily recognized. The inversion operator links two formula units (Fig. 13) involving the further short contact Br2⋯Br3 of 3.4720 (5) Å. The next shortest Br⋯Br contact is Br2⋯Br4(−1 + x, y, z) = 3.7614 (5) Å, which links the dimers parallel to the a axis (Fig. 14). The Br⋯Br contacts may be classed as ‘halogen bonds’ (see e.g. Metrangolo et al., 2008).
| Figure 13 A dimeric unit of compound 5. Hydrogen atoms not involved in H⋯Br contacts are omitted. Dashed lines indicate classical hydrogen bonds or Br⋯Br contacts (thick) or ‘weak’ H⋯Br hydrogen bonds (thin). The Au1⋯Br4 contacts (see Fig. 5) have also been omitted for clarity. |
| Figure 14 Several dimeric units of compound 5, connected into chains parallel to the a axis by the Br2⋯Br4 contact. This view is a projection parallel to the c axis. |
4. Database survey
The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2024.1.0 of the Cambridge Structural Database (Groom et al., 2016).
A search for all gold(I) complexes involving pyridines (any substitution, but no fused rings) led to 116 hits. The average angle at nitrogen was 118.4 (17) ° for 187 values and the average Au—N bond length was 2.058 (30) Å, but the latter values showed a considerable spread (2.003–2.137 Å); as would be expected from the known trans influences, the shortest Au—N bonds were observed trans to halogen or nitrogen donors and the longest trans to phosphorus donors. Two further ‘simple’ derivatives involving only alkylpyridine and halogenido ligands were found: bis(2,6-dimethylpyridine)gold(I) dichloridoaurate(I), which displays the known structure type with alternating cations and anions connected by Au⋯Au contacts (3.334 and 3.328 Å; refcode BUVTUI, Hashmi et al., 2010) and chlorido(4-ethylpyridine)gold(I), a molecular structure without aurophilic contacts (ESITAE; Hobbollahi et al., 2019).
5. Synthesis and crystallization
Bis(2-methylpyridine)gold(I) dibromidodaurate(I) (1): 55 mg (0.104 mmol) of (tht)AuBr3 (tht = tetrahydrothiophene) were dissolved in 2 mL of 2-methylpyridine. The clear, deep red solution was divided amongst five ignition tubes, overlayered with the five precipitants n-pentane, n-heptane, diethyl ether, diisopropyl ether and petroleum ether (b.p. 313–333 K) and transferred to a refrigerator (276 K). A red oil formed, in which some colourless blocks of compound 1 were observed and removed for investigation. The measured crystal was taken from the tube with n-pentane as precipitant. Elemental analysis [%]: calculated C 19.48, H 1.91, N 3.79; found C 18.89, H 1.89, N 3.91. This synthesis was intended to lead to tribromido(2-methylpyridine)gold(III), which we later obtained in crystalline form using a different method (to be published), and which probably corresponds to the red oil. We can see no obvious reason for the observed reduction to gold(I); the 2-methylpyridine had been recently redistilled.
Bis(3-methylpyridine)gold(I) dibromidoaurate(I) (2): 45.6 mg (0.125 mmol) of (tht)AuBr were dissolved in 2 mL of 3-picoline. The solution was treated as above. Compound 2 was obtained as colourless blocks. The measured crystal was taken from the tube with diisopropyl ether as precipitant. Elemental analysis [%]: calculated C 19.48, H 1.91, N 3.79; found C 19.29, H 1.99, N 3.86.
Bis(3,5-dimethylpyridine)gold(I) dichloridoaurate(I) (3): 40 mg (0.125 mmol) of (tht)AuCl were dissolved in 2 mL of 3,5-dimethylpyridine by sonication. The solution was treated as above. Compound 3 was obtained as colourless plates. The measured crystal was taken from the tube with n-heptane as precipitant. Elemental analysis [%]: calculated C 24.76, H 2.67, N 4.13; found C 25.09, H 2.80, N 4.06.
Bis(3,5-dimethylpyridine)gold(I) dibromidoaurate(I) (4): 45.6 mg (0.125 mmol) of (tht)AuBr were sonicated with 2 mL of 3,5-dimethylpyridine. The solution was filtered and then treated as above. Compound 4 was obtained as colourless blocks. The measured crystal was taken from the tube with n-pentane as precipitant. Elemental analysis [%]: calculated C 21.89, H 2.36, N 3.65; found C 21.73, H 2.38, N 3.70.
2-Bromopyridine 2-bromopyridinium dibromidoaurate(I) (5): 45.6 mg (0.125 mmol) of (tht)AuBr were dissolved in 2 mL of 2-bromopyridine. The solution was treated as above. Compound 5 was obtained as colourless blocks. The measured crystal was taken from the tube with diethyl ether as precipitant. Elemental analysis [%]: calculated C 17.82, H 1.35, N 4.16; found C 17.79, H 1.35, N 4.04.
3-Bromopyridine 3-bromopyridinium dibromidoaurate(I) (6): 45.6 mg (0.125 mmol) of (tht)AuBr were dissolved in 2 mL of 3-bromopyridine. The solution was treated as above. Compound 6 was obtained as colourless needles. The measured crystal was taken from the tube with petroleum ether as precipitant. Elemental analysis [%]: calculated C 17.83, H 1.35, N 4.16; found C 16.74, H 1.18, N 3.90.
6. Refinement
Details of the measurements and refinements are given in Table 11. Structures were refined anisotropically on F2. For compound 5, the NH hydrogen atom was refined freely. Aromatic hydrogens were included at calculated positions and refined using a riding model with C—H = 0.95 Å. Methyl groups were included as idealised rigid groups with C—H = 0.98 Å and H—C—H = 109.5°, and were allowed to rotate but not tip (command AFIX 137). U values of the hydrogen atoms were fixed at 1.5 × Ueq of the parent carbon atoms for methyl groups and 1.2 × Ueq of the parent carbon atoms for other hydrogens. For compounds 1, 2 and 3, three, one and one badly fitting reflection(s), respectively, were omitted.
| 1 | 2 | 3 | 4 | 5 | Crystal data | Chemical formula | [Au(C6H7N)2][AuBr2] | [Au(C6H7N)2][AuBr2] | [Au(C7H9N)2][AuCl2] | [Au(C7H9N)2][AuBr2] | (C5H5BrN)[AuBr2]·C5H4BrN | Mr | 740.00 | 740.00 | 679.14 | 768.06 | 673.80 | Crystal system, space group | Monoclinic, C2/c | Monoclinic, C2/m | Triclinic, P | Triclinic, P | Triclinic, P | Temperature (K) | 100 | 100 | 100 | 100 | 100 | a, b, c (Å) | 16.3717 (7), 6.3844 (3), 16.1850 (8) | 16.7380 (6), 6.44097 (13), 8.1923 (3) | 6.7718 (3), 8.5627 (5), 15.1064 (8) | 6.8343 (2), 8.6676 (3), 15.4049 (6) | 7.9931 (4), 8.4672 (3), 11.3923 (5) | α, β, γ (°) | 90, 116.649 (6), 90 | 90, 120.415 (5), 90 | 105.356 (5), 90.788 (4), 96.311 (4) | 105.720 (3), 90.741 (3), 98.242 (3) | 87.202 (4), 74.635 (4), 81.406 (4) | V (Å3) | 1512.00 (13) | 761.65 (5) | 838.71 (8) | 868.05 (6) | 735.09 (6) | Z | 4 | 2 | 2 | 2 | 2 | Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα | Mo Kα | μ (mm−1) | 24.65 | 24.47 | 17.78 | 21.48 | 20.86 | Crystal size (mm) | 0.25 × 0.06 × 0.02 | 0.15 × 0.15 × 0.10 | 0.15 × 0.15 × 0.01 | 0.15 × 0.10 × 0.03 | 0.15 × 0.10 × 0.04 | | Data collection | Diffractometer | Oxford Diffraction Xcalibur, Eos | Oxford Diffraction Xcalibur, Eos | Oxford Diffraction Xcalibur, Eos | Oxford Diffraction Xcalibur, Eos | Oxford Diffrection Xcalibur, Eos | Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2014) | Multi-scan (CrysAlis PRO; Rigaku OD, 2014) | Multi-scan (CrysAlis PRO; Rigaku OD, 2014) | Multi-scan (CrysAlis PRO; Rigaku OD, 2014) | Multi-scan (CrysAlis PRO; Rigaku OD, 2014) | Tmin, Tmax | 0.275, 1.000 | 0.487, 1.000 | 0.330, 1.000 | 0.256, 1.000 | 0.241, 1.000 | No. of measured, independent and observed [I > 2σ(I)] reflections | 19772, 2268, 1793 | 25258, 1255, 1162 | 44852, 5018, 4253 | 47547, 5187, 4424 | 42320, 4361, 3917 | Rint | 0.041 | 0.034 | 0.054 | 0.055 | 0.044 | θ values (°) | θmax = 30.9, θmin = 2.8 | θmax = 30.9, θmin = 2.8 | θmax = 31.0, θmin = 2.5 | θmax = 30.9, θmin = 2.5 | θmax = 30.9, θmin = 2.4 | (sin θ/λ)max (Å−1) | 0.722 | 0.723 | 0.724 | 0.722 | 0.723 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.041, 1.10 | 0.013, 0.029, 1.12 | 0.022, 0.040, 1.06 | 0.026, 0.054, 1.05 | 0.023, 0.048, 1.07 | No. of reflections | 2268 | 1255 | 5018 | 5187 | 4361 | No. of parameters | 84 | 65 | 189 | 188 | 158 | No. of restraints | 0 | 1 | 0 | 0 | 0 | H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement | Δρmax, Δρmin (e Å−3) | 1.31, −1.16 | 1.02, −0.93 | 1.04, −0.87 | 1.24, −1.80 | 1.15, −1.49 | Extinction method | None | SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]−1/4 | SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]−1/4 | None | None | Extinction coefficient | – | 0.00089 (6) | 0.00055 (6) | – | – | Computer programs: CrysAlis PRO (Rigaku OD, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and XP (Bruker, 1998). | |
Special aspects for compound 2: The structure was refined in a non-reduced setting of C2/m to facilitate comparison with structure 1 (see Supramolecular features), The reorientation matrix −1 0 −2 / 0 −1 0 / 0 0 1 converts the cell to a C-centred cell with a = 16.460, b = 6.441, c = 8.192 Å and a lower β angle of 118.72°, whereas the matrix 0 0 −1 / 0 −1 0 / −1 0 −1 leads to an I-centred cell with a = 8.192, b = 6.441, c = 14.437 Å and β = 91.12°. The carbon atom of the methyl group (C17) lies in a mirror plane; its hydrogen atoms (one in the mirror plane and one on a general position) were refined freely, but with C—H distances restrained to be approximately equal (command SADI).
Supporting information
Bis(2-methylpyridine)gold(I) dibromidoaurate(I) (1)
top Crystal data top [Au(C6H7N)2][AuBr2] | F(000) = 1312 |
Mr = 740.00 | Dx = 3.251 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.3717 (7) Å | Cell parameters from 5716 reflections |
b = 6.3844 (3) Å | θ = 2.8–30.0° |
c = 16.1850 (8) Å | µ = 24.65 mm−1 |
β = 116.649 (6)° | T = 100 K |
V = 1512.00 (13) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.06 × 0.02 mm |
Data collection top Oxford Diffraction Xcalibur, Eos diffractometer | 2268 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1793 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 30.9°, θmin = 2.8° |
ω scan | h = −23→23 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2014) | k = −8→9 |
Tmin = 0.275, Tmax = 1.000 | l = −22→23 |
19772 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.041 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0112P)2 + 5.1398P] where P = (Fo2 + 2Fc2)/3 |
2268 reflections | (Δ/σ)max = 0.001 |
84 parameters | Δρmax = 1.31 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Au1 | 0.000000 | 0.41975 (3) | 0.750000 | 0.01280 (5) | |
Au2 | 0.000000 | 0.91951 (4) | 0.750000 | 0.01467 (6) | |
Br1 | 0.04466 (3) | 0.92135 (7) | 0.91263 (3) | 0.02145 (9) | |
N11 | 0.1128 (2) | 0.4215 (5) | 0.7285 (2) | 0.0144 (6) | |
C12 | 0.1984 (3) | 0.4283 (6) | 0.7993 (3) | 0.0166 (8) | |
C13 | 0.2741 (3) | 0.4327 (6) | 0.7815 (3) | 0.0186 (8) | |
H13 | 0.334013 | 0.436936 | 0.831171 | 0.022* | |
C14 | 0.2616 (3) | 0.4307 (7) | 0.6915 (3) | 0.0235 (9) | |
H14 | 0.312952 | 0.434924 | 0.678944 | 0.028* | |
C15 | 0.1743 (3) | 0.4227 (7) | 0.6193 (3) | 0.0225 (9) | |
H15 | 0.164670 | 0.421694 | 0.556923 | 0.027* | |
C16 | 0.1012 (3) | 0.4161 (7) | 0.6405 (3) | 0.0192 (8) | |
H16 | 0.040936 | 0.407493 | 0.591510 | 0.023* | |
C17 | 0.2067 (3) | 0.4329 (7) | 0.8949 (3) | 0.0231 (9) | |
H17A | 0.172327 | 0.552494 | 0.901163 | 0.035* | |
H17B | 0.271147 | 0.446328 | 0.939583 | 0.035* | |
H17C | 0.181879 | 0.302807 | 0.906718 | 0.035* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Au1 | 0.00881 (9) | 0.01696 (11) | 0.01346 (10) | 0.000 | 0.00573 (7) | 0.000 |
Au2 | 0.00994 (10) | 0.01992 (11) | 0.01375 (10) | 0.000 | 0.00495 (8) | 0.000 |
Br1 | 0.01998 (19) | 0.0288 (2) | 0.01402 (17) | 0.00081 (19) | 0.00620 (15) | 0.00011 (18) |
N11 | 0.0125 (15) | 0.0139 (15) | 0.0179 (16) | 0.0000 (13) | 0.0077 (13) | −0.0005 (14) |
C12 | 0.0160 (19) | 0.0088 (17) | 0.023 (2) | −0.0010 (16) | 0.0072 (16) | 0.0003 (16) |
C13 | 0.0133 (18) | 0.0096 (18) | 0.031 (2) | −0.0012 (15) | 0.0085 (17) | 0.0010 (17) |
C14 | 0.022 (2) | 0.015 (2) | 0.045 (3) | 0.0013 (18) | 0.025 (2) | −0.0025 (19) |
C15 | 0.031 (2) | 0.017 (2) | 0.029 (2) | −0.0031 (19) | 0.022 (2) | −0.0035 (18) |
C16 | 0.020 (2) | 0.019 (2) | 0.021 (2) | −0.0034 (18) | 0.0108 (17) | −0.0016 (17) |
C17 | 0.019 (2) | 0.027 (2) | 0.018 (2) | 0.0001 (19) | 0.0038 (17) | 0.0007 (18) |
Geometric parameters (Å, º) top Au1—N11 | 2.027 (3) | C13—C14 | 1.378 (6) |
Au1—N11i | 2.027 (3) | C13—H13 | 0.9500 |
Au1—Au2 | 3.1907 (4) | C14—C15 | 1.383 (6) |
Au1—Au2ii | 3.1937 (4) | C14—H14 | 0.9500 |
Au2—Br1 | 2.3951 (4) | C15—C16 | 1.385 (6) |
Au2—Br1i | 2.3951 (4) | C15—H15 | 0.9500 |
N11—C16 | 1.350 (5) | C16—H16 | 0.9500 |
N11—C12 | 1.356 (5) | C17—H17A | 0.9800 |
C12—C13 | 1.392 (6) | C17—H17B | 0.9800 |
C12—C17 | 1.492 (6) | C17—H17C | 0.9800 |
| | | |
N11—Au1—N11i | 179.35 (19) | C14—C13—C12 | 119.7 (4) |
N11—Au1—Au2 | 89.67 (9) | C14—C13—H13 | 120.2 |
N11i—Au1—Au2 | 89.67 (9) | C12—C13—H13 | 120.2 |
N11—Au1—Au2ii | 90.33 (9) | C13—C14—C15 | 120.0 (4) |
N11i—Au1—Au2ii | 90.33 (9) | C13—C14—H14 | 120.0 |
Au2—Au1—Au2ii | 180.0 | C15—C14—H14 | 120.0 |
Br1—Au2—Br1i | 179.44 (2) | C14—C15—C16 | 118.2 (4) |
Br1—Au2—Au1 | 90.282 (12) | C14—C15—H15 | 120.9 |
Br1i—Au2—Au1 | 90.282 (12) | C16—C15—H15 | 120.9 |
Br1—Au2—Au1iii | 89.718 (12) | N11—C16—C15 | 122.1 (4) |
Br1i—Au2—Au1iii | 89.718 (12) | N11—C16—H16 | 119.0 |
Au1—Au2—Au1iii | 180.0 | C15—C16—H16 | 119.0 |
C16—N11—C12 | 119.7 (3) | C12—C17—H17A | 109.5 |
C16—N11—Au1 | 118.2 (3) | C12—C17—H17B | 109.5 |
C12—N11—Au1 | 122.1 (3) | H17A—C17—H17B | 109.5 |
N11—C12—C13 | 120.3 (4) | C12—C17—H17C | 109.5 |
N11—C12—C17 | 117.1 (4) | H17A—C17—H17C | 109.5 |
C13—C12—C17 | 122.7 (4) | H17B—C17—H17C | 109.5 |
| | | |
N11i—Au1—Au2—Br1 | 70.36 (9) | C17—C12—C13—C14 | −179.2 (4) |
N11—Au1—Au2—Br1 | −109.64 (9) | C12—C13—C14—C15 | −0.6 (6) |
C16—N11—C12—C13 | 0.9 (6) | C13—C14—C15—C16 | −0.2 (6) |
Au1—N11—C12—C13 | −179.0 (3) | C12—N11—C16—C15 | −1.7 (6) |
C16—N11—C12—C17 | −179.7 (4) | Au1—N11—C16—C15 | 178.2 (3) |
Au1—N11—C12—C17 | 0.5 (5) | C14—C15—C16—N11 | 1.3 (6) |
N11—C12—C13—C14 | 0.2 (6) | | |
Symmetry codes: (i) −x, y, −z+3/2; (ii) x, y−1, z; (iii) x, y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···Br1iv | 0.98 | 3.01 | 3.971 (4) | 167 |
C14—H14···Au2v | 0.95 | 2.75 | 3.581 (4) | 147 |
Symmetry codes: (iv) −x+1/2, −y+3/2, −z+2; (v) x+1/2, y−1/2, z. |
Bis(3-methylpyridine)gold(I) dibromidoaurate(I) (2)
top Crystal data top [Au(C6H7N)2][AuBr2] | F(000) = 656 |
Mr = 740.00 | Dx = 3.227 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 16.7380 (6) Å | Cell parameters from 11080 reflections |
b = 6.44097 (13) Å | θ = 2.8–30.7° |
c = 8.1923 (3) Å | µ = 24.47 mm−1 |
β = 120.415 (5)° | T = 100 K |
V = 761.65 (5) Å3 | Block, colourless |
Z = 2 | 0.15 × 0.15 × 0.10 mm |
Data collection top Oxford Diffraction Xcalibur, Eos diffractometer | 1255 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1162 reflections with I > 2σ(I) |
Detector resolution: 16.1419 pixels mm-1 | Rint = 0.034 |
ω scan | θmax = 30.9°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2014) | h = −23→23 |
Tmin = 0.487, Tmax = 1.000 | k = −9→9 |
25258 measured reflections | l = −11→11 |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.013 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.029 | w = 1/[σ2(Fo2) + (0.0135P)2 + 1.2949P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1255 reflections | Δρmax = 1.02 e Å−3 |
65 parameters | Δρmin = −0.93 e Å−3 |
1 restraint | Extinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00089 (6) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Au1 | 0.000000 | 0.000000 | 0.000000 | 0.01689 (5) | |
Au2 | 0.000000 | 0.500000 | 0.000000 | 0.01495 (5) | |
Br1 | 0.04670 (2) | 0.500000 | 0.32827 (5) | 0.02509 (8) | |
N11 | 0.11729 (18) | 0.000000 | −0.0135 (4) | 0.0162 (5) | |
C12 | 0.1127 (2) | 0.000000 | −0.1827 (4) | 0.0169 (6) | |
H12 | 0.053400 | 0.000000 | −0.294313 | 0.020* | |
C13 | 0.1909 (2) | 0.000000 | −0.2013 (4) | 0.0162 (6) | |
C14 | 0.2766 (2) | 0.000000 | −0.0343 (5) | 0.0172 (6) | |
H14 | 0.331892 | 0.000000 | −0.040186 | 0.021* | |
C15 | 0.2820 (2) | 0.000000 | 0.1388 (5) | 0.0192 (6) | |
H15 | 0.340530 | 0.000000 | 0.252323 | 0.023* | |
C16 | 0.2012 (2) | 0.000000 | 0.1456 (5) | 0.0185 (6) | |
H16 | 0.204838 | 0.000000 | 0.265147 | 0.022* | |
C17 | 0.1818 (2) | 0.000000 | −0.3930 (5) | 0.0236 (7) | |
H17A | 0.153 (2) | 0.125 (5) | −0.465 (5) | 0.052 (10)* | |
H17B | 0.243 (3) | 0.000000 | −0.380 (8) | 0.059 (16)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Au1 | 0.01603 (8) | 0.01599 (8) | 0.02303 (9) | 0.000 | 0.01310 (7) | 0.000 |
Au2 | 0.01066 (8) | 0.01903 (8) | 0.01457 (8) | 0.000 | 0.00595 (6) | 0.000 |
Br1 | 0.02468 (16) | 0.03297 (18) | 0.01477 (14) | 0.000 | 0.00789 (12) | 0.000 |
N11 | 0.0160 (12) | 0.0143 (11) | 0.0207 (12) | 0.000 | 0.0110 (10) | 0.000 |
C12 | 0.0135 (13) | 0.0168 (14) | 0.0181 (14) | 0.000 | 0.0062 (11) | 0.000 |
C13 | 0.0167 (14) | 0.0132 (13) | 0.0181 (14) | 0.000 | 0.0084 (12) | 0.000 |
C14 | 0.0122 (13) | 0.0142 (13) | 0.0239 (15) | 0.000 | 0.0082 (12) | 0.000 |
C15 | 0.0167 (14) | 0.0165 (14) | 0.0183 (14) | 0.000 | 0.0043 (12) | 0.000 |
C16 | 0.0233 (16) | 0.0149 (14) | 0.0190 (14) | 0.000 | 0.0118 (13) | 0.000 |
C17 | 0.0233 (17) | 0.0281 (17) | 0.0212 (16) | 0.000 | 0.0126 (14) | 0.000 |
Geometric parameters (Å, º) top Au1—N11 | 2.021 (3) | C13—C14 | 1.394 (4) |
Au1—N11i | 2.021 (3) | C13—C17 | 1.499 (5) |
Au1—Au2 | 3.2205 (1) | C14—C15 | 1.375 (5) |
Au1—Au2ii | 3.2205 (1) | C14—H14 | 0.9500 |
Au2—Br1iii | 2.3906 (3) | C15—C16 | 1.381 (5) |
Au2—Br1 | 2.3906 (3) | C15—H15 | 0.9500 |
N11—C16 | 1.348 (4) | C16—H16 | 0.9500 |
N11—C12 | 1.349 (4) | C17—H17A | 0.97 (3) |
C12—C13 | 1.391 (4) | C17—H17B | 0.98 (3) |
C12—H12 | 0.9500 | C17—H17Aiv | 0.97 (3) |
| | | |
N11—Au1—N11i | 180.0 | C12—C13—C14 | 116.8 (3) |
N11—Au1—Au2 | 90.0 | C12—C13—C17 | 120.8 (3) |
N11i—Au1—Au2 | 90.0 | C14—C13—C17 | 122.4 (3) |
N11—Au1—Au2ii | 90.0 | C15—C14—C13 | 120.6 (3) |
N11i—Au1—Au2ii | 90.0 | C15—C14—H14 | 119.7 |
Au2—Au1—Au2ii | 180.0 | C13—C14—H14 | 119.7 |
Br1iii—Au2—Br1 | 180.0 | C14—C15—C16 | 119.2 (3) |
Br1iii—Au2—Au1 | 90.0 | C14—C15—H15 | 120.4 |
Br1—Au2—Au1 | 90.0 | C16—C15—H15 | 120.4 |
Br1iii—Au2—Au1v | 90.0 | N11—C16—C15 | 121.5 (3) |
Br1—Au2—Au1v | 90.0 | N11—C16—H16 | 119.2 |
Au1—Au2—Au1v | 180.0 | C15—C16—H16 | 119.2 |
C16—N11—C12 | 118.9 (3) | C13—C17—H17A | 113 (2) |
C16—N11—Au1 | 120.8 (2) | C13—C17—H17B | 110 (3) |
C12—N11—Au1 | 120.3 (2) | H17A—C17—H17B | 104 (3) |
N11—C12—C13 | 123.0 (3) | C13—C17—H17Aiv | 113 (2) |
N11—C12—H12 | 118.5 | H17A—C17—H17Aiv | 112 (4) |
C13—C12—H12 | 118.5 | H17B—C17—H17Aiv | 104 (3) |
| | | |
N11—Au1—Au2—Br1 | −106.73 (8) | C12—C13—C14—C15 | 0.000 (1) |
N11i—Au1—Au2—Br1 | 73.27 (8) | C17—C13—C14—C15 | 180.000 (1) |
C16—N11—C12—C13 | 0.000 (1) | C13—C14—C15—C16 | 0.000 (1) |
Au1—N11—C12—C13 | 180.000 (1) | C12—N11—C16—C15 | 0.000 (1) |
N11—C12—C13—C14 | 0.000 (1) | Au1—N11—C16—C15 | 180.000 (1) |
N11—C12—C13—C17 | 180.000 (1) | C14—C15—C16—N11 | 0.000 (1) |
Symmetry codes: (i) −x, −y, −z; (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) x, −y, z; (v) x, y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···Br1vi | 0.95 | 2.97 | 3.822 (3) | 151 |
C14—H14···Au2vii | 0.95 | 2.66 | 3.604 (3) | 171 |
Symmetry codes: (vi) −x+1/2, −y+1/2, −z+1; (vii) x+1/2, y−1/2, z. |
Bis(3,5-dimethylpyridine)gold(I) dichloridoaurate(I) (3)
top Crystal data top [Au(C7H9N)2][AuCl2] | Z = 2 |
Mr = 679.14 | F(000) = 616 |
Triclinic, P1 | Dx = 2.689 Mg m−3 |
a = 6.7718 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5627 (5) Å | Cell parameters from 11878 reflections |
c = 15.1064 (8) Å | θ = 2.8–29.9° |
α = 105.356 (5)° | µ = 17.78 mm−1 |
β = 90.788 (4)° | T = 100 K |
γ = 96.311 (4)° | Plate, colourless |
V = 838.71 (8) Å3 | 0.15 × 0.15 × 0.01 mm |
Data collection top Oxford Diffraction Xcalibur, Eos diffractometer | 5018 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4253 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 31.0°, θmin = 2.5° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2014) | k = −11→12 |
Tmin = 0.330, Tmax = 1.000 | l = −21→21 |
44852 measured reflections | |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.040 | w = 1/[σ2(Fo2) + (0.0126P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5018 reflections | Δρmax = 1.04 e Å−3 |
189 parameters | Δρmin = −0.87 e Å−3 |
0 restraints | Extinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00055 (6) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Au1 | 0.19404 (2) | 0.41613 (2) | 0.44756 (2) | 0.01391 (4) | |
Au2 | 0.500000 | 1.000000 | 1.000000 | 0.02024 (5) | |
Au3 | 0.000000 | 1.000000 | 0.500000 | 0.01968 (5) | |
Cl1 | 0.52929 (15) | 0.75061 (11) | 1.01852 (7) | 0.0298 (2) | |
Cl2 | 0.16983 (15) | 0.81866 (10) | 0.40299 (6) | 0.0265 (2) | |
N11 | 0.2983 (4) | 0.5264 (3) | 0.57698 (19) | 0.0143 (6) | |
C12 | 0.3289 (5) | 0.6906 (4) | 0.6049 (2) | 0.0154 (7) | |
H12 | 0.302272 | 0.750675 | 0.562391 | 0.019* | |
C13 | 0.3978 (5) | 0.7752 (4) | 0.6935 (2) | 0.0144 (7) | |
C14 | 0.4386 (4) | 0.6835 (4) | 0.7535 (2) | 0.0138 (7) | |
H14 | 0.485411 | 0.737610 | 0.814703 | 0.017* | |
C15 | 0.4122 (5) | 0.5140 (4) | 0.7256 (2) | 0.0163 (7) | |
C16 | 0.3408 (5) | 0.4399 (4) | 0.6355 (2) | 0.0140 (7) | |
H16 | 0.321583 | 0.324214 | 0.614935 | 0.017* | |
C17 | 0.4251 (5) | 0.9581 (4) | 0.7204 (2) | 0.0187 (7) | |
H17A | 0.546670 | 0.997066 | 0.694511 | 0.028* | |
H17B | 0.435787 | 0.998634 | 0.787560 | 0.028* | |
H17C | 0.310597 | 0.997990 | 0.696811 | 0.028* | |
C18 | 0.4577 (5) | 0.4110 (4) | 0.7885 (2) | 0.0217 (8) | |
H18A | 0.559862 | 0.341875 | 0.762129 | 0.033* | |
H18B | 0.336588 | 0.342098 | 0.795489 | 0.033* | |
H18C | 0.506095 | 0.481966 | 0.848735 | 0.033* | |
N21 | 0.1074 (4) | 0.3082 (3) | 0.31525 (19) | 0.0131 (6) | |
C22 | 0.0795 (5) | 0.3988 (4) | 0.2563 (2) | 0.0154 (7) | |
H22 | 0.088903 | 0.514002 | 0.279473 | 0.018* | |
C23 | 0.0379 (5) | 0.3303 (4) | 0.1639 (2) | 0.0148 (7) | |
C24 | 0.0261 (5) | 0.1609 (4) | 0.1313 (2) | 0.0165 (7) | |
H24 | −0.001606 | 0.110207 | 0.067693 | 0.020* | |
C25 | 0.0543 (5) | 0.0655 (4) | 0.1908 (2) | 0.0158 (7) | |
C26 | 0.0945 (5) | 0.1446 (4) | 0.2825 (2) | 0.0141 (7) | |
H26 | 0.113969 | 0.081270 | 0.324199 | 0.017* | |
C27 | 0.0083 (6) | 0.4329 (4) | 0.0993 (3) | 0.0236 (8) | |
H27A | 0.010261 | 0.547109 | 0.134369 | 0.035* | |
H27B | −0.120006 | 0.395214 | 0.065353 | 0.035* | |
H27C | 0.115449 | 0.423334 | 0.055848 | 0.035* | |
C28 | 0.0428 (5) | −0.1171 (4) | 0.1578 (2) | 0.0194 (7) | |
H28A | 0.154670 | −0.147117 | 0.118872 | 0.029* | |
H28B | −0.082559 | −0.160796 | 0.122245 | 0.029* | |
H28C | 0.048879 | −0.162509 | 0.210764 | 0.029* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Au1 | 0.01280 (7) | 0.01698 (7) | 0.00988 (7) | 0.00158 (5) | −0.00054 (5) | 0.00011 (5) |
Au2 | 0.02307 (11) | 0.02408 (10) | 0.01180 (10) | 0.00159 (8) | −0.00070 (8) | 0.00230 (8) |
Au3 | 0.02985 (11) | 0.01651 (9) | 0.01332 (10) | 0.00124 (8) | −0.00102 (8) | 0.00583 (7) |
Cl1 | 0.0419 (6) | 0.0270 (5) | 0.0199 (5) | 0.0048 (4) | −0.0029 (4) | 0.0054 (4) |
Cl2 | 0.0420 (6) | 0.0198 (4) | 0.0194 (5) | 0.0065 (4) | 0.0042 (4) | 0.0069 (4) |
N11 | 0.0104 (13) | 0.0185 (14) | 0.0129 (15) | 0.0013 (11) | −0.0003 (11) | 0.0024 (11) |
C12 | 0.0146 (16) | 0.0169 (16) | 0.0153 (18) | 0.0040 (13) | 0.0017 (13) | 0.0042 (13) |
C13 | 0.0110 (16) | 0.0163 (16) | 0.0141 (17) | 0.0016 (12) | 0.0038 (13) | 0.0010 (13) |
C14 | 0.0104 (15) | 0.0188 (16) | 0.0095 (16) | −0.0017 (12) | 0.0004 (12) | 0.0005 (13) |
C15 | 0.0146 (17) | 0.0194 (17) | 0.0154 (18) | 0.0014 (13) | 0.0009 (13) | 0.0057 (14) |
C16 | 0.0138 (16) | 0.0127 (15) | 0.0146 (17) | 0.0017 (12) | 0.0017 (13) | 0.0018 (13) |
C17 | 0.0182 (18) | 0.0154 (16) | 0.0221 (19) | 0.0014 (13) | 0.0004 (15) | 0.0046 (14) |
C18 | 0.031 (2) | 0.0199 (18) | 0.0147 (18) | 0.0016 (15) | −0.0010 (15) | 0.0063 (14) |
N21 | 0.0099 (13) | 0.0146 (13) | 0.0134 (15) | 0.0012 (10) | 0.0015 (11) | 0.0016 (11) |
C22 | 0.0144 (16) | 0.0121 (15) | 0.0188 (18) | 0.0023 (12) | 0.0003 (14) | 0.0024 (13) |
C23 | 0.0129 (16) | 0.0129 (15) | 0.0184 (18) | 0.0034 (12) | 0.0015 (13) | 0.0032 (13) |
C24 | 0.0214 (18) | 0.0169 (16) | 0.0100 (17) | 0.0030 (13) | 0.0005 (14) | 0.0010 (13) |
C25 | 0.0170 (17) | 0.0134 (15) | 0.0170 (18) | 0.0020 (13) | 0.0006 (14) | 0.0039 (13) |
C26 | 0.0119 (16) | 0.0147 (15) | 0.0166 (18) | 0.0029 (12) | 0.0029 (13) | 0.0051 (13) |
C27 | 0.034 (2) | 0.0177 (17) | 0.019 (2) | 0.0032 (15) | −0.0024 (16) | 0.0063 (15) |
C28 | 0.0270 (19) | 0.0133 (16) | 0.0169 (19) | 0.0035 (14) | 0.0026 (15) | 0.0018 (14) |
Geometric parameters (Å, º) top Au1—N11 | 2.013 (3) | C18—H18A | 0.9800 |
Au1—N21 | 2.016 (3) | C18—H18B | 0.9800 |
Au1—Au1i | 3.3495 (3) | C18—H18C | 0.9800 |
Au2—Cl1 | 2.2551 (9) | N21—C26 | 1.349 (4) |
Au2—Cl1ii | 2.2551 (9) | N21—C22 | 1.351 (4) |
Au3—Cl2 | 2.2617 (9) | C22—C23 | 1.375 (5) |
Au3—Cl2iii | 2.2617 (9) | C22—H22 | 0.9500 |
N11—C16 | 1.342 (4) | C23—C24 | 1.396 (4) |
N11—C12 | 1.348 (4) | C23—C27 | 1.500 (5) |
C12—C13 | 1.388 (4) | C24—C25 | 1.389 (4) |
C12—H12 | 0.9500 | C24—H24 | 0.9500 |
C13—C14 | 1.390 (5) | C25—C26 | 1.380 (5) |
C13—C17 | 1.500 (4) | C25—C28 | 1.503 (4) |
C14—C15 | 1.390 (4) | C26—H26 | 0.9500 |
C14—H14 | 0.9500 | C27—H27A | 0.9800 |
C15—C16 | 1.394 (4) | C27—H27B | 0.9800 |
C15—C18 | 1.508 (4) | C27—H27C | 0.9800 |
C16—H16 | 0.9500 | C28—H28A | 0.9800 |
C17—H17A | 0.9800 | C28—H28B | 0.9800 |
C17—H17B | 0.9800 | C28—H28C | 0.9800 |
C17—H17C | 0.9800 | | |
| | | |
N11—Au1—N21 | 176.33 (10) | H18A—C18—H18C | 109.5 |
N11—Au1—Au1i | 75.62 (7) | H18B—C18—H18C | 109.5 |
N21—Au1—Au1i | 107.56 (7) | C26—N21—C22 | 119.0 (3) |
Cl1—Au2—Cl1ii | 180.0 | C26—N21—Au1 | 120.2 (2) |
Cl2—Au3—Cl2iii | 180.0 | C22—N21—Au1 | 120.6 (2) |
C16—N11—C12 | 119.4 (3) | N21—C22—C23 | 122.4 (3) |
C16—N11—Au1 | 121.4 (2) | N21—C22—H22 | 118.8 |
C12—N11—Au1 | 119.2 (2) | C23—C22—H22 | 118.8 |
N11—C12—C13 | 122.5 (3) | C22—C23—C24 | 117.8 (3) |
N11—C12—H12 | 118.7 | C22—C23—C27 | 121.7 (3) |
C13—C12—H12 | 118.7 | C24—C23—C27 | 120.6 (3) |
C12—C13—C14 | 117.3 (3) | C25—C24—C23 | 120.8 (3) |
C12—C13—C17 | 119.7 (3) | C25—C24—H24 | 119.6 |
C14—C13—C17 | 123.0 (3) | C23—C24—H24 | 119.6 |
C15—C14—C13 | 121.2 (3) | C26—C25—C24 | 117.5 (3) |
C15—C14—H14 | 119.4 | C26—C25—C28 | 120.4 (3) |
C13—C14—H14 | 119.4 | C24—C25—C28 | 122.0 (3) |
C14—C15—C16 | 117.4 (3) | N21—C26—C25 | 122.6 (3) |
C14—C15—C18 | 122.5 (3) | N21—C26—H26 | 118.7 |
C16—C15—C18 | 120.1 (3) | C25—C26—H26 | 118.7 |
N11—C16—C15 | 122.3 (3) | C23—C27—H27A | 109.5 |
N11—C16—H16 | 118.9 | C23—C27—H27B | 109.5 |
C15—C16—H16 | 118.9 | H27A—C27—H27B | 109.5 |
C13—C17—H17A | 109.5 | C23—C27—H27C | 109.5 |
C13—C17—H17B | 109.5 | H27A—C27—H27C | 109.5 |
H17A—C17—H17B | 109.5 | H27B—C27—H27C | 109.5 |
C13—C17—H17C | 109.5 | C25—C28—H28A | 109.5 |
H17A—C17—H17C | 109.5 | C25—C28—H28B | 109.5 |
H17B—C17—H17C | 109.5 | H28A—C28—H28B | 109.5 |
C15—C18—H18A | 109.5 | C25—C28—H28C | 109.5 |
C15—C18—H18B | 109.5 | H28A—C28—H28C | 109.5 |
H18A—C18—H18B | 109.5 | H28B—C28—H28C | 109.5 |
C15—C18—H18C | 109.5 | | |
| | | |
C16—N11—C12—C13 | −1.9 (5) | C26—N21—C22—C23 | 0.1 (5) |
Au1—N11—C12—C13 | 179.1 (2) | Au1—N21—C22—C23 | 174.0 (2) |
N11—C12—C13—C14 | 1.1 (5) | N21—C22—C23—C24 | −0.4 (5) |
N11—C12—C13—C17 | −178.9 (3) | N21—C22—C23—C27 | −179.7 (3) |
C12—C13—C14—C15 | 0.3 (5) | C22—C23—C24—C25 | 0.4 (5) |
C17—C13—C14—C15 | −179.7 (3) | C27—C23—C24—C25 | 179.7 (3) |
C13—C14—C15—C16 | −0.8 (5) | C23—C24—C25—C26 | −0.1 (5) |
C13—C14—C15—C18 | 179.1 (3) | C23—C24—C25—C28 | −179.9 (3) |
C12—N11—C16—C15 | 1.3 (5) | C22—N21—C26—C25 | 0.1 (5) |
Au1—N11—C16—C15 | −179.7 (2) | Au1—N21—C26—C25 | −173.8 (2) |
C14—C15—C16—N11 | 0.0 (5) | C24—C25—C26—N21 | −0.1 (5) |
C18—C15—C16—N11 | −180.0 (3) | C28—C25—C26—N21 | 179.6 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18C···Cl1 | 0.98 | 2.95 | 3.881 (4) | 160 |
C28—H28B···Cl1iv | 0.98 | 2.96 | 3.934 (4) | 173 |
C12—H12···Cl2 | 0.95 | 2.78 | 3.689 (3) | 160 |
C22—H22···Cl2 | 0.95 | 2.77 | 3.670 (3) | 159 |
C26—H26···Cl2v | 0.95 | 2.86 | 3.787 (3) | 164 |
C26—H26···Au3v | 0.95 | 3.01 | 3.844 (3) | 148 |
C26—H26···Au3i | 0.95 | 3.01 | 3.844 (3) | 148 |
C17—H17A···Cl2vi | 0.98 | 3.00 | 3.941 (4) | 162 |
Symmetry codes: (i) −x, −y+1, −z+1; (iv) x−1, y−1, z−1; (v) x, y−1, z; (vi) −x+1, −y+2, −z+1. |
Bis(3,5-dimethylpyridine)gold(I) dibromidoaurate(I) (4)
top Crystal data top [Au(C7H9N)2][AuBr2] | Z = 2 |
Mr = 768.06 | F(000) = 688 |
Triclinic, P1 | Dx = 2.938 Mg m−3 |
a = 6.8343 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.6676 (3) Å | Cell parameters from 11289 reflections |
c = 15.4049 (6) Å | θ = 2.8–30.4° |
α = 105.720 (3)° | µ = 21.48 mm−1 |
β = 90.741 (3)° | T = 100 K |
γ = 98.242 (3)° | Block, colourless |
V = 868.05 (6) Å3 | 0.15 × 0.10 × 0.03 mm |
Data collection top Oxford Diffraction Xcalibur, Eos diffractometer | 5187 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4424 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 30.9°, θmin = 2.5° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2014) | k = −12→12 |
Tmin = 0.256, Tmax = 1.000 | l = −22→21 |
47547 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0219P)2 + 1.2753P] where P = (Fo2 + 2Fc2)/3 |
5187 reflections | (Δ/σ)max = 0.001 |
188 parameters | Δρmax = 1.24 e Å−3 |
0 restraints | Δρmin = −1.80 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Au1 | 0.19570 (2) | 0.41886 (2) | 0.44593 (2) | 0.01603 (5) | |
Au2 | 0.500000 | 1.000000 | 1.000000 | 0.01924 (6) | |
Au3 | 0.000000 | 1.000000 | 0.500000 | 0.02067 (6) | |
Br1 | 0.52006 (7) | 0.73692 (6) | 1.01523 (3) | 0.02540 (10) | |
Br2 | 0.20599 (7) | 0.83275 (5) | 0.40665 (3) | 0.02658 (10) | |
N11 | 0.2943 (5) | 0.5230 (4) | 0.5751 (2) | 0.0152 (7) | |
C12 | 0.3267 (6) | 0.6861 (5) | 0.6073 (3) | 0.0155 (8) | |
H12 | 0.303987 | 0.749753 | 0.567858 | 0.019* | |
C13 | 0.3920 (5) | 0.7640 (5) | 0.6962 (3) | 0.0140 (8) | |
C14 | 0.4273 (6) | 0.6685 (5) | 0.7522 (3) | 0.0153 (8) | |
H14 | 0.471316 | 0.718623 | 0.813470 | 0.018* | |
C15 | 0.3989 (6) | 0.4995 (5) | 0.7196 (3) | 0.0160 (8) | |
C16 | 0.3306 (6) | 0.4319 (5) | 0.6305 (3) | 0.0174 (8) | |
H16 | 0.308315 | 0.317109 | 0.607344 | 0.021* | |
C17 | 0.4223 (6) | 0.9468 (5) | 0.7279 (3) | 0.0208 (9) | |
H17A | 0.550060 | 0.989932 | 0.708878 | 0.031* | |
H17B | 0.420962 | 0.982022 | 0.793930 | 0.031* | |
H17C | 0.315707 | 0.987083 | 0.701549 | 0.031* | |
C18 | 0.4381 (7) | 0.3933 (5) | 0.7785 (3) | 0.0228 (9) | |
H18A | 0.315004 | 0.323694 | 0.783605 | 0.034* | |
H18B | 0.487960 | 0.461321 | 0.838657 | 0.034* | |
H18C | 0.537008 | 0.325742 | 0.751645 | 0.034* | |
N21 | 0.1143 (5) | 0.3142 (4) | 0.3145 (2) | 0.0148 (7) | |
C22 | 0.0880 (6) | 0.4055 (5) | 0.2581 (3) | 0.0162 (8) | |
H22 | 0.096229 | 0.519517 | 0.282510 | 0.019* | |
C23 | 0.0492 (6) | 0.3390 (5) | 0.1660 (3) | 0.0164 (8) | |
C24 | 0.0346 (6) | 0.1713 (5) | 0.1324 (3) | 0.0169 (8) | |
H24 | 0.008230 | 0.121915 | 0.069543 | 0.020* | |
C25 | 0.0581 (6) | 0.0759 (5) | 0.1894 (3) | 0.0170 (8) | |
C26 | 0.0981 (6) | 0.1531 (5) | 0.2809 (3) | 0.0155 (8) | |
H26 | 0.114579 | 0.089239 | 0.321041 | 0.019* | |
C27 | 0.0228 (7) | 0.4448 (5) | 0.1048 (3) | 0.0236 (10) | |
H27A | 0.031442 | 0.557834 | 0.140983 | 0.035* | |
H27B | −0.107061 | 0.409300 | 0.072230 | 0.035* | |
H27C | 0.126917 | 0.436179 | 0.061299 | 0.035* | |
C28 | 0.0451 (7) | −0.1053 (5) | 0.1556 (3) | 0.0224 (9) | |
H28A | −0.083934 | −0.151890 | 0.123778 | 0.034* | |
H28B | 0.060274 | −0.150212 | 0.206816 | 0.034* | |
H28C | 0.150565 | −0.132027 | 0.114132 | 0.034* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Au1 | 0.01280 (7) | 0.02041 (8) | 0.01248 (8) | 0.00253 (6) | −0.00055 (6) | 0.00056 (6) |
Au2 | 0.02099 (11) | 0.02163 (12) | 0.01407 (12) | 0.00233 (9) | 0.00009 (9) | 0.00371 (9) |
Au3 | 0.02961 (13) | 0.01742 (11) | 0.01480 (12) | 0.00197 (9) | −0.00004 (9) | 0.00501 (9) |
Br1 | 0.0338 (2) | 0.0229 (2) | 0.0194 (2) | 0.00489 (18) | −0.00102 (19) | 0.00537 (18) |
Br2 | 0.0392 (3) | 0.0218 (2) | 0.0208 (2) | 0.00813 (19) | 0.0053 (2) | 0.00760 (18) |
N11 | 0.0112 (15) | 0.0183 (17) | 0.0135 (18) | 0.0009 (13) | 0.0010 (13) | 0.0006 (14) |
C12 | 0.0118 (17) | 0.019 (2) | 0.017 (2) | 0.0042 (15) | 0.0026 (15) | 0.0050 (16) |
C13 | 0.0107 (17) | 0.0152 (18) | 0.016 (2) | 0.0026 (14) | 0.0022 (15) | 0.0040 (16) |
C14 | 0.0124 (17) | 0.020 (2) | 0.013 (2) | −0.0001 (15) | −0.0010 (15) | 0.0042 (16) |
C15 | 0.0136 (18) | 0.0156 (19) | 0.020 (2) | 0.0033 (15) | 0.0025 (16) | 0.0053 (16) |
C16 | 0.0135 (18) | 0.0150 (19) | 0.022 (2) | 0.0007 (15) | 0.0014 (16) | 0.0032 (17) |
C17 | 0.022 (2) | 0.016 (2) | 0.023 (2) | 0.0023 (16) | 0.0019 (18) | 0.0029 (18) |
C18 | 0.029 (2) | 0.018 (2) | 0.023 (2) | 0.0042 (18) | 0.0009 (19) | 0.0082 (18) |
N21 | 0.0092 (14) | 0.0169 (16) | 0.0163 (18) | 0.0011 (12) | 0.0026 (13) | 0.0015 (14) |
C22 | 0.0120 (17) | 0.0173 (19) | 0.019 (2) | 0.0047 (15) | 0.0017 (16) | 0.0036 (16) |
C23 | 0.0152 (18) | 0.0160 (19) | 0.018 (2) | 0.0032 (15) | −0.0002 (16) | 0.0051 (16) |
C24 | 0.022 (2) | 0.0155 (19) | 0.010 (2) | 0.0003 (16) | −0.0011 (16) | −0.0005 (16) |
C25 | 0.0128 (18) | 0.0152 (19) | 0.022 (2) | 0.0007 (15) | 0.0010 (16) | 0.0051 (17) |
C26 | 0.0115 (17) | 0.0174 (19) | 0.018 (2) | 0.0015 (15) | 0.0027 (15) | 0.0063 (17) |
C27 | 0.035 (2) | 0.020 (2) | 0.018 (2) | 0.0070 (19) | −0.0028 (19) | 0.0062 (18) |
C28 | 0.027 (2) | 0.016 (2) | 0.020 (2) | 0.0005 (17) | 0.0010 (18) | −0.0003 (17) |
Geometric parameters (Å, º) top Au1—N11 | 2.012 (3) | C18—H18A | 0.9800 |
Au1—N21 | 2.016 (4) | C18—H18B | 0.9800 |
Au1—Au1i | 3.4400 (3) | C18—H18C | 0.9800 |
Au2—Br1 | 2.3775 (5) | N21—C26 | 1.338 (5) |
Au2—Br1ii | 2.3775 (5) | N21—C22 | 1.350 (5) |
Au3—Br2iii | 2.3789 (5) | C22—C23 | 1.386 (6) |
Au3—Br2 | 2.3789 (5) | C22—H22 | 0.9500 |
N11—C12 | 1.349 (5) | C23—C24 | 1.393 (6) |
N11—C16 | 1.353 (6) | C23—C27 | 1.509 (6) |
C12—C13 | 1.387 (6) | C24—C25 | 1.382 (6) |
C12—H12 | 0.9500 | C24—H24 | 0.9500 |
C13—C14 | 1.389 (6) | C25—C26 | 1.392 (6) |
C13—C17 | 1.508 (6) | C25—C28 | 1.504 (6) |
C14—C15 | 1.397 (6) | C26—H26 | 0.9500 |
C14—H14 | 0.9500 | C27—H27A | 0.9800 |
C15—C16 | 1.384 (6) | C27—H27B | 0.9800 |
C15—C18 | 1.503 (6) | C27—H27C | 0.9800 |
C16—H16 | 0.9500 | C28—H28A | 0.9800 |
C17—H17A | 0.9800 | C28—H28B | 0.9800 |
C17—H17B | 0.9800 | C28—H28C | 0.9800 |
C17—H17C | 0.9800 | | |
| | | |
N11—Au1—N21 | 176.50 (13) | H18B—C18—H18C | 109.5 |
Br1—Au2—Br1ii | 180.0 | C26—N21—C22 | 119.1 (4) |
Br2iii—Au3—Br2 | 180.0 | C26—N21—Au1 | 120.0 (3) |
C12—N11—C16 | 119.1 (4) | C22—N21—Au1 | 120.7 (3) |
C12—N11—Au1 | 119.9 (3) | N21—C22—C23 | 122.3 (4) |
C16—N11—Au1 | 120.9 (3) | N21—C22—H22 | 118.8 |
N11—C12—C13 | 122.3 (4) | C23—C22—H22 | 118.8 |
N11—C12—H12 | 118.9 | C22—C23—C24 | 117.5 (4) |
C13—C12—H12 | 118.9 | C22—C23—C27 | 121.0 (4) |
C12—C13—C14 | 117.8 (4) | C24—C23—C27 | 121.5 (4) |
C12—C13—C17 | 119.4 (4) | C25—C24—C23 | 120.8 (4) |
C14—C13—C17 | 122.8 (4) | C25—C24—H24 | 119.6 |
C13—C14—C15 | 120.8 (4) | C23—C24—H24 | 119.6 |
C13—C14—H14 | 119.6 | C24—C25—C26 | 117.8 (4) |
C15—C14—H14 | 119.6 | C24—C25—C28 | 122.4 (4) |
C16—C15—C14 | 117.5 (4) | C26—C25—C28 | 119.9 (4) |
C16—C15—C18 | 120.6 (4) | N21—C26—C25 | 122.4 (4) |
C14—C15—C18 | 121.9 (4) | N21—C26—H26 | 118.8 |
N11—C16—C15 | 122.4 (4) | C25—C26—H26 | 118.8 |
N11—C16—H16 | 118.8 | C23—C27—H27A | 109.5 |
C15—C16—H16 | 118.8 | C23—C27—H27B | 109.5 |
C13—C17—H17A | 109.5 | H27A—C27—H27B | 109.5 |
C13—C17—H17B | 109.5 | C23—C27—H27C | 109.5 |
H17A—C17—H17B | 109.5 | H27A—C27—H27C | 109.5 |
C13—C17—H17C | 109.5 | H27B—C27—H27C | 109.5 |
H17A—C17—H17C | 109.5 | C25—C28—H28A | 109.5 |
H17B—C17—H17C | 109.5 | C25—C28—H28B | 109.5 |
C15—C18—H18A | 109.5 | H28A—C28—H28B | 109.5 |
C15—C18—H18B | 109.5 | C25—C28—H28C | 109.5 |
H18A—C18—H18B | 109.5 | H28A—C28—H28C | 109.5 |
C15—C18—H18C | 109.5 | H28B—C28—H28C | 109.5 |
H18A—C18—H18C | 109.5 | | |
| | | |
C16—N11—C12—C13 | −1.5 (6) | C26—N21—C22—C23 | −1.6 (6) |
Au1—N11—C12—C13 | 179.1 (3) | Au1—N21—C22—C23 | 174.2 (3) |
N11—C12—C13—C14 | 1.1 (6) | N21—C22—C23—C24 | 1.1 (6) |
N11—C12—C13—C17 | −179.2 (4) | N21—C22—C23—C27 | −179.3 (4) |
C12—C13—C14—C15 | 0.4 (6) | C22—C23—C24—C25 | 0.0 (6) |
C17—C13—C14—C15 | −179.4 (4) | C27—C23—C24—C25 | −179.6 (4) |
C13—C14—C15—C16 | −1.4 (6) | C23—C24—C25—C26 | −0.5 (6) |
C13—C14—C15—C18 | 179.3 (4) | C23—C24—C25—C28 | −179.4 (4) |
C12—N11—C16—C15 | 0.4 (6) | C22—N21—C26—C25 | 1.1 (6) |
Au1—N11—C16—C15 | 179.8 (3) | Au1—N21—C26—C25 | −174.7 (3) |
C14—C15—C16—N11 | 1.0 (6) | C24—C25—C26—N21 | 0.0 (6) |
C18—C15—C16—N11 | −179.7 (4) | C28—C25—C26—N21 | 178.9 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Br1 | 0.95 | 3.08 | 3.961 (4) | 155 |
C18—H18B···Br1 | 0.98 | 3.08 | 4.008 (5) | 159 |
C27—H27B···Br1i | 0.98 | 3.06 | 4.029 (5) | 172 |
C27—H27C···Br1iv | 0.98 | 3.10 | 3.955 (5) | 147 |
C28—H28A···Br1v | 0.98 | 3.05 | 4.026 (5) | 173 |
C12—H12···Br2 | 0.95 | 2.86 | 3.771 (4) | 160 |
C17—H17A···Br2vi | 0.98 | 3.02 | 3.911 (4) | 151 |
C22—H22···Br2 | 0.95 | 2.86 | 3.755 (4) | 158 |
C26—H26···Br2vii | 0.95 | 3.01 | 3.933 (4) | 166 |
Symmetry codes: (i) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y−1, z−1; (vi) −x+1, −y+2, −z+1; (vii) x, y−1, z. |
2-Bromopyridinium dibromidoaurate(I)–2-bromopyridine (1/1) (5)
top Crystal data top (C5H5BrN)[AuBr2]·C5H4BrN | Z = 2 |
Mr = 673.80 | F(000) = 604 |
Triclinic, P1 | Dx = 3.044 Mg m−3 |
a = 7.9931 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.4672 (3) Å | Cell parameters from 14102 reflections |
c = 11.3923 (5) Å | θ = 2.4–30.6° |
α = 87.202 (4)° | µ = 20.86 mm−1 |
β = 74.635 (4)° | T = 100 K |
γ = 81.406 (4)° | Block, colourless |
V = 735.09 (6) Å3 | 0.15 × 0.10 × 0.04 mm |
Data collection top Oxford Diffrection Xcalibur, Eos diffractometer | 4361 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3917 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 30.9°, θmin = 2.4° |
ω scan | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2014) | k = −11→12 |
Tmin = 0.241, Tmax = 1.000 | l = −16→16 |
42320 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: mixed |
wR(F2) = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0232P)2 + 0.2423P] where P = (Fo2 + 2Fc2)/3 |
4361 reflections | (Δ/σ)max = 0.001 |
158 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −1.49 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Au1 | 0.40613 (2) | 0.19800 (2) | 0.14237 (2) | 0.01475 (4) | |
Br1 | 0.70783 (4) | 0.20253 (4) | 0.04441 (3) | 0.01937 (7) | |
Br2 | 0.10288 (4) | 0.19977 (4) | 0.24127 (3) | 0.01916 (7) | |
Br3 | 0.87521 (4) | 0.80705 (4) | 0.45816 (3) | 0.01607 (7) | |
Br4 | 0.61910 (4) | 0.20705 (4) | 0.37952 (3) | 0.01548 (7) | |
N11 | 0.7993 (3) | 0.5993 (3) | 0.3080 (2) | 0.0148 (5) | |
H11 | 0.777 (5) | 0.537 (5) | 0.372 (4) | 0.023 (10)* | |
C12 | 0.8486 (4) | 0.7439 (4) | 0.3104 (3) | 0.0136 (6) | |
C13 | 0.8796 (4) | 0.8381 (4) | 0.2066 (3) | 0.0166 (6) | |
H13 | 0.915444 | 0.939910 | 0.207838 | 0.020* | |
C14 | 0.8574 (4) | 0.7810 (4) | 0.1010 (3) | 0.0169 (6) | |
H14 | 0.874796 | 0.845044 | 0.029191 | 0.020* | |
C15 | 0.8098 (4) | 0.6307 (4) | 0.0997 (3) | 0.0185 (7) | |
H15 | 0.797788 | 0.589640 | 0.026693 | 0.022* | |
C16 | 0.7804 (4) | 0.5419 (4) | 0.2048 (3) | 0.0192 (7) | |
H16 | 0.746428 | 0.439010 | 0.205056 | 0.023* | |
N21 | 0.7050 (3) | 0.4137 (3) | 0.5260 (2) | 0.0139 (5) | |
C22 | 0.6507 (4) | 0.2726 (4) | 0.5288 (3) | 0.0133 (6) | |
C23 | 0.6153 (4) | 0.1734 (4) | 0.6295 (3) | 0.0163 (6) | |
H23 | 0.578118 | 0.072941 | 0.624963 | 0.020* | |
C24 | 0.6360 (4) | 0.2260 (4) | 0.7371 (3) | 0.0177 (6) | |
H24 | 0.613599 | 0.161686 | 0.808677 | 0.021* | |
C25 | 0.6900 (4) | 0.3744 (4) | 0.7390 (3) | 0.0183 (6) | |
H25 | 0.702604 | 0.414288 | 0.812244 | 0.022* | |
C26 | 0.7251 (4) | 0.4629 (4) | 0.6319 (3) | 0.0169 (6) | |
H26 | 0.765117 | 0.562785 | 0.633051 | 0.020* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Au1 | 0.01907 (6) | 0.01413 (7) | 0.01280 (6) | −0.00329 (4) | −0.00677 (4) | 0.00052 (4) |
Br1 | 0.02015 (15) | 0.02330 (17) | 0.01494 (15) | −0.00386 (12) | −0.00459 (12) | −0.00038 (12) |
Br2 | 0.01936 (15) | 0.02198 (17) | 0.01792 (16) | −0.00588 (12) | −0.00596 (12) | −0.00229 (12) |
Br3 | 0.01851 (14) | 0.01701 (16) | 0.01330 (14) | −0.00387 (11) | −0.00431 (11) | −0.00125 (11) |
Br4 | 0.01940 (14) | 0.01518 (15) | 0.01382 (15) | −0.00519 (11) | −0.00620 (11) | −0.00023 (11) |
N11 | 0.0184 (12) | 0.0133 (13) | 0.0127 (13) | −0.0013 (10) | −0.0049 (10) | 0.0030 (10) |
C12 | 0.0130 (13) | 0.0140 (15) | 0.0132 (14) | −0.0003 (11) | −0.0035 (11) | −0.0005 (11) |
C13 | 0.0175 (14) | 0.0155 (16) | 0.0162 (15) | −0.0063 (12) | −0.0014 (12) | −0.0001 (12) |
C14 | 0.0177 (14) | 0.0179 (16) | 0.0150 (15) | −0.0039 (12) | −0.0043 (12) | 0.0063 (12) |
C15 | 0.0237 (16) | 0.0185 (16) | 0.0131 (15) | −0.0015 (13) | −0.0050 (12) | −0.0020 (12) |
C16 | 0.0261 (16) | 0.0146 (16) | 0.0186 (16) | −0.0032 (13) | −0.0091 (13) | 0.0007 (12) |
N21 | 0.0193 (12) | 0.0103 (12) | 0.0121 (12) | −0.0014 (10) | −0.0047 (10) | 0.0011 (9) |
C22 | 0.0135 (13) | 0.0134 (15) | 0.0130 (14) | −0.0003 (11) | −0.0037 (11) | −0.0032 (11) |
C23 | 0.0183 (14) | 0.0126 (15) | 0.0176 (16) | −0.0038 (12) | −0.0031 (12) | −0.0001 (12) |
C24 | 0.0224 (15) | 0.0154 (16) | 0.0129 (15) | −0.0023 (12) | −0.0008 (12) | 0.0013 (12) |
C25 | 0.0241 (16) | 0.0173 (16) | 0.0135 (15) | −0.0004 (13) | −0.0061 (12) | −0.0007 (12) |
C26 | 0.0239 (15) | 0.0108 (15) | 0.0164 (16) | −0.0007 (12) | −0.0069 (12) | −0.0014 (12) |
Geometric parameters (Å, º) top Au1—Br1 | 2.3790 (4) | C15—H15 | 0.9500 |
Au1—Br2 | 2.3851 (4) | C16—H16 | 0.9500 |
Br3—C12 | 1.864 (3) | N21—C22 | 1.327 (4) |
Br4—C22 | 1.904 (3) | N21—C26 | 1.352 (4) |
N11—C12 | 1.345 (4) | C22—C23 | 1.380 (4) |
N11—C16 | 1.346 (4) | C23—C24 | 1.382 (5) |
N11—H11 | 0.87 (4) | C23—H23 | 0.9500 |
C12—C13 | 1.380 (4) | C24—C25 | 1.392 (5) |
C13—C14 | 1.381 (5) | C24—H24 | 0.9500 |
C13—H13 | 0.9500 | C25—C26 | 1.385 (5) |
C14—C15 | 1.383 (5) | C25—H25 | 0.9500 |
C14—H14 | 0.9500 | C26—H26 | 0.9500 |
C15—C16 | 1.368 (5) | | |
| | | |
Br1—Au1—Br2 | 178.713 (12) | C15—C16—H16 | 119.8 |
C12—N11—C16 | 121.2 (3) | C22—N21—C26 | 116.2 (3) |
C12—N11—H11 | 123 (3) | N21—C22—C23 | 125.6 (3) |
C16—N11—H11 | 116 (3) | N21—C22—Br4 | 115.6 (2) |
N11—C12—C13 | 120.5 (3) | C23—C22—Br4 | 118.8 (2) |
N11—C12—Br3 | 116.9 (2) | C22—C23—C24 | 117.4 (3) |
C13—C12—Br3 | 122.6 (2) | C22—C23—H23 | 121.3 |
C12—C13—C14 | 118.5 (3) | C24—C23—H23 | 121.3 |
C12—C13—H13 | 120.7 | C23—C24—C25 | 119.1 (3) |
C14—C13—H13 | 120.7 | C23—C24—H24 | 120.5 |
C13—C14—C15 | 120.1 (3) | C25—C24—H24 | 120.5 |
C13—C14—H14 | 119.9 | C26—C25—C24 | 118.6 (3) |
C15—C14—H14 | 119.9 | C26—C25—H25 | 120.7 |
C16—C15—C14 | 119.2 (3) | C24—C25—H25 | 120.7 |
C16—C15—H15 | 120.4 | N21—C26—C25 | 123.1 (3) |
C14—C15—H15 | 120.4 | N21—C26—H26 | 118.4 |
N11—C16—C15 | 120.4 (3) | C25—C26—H26 | 118.4 |
N11—C16—H16 | 119.8 | | |
| | | |
C16—N11—C12—C13 | 0.6 (4) | C26—N21—C22—C23 | −0.6 (4) |
C16—N11—C12—Br3 | −178.5 (2) | C26—N21—C22—Br4 | 178.9 (2) |
N11—C12—C13—C14 | 0.5 (4) | N21—C22—C23—C24 | 0.9 (5) |
Br3—C12—C13—C14 | 179.6 (2) | Br4—C22—C23—C24 | −178.7 (2) |
C12—C13—C14—C15 | −1.8 (5) | C22—C23—C24—C25 | 0.3 (4) |
C13—C14—C15—C16 | 1.9 (5) | C23—C24—C25—C26 | −1.5 (5) |
C12—N11—C16—C15 | −0.6 (5) | C22—N21—C26—C25 | −0.7 (4) |
C14—C15—C16—N11 | −0.7 (5) | C24—C25—C26—N21 | 1.7 (5) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···N21 | 0.87 (4) | 1.99 (4) | 2.861 (4) | 174 (4) |
C16—H16···Br1 | 0.95 | 2.88 | 3.675 (3) | 142 |
C13—H13···Br2i | 0.95 | 2.93 | 3.853 (3) | 163 |
C26—H26···Br2ii | 0.95 | 2.99 | 3.843 (3) | 151 |
C26—H26···Br3 | 0.95 | 2.87 | 3.616 (3) | 136 |
C16—H16···Br4 | 0.95 | 2.83 | 3.584 (3) | 137 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Adams, H.-N., Hiller, W. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 81–91. CSD CrossRef CAS Web of Science Google Scholar
Barranco, E. M., Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (2004). Eur. J. Inorg. Chem. pp. 4820–4827. CSD CrossRef Google Scholar
Bombicz, P. (2024). IUCrJ, 11, 3–6. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, U. S. A. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2013a). Acta Cryst. C69, 709–711. CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2013b). Z. Naturforsch. B, 68, 474–492. Google Scholar
Döring, C. & Jones, P. G. (2014). Z. Naturforsch. B, 69, 1315–1320. Google Scholar
Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017–1027. Web of Science CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161–1165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 157–165. CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2024b). Acta Cryst. E80, 476–480. CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2024c). Experimental Crystal Structure Determination (refcode MONSOB, CCDC 2145203). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2b083r. Google Scholar
Döring, C., Sui, Z. & Jones, P. G. (2018). Acta Cryst. C74, 289–294. CSD CrossRef IUCr Journals Google Scholar
Freytag, M. & Jones, P. G. (2000). Chem. Commun. pp. 277–278. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hashmi, A. S. K., Lothschütz, C., Ackermann, M., Doepp, R., Anantharaman, S., Marchetti, B., Bertagnolli, H. & Rominger, F. (2010). Chem. Eur. J. 16, 8012–8019. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hobbollahi, E., List, M. & Monkowius, U. (2019). Monatsh. Chem. 150, 877–883. CSD CrossRef CAS Google Scholar
IUCr (2019). https://dictionary.iucr.org/Isostructural_crystals. Google Scholar
Jones, P. G. & Ahrens, B. (1998). Z. Naturforsch. B, 53, 653–662. CrossRef CAS Google Scholar
Lin, J. C. Y., Tang, S. S., Vasam, C. S., You, W. C., Ho, T. W., Huang, C. H., Sun, B. J., Huang, C. Y., Lee, C. S., Hwang, W. S., Chang, A. H. H. & Lin, I. J. B. (2008). Inorg. Chem. 47, 2543–2551. Web of Science CSD CrossRef PubMed CAS Google Scholar
Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127. Web of Science CrossRef CAS Google Scholar
Mootz, D. & Wussow, H.-G. (1981). J. Chem. Phys. 75, 1517–1522. CSD CrossRef CAS Web of Science Google Scholar
Rigaku OD (2014). CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England. Google Scholar
Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809. Web of Science CrossRef CAS Google Scholar
Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380. Web of Science CrossRef CAS PubMed Google Scholar
Schmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931–1951. Web of Science CrossRef PubMed CAS Google Scholar
Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strey, M., Döring, C. & Jones, P. G. (2018). Z. Naturforsch. B, 73, 125–147. Web of Science CSD CrossRef CAS Google Scholar
Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024). Acta Cryst. E80, 506–521. CSD CrossRef IUCr Journals Google Scholar
Vicente, J., Chicote, M.-T., Huertas, S., Ramírez de Arellano, M. C. & Jones, P. G. (1998). Eur. J. Inorg. Chem. pp. 511–516. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access