research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Staudtienic acid, a diterpenoid from Staudtia kamerunensis Warb. (Myristicaceae)

crossmark logo

aDrug Discovery and Smart Molecules Research Laboratory, Department of Chemical, Sciences, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa, bCentre for Natural Product Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa, and cResearch Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg-Kingsway Campus, Auckland Park 2008, South Africa
*Correspondence e-mail: cardene@uj.ac.za, dndinteh@uj.ac.za

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 3 August 2023; accepted 28 May 2024; online 19 July 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

This title compound, C20H26O2, was isolated from the benzene fraction of the stem bark of Staudtia kamerunensis Warb. (Myristicaceae) using column chromatography techniques over silica gel. The compound was fully characterized by single-crystal X-ray diffraction, one and two-dimensional NMR spectroscopy, IR and MS spectrometry. The compound has two fused cyclo­hexane rings attached to a benzene ring, with a carb­oxy­lic acid on C-4. This cyclo­hexene ring has a chair conformation while the other adopts a half-chair conformation. The benzene ring is substituted with a propenyl moiety. The structure is characterized by inter­molecular O—H⋯O hydrogen bonds, two C—H⋯O intra­molecular hydrogen bonds and two C—H⋯π inter­actions. The mol­ecular structure confirms previous studies carried out by spectroscopic techniques.

1. Chemical context

Diterpenoids are secondary metabolites mainly obtained from plant species but that can also originate from marine species (Hanson, 2009[Hanson, J. R. (2009). Nat. Prod. Rep. 26, 1156-1171.]).

The biological importance of diterpenoids is notable. For example, Clerodanes' diterpenoids are compounds isolated from several plant sources that have been reported to possess very good anti­feedant activity against certain plant worms such as the tobacco cutworm (Spodoplera litura) and certain locusts such as the African desert locust (Schisticerea gregoria). They are reported to possess anti­viral, anti­tumour and anti­biotic properties, among many others (Merritt & Ley, 1992[Merritt, A. T. & Ley, S. V. (1992). Nat. Prod. Rep. 9, 243-287.]). Diterpenoids isolated from Salva multicaulis were reported with significant anti­tuberculosis activity (Ulubelen et al., 1999[Ulubelen, A., Öksüz, S., Kolak, U., Tan, U., Bozok-Johansson, C., Çelik, C., Kohlbau, H. J. & Voelter, W. (1999). Phytochemistry, 52, 1455-1459.]). Paclitaxel, a diterpenoid isolated from the Taxus genus and which is used in cancer therapy, is recognised as one of the most successful so far in that category (Zhu & Chen, 2019[Zhu, L. & Chen, L. (2019). Cell. & Mol. Biol. Lett. 24, 1-11.]); forskolin, found in the roots of Coleus forskohlii, is a good cardioprotective compound (Jagtap et al., 2011[Jagtap, M., Ashok, B. K., Chavan, S. S., Chandola, H. M. & Ravi­shankar, B. (2011). Indian J. Nat. Prod. Res. 2, 335-344.]).

Natural product research has gained more attention due to the failure of other drug discovery techniques to supply lead compounds to face the threatening rise of resistance among cancerous strains, bacteria cells, etc. (Butler, 2004[Butler, M. S. (2004). J. Nat. Prod. 67, 2141-2153.]). The extraction of various compounds in different parts of specific plant species has allowed the isolation of compounds with inter­esting biological activities, such as diterpenoids, which have been associated with many therapeutic functions: analgesic, anti-inflammatory, anti­carcinogenic, etc. (Sun et al., 2006[Sun, H. D., Huang, S. X. & Han, Q. B. (2006). Nat. Prod. Rep. 23, 673-698.]).

The objectives of this study were, on one hand, to chromatographically separate and describe the secondary metabolites responsible for the pharmaceutical activities observed during the use of Staudtia kamerunensis Warb. (Myristicaceae) in folkloric medicine. Pharmacological studies on the plant highlighted its anti­bacterial properties. Analysis against twelve Gram-negative and Gram-positive microbial strains of the ethyl acetate extract of the stem bark of the specie revealed significant anti­microbial activity, with the lowest MIC being 15.625 µg mL−1 (Tonga et al., 2022[Tonga, J. L., Kamdem, M. H. K., Pagna, J. I. M., Fonkui, T. Y., Tata, C. M., Fotsing, M. C. D., Nkengfack, E. A., Mmutlane, E. M. & Ndinteh, D. T. (2022). Arab. J. Chem. 15, 104150, 1-7.]). Crystals of Staudtienic acid, isolated from the stem bark, were analysed by single crystal X-ray diffraction to confirm the structure and the stereochemistry of the compound that had been previously published by Noumbissie and collaborators (Noumbissie et al., 1992[Noumbissie, E. B., Kapnang, H., Fomum, Z. T., Martin, M. T. & Bodo, B. (1992). J. Nat. Prod. 55, 137-139.]). Phytochemists have widely used single-crystal X-ray diffraction to confirm the structures of compounds that were previously characterized using spectroscopic methods (Ahmad et al., 2016[Ahmad, F., Parveen, M., Alam, M., Azaz, S., Malla, A. M., Alam, M. J., Lee, D. U. & Ahmad, S. (2016). J. Mol. Struct. 1116, 317-332.]; Simard et al., 2014[Simard, F., Legault, J., Lavoie, S. & Pichette, A. (2014). Phytochemistry, 100, 141-149.]; Adelekan et al., 2008[Adelekan, A. M., Prozesky, E. A., Hussein, A. A., Ureña, L. D., van Rooyen, P. H., Liles, D. C., Meyer, J. M. & Rodríguez, B. (2008). J. Nat. Prod. 71, 1919-1922.]).

We herein report for the first time details of the single-crystal X-ray structure determination of (1S,4aS,10aR)-7-allyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carb­oxy­lic acid (Staudtienic acid).

[Scheme 1]

2. Structural commentary

Plant material was processed as described below, resulting in the title diterpenoid. The title compound crystallizes in the ortho­rhom­bic space group P21212 (No. 18) with two independent mol­ecules in the asymmetric unit (Fig. 1[link]). Staudtienic acid comprises two fused six-membered rings attached to a benzene. A representation of the mol­ecule with Mercury (Mercury 2022.3.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) gives the spatial disposition of the two cyclo­hexane rings. Ring A (the ring with the carb­oxy­lic acid) adopts a chair conformation, and ring B adopts a half-chair conformation. The half-chair conformation is probably adopted to avoid steric hindrance between the methyl groups and the carb­oxy­lic acid. The crystal structure confirmed the NOE data of the compound previously described by Noumbissie and collaborators (Noumbissie et al., 1992[Noumbissie, E. B., Kapnang, H., Fomum, Z. T., Martin, M. T. & Bodo, B. (1992). J. Nat. Prod. 55, 137-139.]).

[Figure 1]
Figure 1
The two independent mol­ecules of the title compound shown with 50% probability ellipsoids.

The structure was analysed for unusual geometrical parameters using Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). Three unusual structural features presented for this material were analysed, relating to the angle around the atom C2. Three angles were classified as unusual as follows: C3—C2—C1 = 104.7 (3)°, C4—C2—C1 = 111.3 (3)° and C8—C2—C1 = 114.6 (3)°. These bond angles deviate from the standard tetra­hedral geometry. The most likely reason for this is probably the presence of the OH groups bonded to C1 that are involved in hydrogen bonding. These may cause small distortions resulting in deviations in the angles around C2.

The propenyl moiety of Mol­ecule A is disordered over two positions (see Fig. 1[link] for numbering), with the major disorder component residing on C19A [66.9 (11) %] and the minor disorder component residing on C19B [33.1 (11) %]. Atom H1 was also found to be disordered over two positions, and each atom was assigned a 50% occupancy over O1 and O2. This approach was used as the data were insufficient to determine more precisely the positions of the H atoms from the electron-density map, to place it onto residual electron density, and to refine it to obtain a better percentage occupancy.

3. Supra­molecular features

Several forms of hydrogen bonding are present in this structure, as shown in Table 1[link]. The packing of the structure is consolidated by classical O—H⋯O hydrogen bonds as well as by two C—H⋯O inter­molecular hydrogen bonds and two C—H⋯π inter­actions. Each crystallographically independent mol­ecule is connected to another of the same type related by the symmetry operation 1 − x, 1 − y, z. In terms of graph sets (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), this motif is represented by the symbol R22(8) (see Fig. 2[link]). The two dimers are then connected by C—H⋯O hydrogen bonds, forming an infinite column along the c-axis. The columns are connected to similar columns by van der Waals inter­actions with mol­ecules related by [{1\over 2}] + x, [{1\over 2}] − y, 1 − z and [{1\over 2}] − x, −[{1\over 2}] + y, 1 − z. The most illustrative view of the packing arrangement of the title compound is the view down the c axis shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg6 are the centroids of the C12A–C17A and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.87 (2) 1.88 (3) 2.720 (5) 161 (8)
O2—H2⋯O2i 0.87 (2) 1.82 (3) 2.656 (5) 162 (7)
O1A—H1A⋯O2Ai 0.87 (2) 1.78 (2) 2.652 (3) 174 (4)
C10A—H10B⋯O2A 0.99 2.51 2.917 (4) 104
C10—H10D⋯O1 0.99 2.58 2.969 (4) 104
C4—H4BCg3ii 0.99 3.00 3.978 (4) 170
C4A—H4ABCg6iii 0.99 2.90 3.863 (4) 165
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The ring motif of the hydrogen bond between a pair of one of the independent mol­ecules. Hydrogen bonds are denoted as red dotted lines. The graph-set symbol is indicated in the centre of the hydrogen bonding ring; only heteroatoms have been labelled. Symmetry codes: (i) −x + 1, −y + 1, z.
[Figure 3]
Figure 3
The packing of the title compound viewed down the c axis. Hydrogen-bonding contacts are shown in light blue.

4. Database survey

The structure was thoroughly validated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). A search was also performed in the Cambridge Structural Database (CSD Version 5.44 2023.1, March 2023 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), and it was established that this structure had not been previously published or deposited.

A search in the CSD for organic compounds with the backbone of two fused rings attached to a benzene revealed 1390 hits. When the propenyl substituent of the benzene ring is introduced, the number of hits is reduced to four [refcodes LATPOP (Zhu et al., 2022[Zhu, Z., Lin, L., Xiao, J. & Shi, Z. (2022). Angew. Chem. Int. Ed. 61, e202113209.]), LAPHOA (Hitchcock et al., 2005[Hitchcock, P. B., Avent, A. G., Martsinovich, N., Troshin, P. A. & Taylor, R. (2005). Org. Lett. 7, 1975-1978.]), MIXFUX (Ye et al., 2019[Ye, Y., Kim, S. T., Jeong, J., Baik, M. H. & Buchwald, S. L. (2019). J. Am. Chem. Soc. 141, 3901-3909.]) and OVAQIN (Green et al., 2016[Green, N. J., Willis, A. C. & Sherburn, M. S. (2016). Angew. Chem. Int. Ed. 55, 9244-9248.])]. When the carb­oxy­lic functional group search is introduced at position C4 of the cyclo­hexane, the number of search hits is reduced to zero.

5. Synthesis and crystallization

Plant Material. The stem bark of this plant species was collected from Minkam Mengale Menkom, a location in the South region of Cameroon. A voucher specimen is in deposit there under the number 49184 HNC.

Extraction and Isolation. Extraction and isolation were carried out as described by Noumbissie and collaborators (Noumbissie et al., 1992[Noumbissie, E. B., Kapnang, H., Fomum, Z. T., Martin, M. T. & Bodo, B. (1992). J. Nat. Prod. 55, 137-139.]). Briefly, after collection, the sample was dried and ground to yield a powder of 15.79 Kg. A Soxhlet apparatus was used to extract the stem bark using ethyl acetate, and the liquor obtained was evaporated using a rotary evaporator under reduced pressure. A residue of mass 550.12 grams was obtained, and 250 g was partitioned using benzene (C6H6) to obtain 41.96 g (yield 41.86, 16.74%) of the sample. The latter was loaded with 500 g of silica, and elution was done with a gradient of polarity starting with benzene, then a mixture of benzene and petroleum ether, then petroleum ether. The final sample was obtained from a mixture of 60% petroleum ether in benzene (yield: 80.22 mg, 0.19%)

6. Refinement

The systematic absences in the diffraction data were uniquely consistent with the space group P21212 (No. 18) determined by XPREP (Bruker, 2014[Bruker (2014). APEX2, SAINT and XPREP. Madison, Wisconsin, USA.]), which yielded chemically reasonable and computationally stable results of refinement (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.],b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

A successful solution by Intrinsic phasing methods (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) provided all non-hydrogen atoms from the E-map. The remaining hydrogen atoms were located in an alternating series of least-squares cycles and visualization of the difference-Fourier map. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms connected to C atoms were included in the structure-factor calculation at idealized positions and were allowed to ride on the neighbouring atoms with relative isotropic displacement coefficients. Two symmetry-independent mol­ecules are in the asymmetric unit as shown in Fig. 1[link].

The compound crystallized in a chiral space group and the Flack x parameter was determined using 1758 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). However, since the data were collected using Mo radiation, the absolute structure could not be reliably determined. In addition, the crystals used for the data collection diffracted weakly. Attempts were made to find crystal structures of similar compounds where the structural chirality was already known, but these attempts were unsuccessful, as no hits could be found in the CSD.

The final least-squares refinement of 420 parameters against 8260 reflections resulted in residuals R (based on F2 for I≥2σ) and wR (based on F2 for all data) of 0.0522 and 0.1339, respectively. The final difference-Fourier map was basically featureless. The structure was validated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H26O2
Mr 298.41
Crystal system, space group Orthorhombic, P21212
Temperature (K) 100
a, b, c (Å) 18.396 (3), 20.248 (4), 8.9338 (16)
V3) 3327.8 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.75 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.670, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30395, 8260, 5374
Rint 0.087
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.134, 1.02
No. of reflections 8260
No. of parameters 420
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.25
Absolute structure Flack x determined using 1758 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.0 (9)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and XPREP. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(1S,4aS,10aR)-1,4a-Dimethyl-7-(prop-2-en-1-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid top
Crystal data top
C20H26O2Dx = 1.191 Mg m3
Mr = 298.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 2900 reflections
a = 18.396 (3) Åθ = 2.3–21.4°
b = 20.248 (4) ŵ = 0.08 mm1
c = 8.9338 (16) ÅT = 100 K
V = 3327.8 (10) Å3Rod, colourless
Z = 80.75 × 0.16 × 0.06 mm
F(000) = 1296
Data collection top
Bruker APEXII CCD
diffractometer
5374 reflections with I > 2σ(I)
φ and ω scansRint = 0.087
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.3°
Tmin = 0.670, Tmax = 0.746h = 2424
30395 measured reflectionsk = 2627
8260 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2719P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.35 e Å3
8260 reflectionsΔρmin = 0.25 e Å3
420 parametersAbsolute structure: Flack x determined using 1758 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
20 restraintsAbsolute structure parameter: 1.0 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.56424 (13)0.46675 (12)0.7674 (3)0.0332 (6)
H10.5190 (18)0.480 (4)0.774 (9)0.050*0.5
O20.55451 (13)0.45701 (11)0.5195 (3)0.0284 (6)
H20.521 (4)0.485 (3)0.540 (8)0.043*0.5
C10.58554 (18)0.44326 (15)0.6431 (4)0.0242 (7)
C20.65409 (18)0.40062 (15)0.6393 (4)0.0248 (7)
C30.71745 (19)0.44981 (18)0.6655 (4)0.0340 (9)
H3A0.7186850.4821030.5838720.051*
H3B0.7635640.4256090.6684500.051*
H3C0.7101420.4728050.7608880.051*
C40.66498 (19)0.36895 (17)0.4844 (4)0.0297 (8)
H4A0.6583640.4032830.4066670.036*
H4B0.7155510.3525700.4769450.036*
C50.6134 (2)0.31232 (17)0.4524 (4)0.0318 (8)
H5A0.6262790.2920220.3551830.038*
H5B0.5632100.3296320.4445280.038*
C60.6161 (2)0.25967 (17)0.5745 (4)0.0317 (8)
H6A0.6645880.2383880.5732090.038*
H6B0.5794410.2252810.5523150.038*
C70.60174 (18)0.28782 (16)0.7327 (4)0.0266 (8)
C80.65639 (18)0.34497 (15)0.7594 (4)0.0248 (7)
H80.7052690.3241290.7464520.030*
C90.52197 (18)0.31055 (17)0.7437 (4)0.0301 (8)
H9A0.5134960.3308010.8417930.045*
H9B0.4897470.2723870.7314790.045*
H9C0.5119300.3429230.6648090.045*
C100.6548 (2)0.36695 (17)0.9240 (4)0.0309 (8)
H10C0.6845340.4073170.9369530.037*
H10D0.6043160.3770930.9544610.037*
C110.6850 (2)0.31163 (19)1.0201 (4)0.0371 (9)
H11C0.7379410.3076261.0019960.045*
H11D0.6779050.3228601.1269670.045*
C120.6492 (2)0.24637 (18)0.9880 (4)0.0341 (9)
C130.61215 (19)0.23419 (17)0.8535 (5)0.0324 (8)
C140.5810 (2)0.17213 (18)0.8346 (5)0.0416 (10)
H140.5551810.1627600.7450030.050*
C150.5869 (2)0.12301 (19)0.9450 (6)0.0479 (11)
H150.5651060.0810780.9287010.057*
C160.6239 (2)0.1348 (2)1.0767 (5)0.0474 (11)
C170.6539 (2)0.19641 (19)1.0967 (4)0.0429 (10)
H170.6787790.2055231.1875770.051*
C180.6342 (3)0.0809 (2)1.1954 (5)0.0614 (14)
H18E0.6426020.0382401.1439990.074*
H18F0.6784170.0911571.2542430.074*
C190.5741 (3)0.0733 (2)1.2969 (6)0.0616 (14)
H190.5273010.0691471.2528720.074*
C200.5768 (3)0.0716 (3)1.4410 (6)0.0705 (15)
H20E0.6221480.0755991.4908700.085*
H20F0.5333310.0664201.4972930.085*
O1A0.40394 (13)0.50455 (12)0.1249 (3)0.0295 (6)
H1A0.4424 (15)0.5296 (17)0.119 (4)0.044*
O2A0.47966 (12)0.42012 (12)0.0856 (3)0.0310 (6)
C1A0.41645 (18)0.44294 (16)0.1014 (3)0.0239 (7)
C2A0.35119 (18)0.39732 (16)0.0836 (4)0.0240 (7)
C3A0.34903 (19)0.38042 (17)0.0849 (4)0.0289 (8)
H3AA0.3398580.4207070.1426530.043*
H3AB0.3101100.3484430.1037800.043*
H3AC0.3957530.3613760.1151090.043*
C4A0.27859 (17)0.43218 (17)0.1205 (4)0.0248 (7)
H4AA0.2780720.4758760.0707390.030*
H4AB0.2382080.4058310.0780330.030*
C5A0.26492 (18)0.44198 (17)0.2872 (4)0.0268 (8)
H5AA0.2154560.4600900.3020380.032*
H5AB0.3001940.4744310.3271530.032*
C6A0.27216 (17)0.37731 (16)0.3734 (4)0.0258 (7)
H6AA0.2331670.3467460.3411910.031*
H6AB0.2654970.3861210.4814980.031*
C7A0.34653 (17)0.34383 (15)0.3490 (4)0.0218 (7)
C8A0.35657 (17)0.33317 (16)0.1781 (3)0.0223 (7)
H8A0.3134730.3063530.1470750.027*
C9A0.40633 (18)0.38853 (17)0.4169 (4)0.0275 (8)
H9AA0.4542790.3717220.3880550.041*
H9AB0.4020910.3884460.5262690.041*
H9AC0.4004620.4337020.3794490.041*
C10A0.42229 (18)0.28852 (16)0.1463 (4)0.0278 (7)
H10A0.4314460.2864690.0371780.033*
H10B0.4661550.3067070.1955000.033*
C11A0.4064 (2)0.21939 (17)0.2065 (4)0.0331 (9)
H11A0.3687150.1983060.1433580.040*
H11B0.4510190.1922440.1998760.040*
C12A0.38058 (18)0.22087 (17)0.3665 (4)0.0270 (8)
C13A0.35080 (18)0.27748 (15)0.4319 (4)0.0239 (7)
C14A0.32951 (18)0.27379 (16)0.5820 (4)0.0276 (8)
H14A0.3092600.3117970.6283740.033*
C15A0.33707 (19)0.21632 (17)0.6654 (4)0.0310 (8)
H15A0.3220210.2156350.7671020.037*
C16A0.36640 (19)0.15989 (17)0.6013 (4)0.0312 (8)
C17A0.38702 (19)0.16302 (17)0.4524 (4)0.0314 (8)
H17A0.4063030.1245010.4064760.038*
C18A0.3772 (3)0.0960 (2)0.6893 (5)0.0479 (11)
H18A0.3658480.0585350.6220490.057*0.669 (11)
H18B0.4292470.0925750.7161170.057*0.669 (11)
H18C0.3321930.0694200.6806380.057*0.331 (11)
H18D0.4167420.0705880.6411570.057*0.331 (11)
C19A0.3349 (3)0.0880 (2)0.8249 (6)0.0337 (17)0.669 (11)
H19A0.2835970.0881460.8135230.040*0.669 (11)
C19B0.3942 (7)0.1029 (7)0.8450 (8)0.061 (5)0.331 (11)
H19B0.4370140.1273860.8661170.073*0.331 (11)
C20A0.3597 (3)0.0805 (2)0.9620 (5)0.0525 (12)
H20A0.4106010.0800270.9799770.063*0.669 (11)
H20B0.3266950.0756931.0430190.063*0.669 (11)
H20C0.3163910.0555870.9497040.063*0.331 (11)
H20D0.3778970.0892381.0595470.063*0.331 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (14)0.0355 (14)0.0313 (14)0.0117 (11)0.0014 (12)0.0021 (12)
O20.0278 (14)0.0245 (12)0.0328 (14)0.0044 (10)0.0060 (11)0.0023 (11)
C10.0232 (17)0.0220 (16)0.0274 (18)0.0009 (13)0.0030 (16)0.0034 (15)
C20.0224 (16)0.0251 (16)0.0270 (17)0.0038 (14)0.0012 (16)0.0028 (15)
C30.0244 (18)0.036 (2)0.042 (2)0.0023 (15)0.0028 (17)0.0071 (18)
C40.0251 (19)0.0339 (19)0.0299 (19)0.0088 (15)0.0068 (16)0.0064 (16)
C50.035 (2)0.0336 (19)0.0266 (19)0.0103 (16)0.0044 (17)0.0039 (16)
C60.033 (2)0.0258 (17)0.037 (2)0.0051 (14)0.0025 (17)0.0009 (16)
C70.0235 (18)0.0260 (17)0.0303 (19)0.0057 (14)0.0051 (15)0.0031 (16)
C80.0211 (17)0.0275 (17)0.0259 (17)0.0090 (14)0.0009 (15)0.0008 (15)
C90.0252 (18)0.0271 (17)0.038 (2)0.0021 (14)0.0028 (17)0.0026 (16)
C100.032 (2)0.0334 (19)0.0271 (18)0.0059 (16)0.0001 (17)0.0010 (16)
C110.041 (2)0.044 (2)0.026 (2)0.0107 (17)0.0043 (17)0.0041 (18)
C120.037 (2)0.0344 (19)0.031 (2)0.0142 (17)0.0090 (19)0.0086 (16)
C130.0243 (18)0.0304 (18)0.043 (2)0.0086 (15)0.0133 (18)0.0082 (17)
C140.033 (2)0.034 (2)0.058 (3)0.0050 (16)0.012 (2)0.009 (2)
C150.041 (2)0.0275 (19)0.075 (3)0.0024 (17)0.020 (2)0.013 (2)
C160.056 (3)0.043 (2)0.044 (2)0.019 (2)0.023 (2)0.014 (2)
C170.052 (3)0.042 (2)0.034 (2)0.020 (2)0.014 (2)0.0077 (19)
C180.080 (4)0.047 (3)0.057 (3)0.019 (2)0.024 (3)0.017 (2)
C190.054 (3)0.068 (3)0.062 (3)0.005 (2)0.009 (3)0.028 (3)
C200.069 (4)0.088 (4)0.055 (3)0.003 (3)0.012 (3)0.021 (3)
O1A0.0276 (13)0.0253 (12)0.0356 (14)0.0042 (10)0.0028 (12)0.0012 (11)
O2A0.0210 (12)0.0325 (13)0.0393 (14)0.0003 (10)0.0038 (11)0.0017 (12)
C1A0.0219 (17)0.0304 (18)0.0195 (17)0.0009 (13)0.0002 (14)0.0004 (14)
C2A0.0223 (17)0.0266 (16)0.0232 (17)0.0010 (14)0.0006 (15)0.0009 (14)
C3A0.0275 (18)0.0347 (18)0.0246 (17)0.0007 (15)0.0009 (16)0.0009 (16)
C4A0.0200 (16)0.0257 (16)0.0287 (19)0.0009 (13)0.0021 (15)0.0001 (15)
C5A0.0207 (17)0.0304 (19)0.0291 (18)0.0040 (13)0.0034 (15)0.0014 (16)
C6A0.0234 (17)0.0266 (17)0.0276 (18)0.0010 (13)0.0030 (15)0.0030 (16)
C7A0.0205 (16)0.0224 (15)0.0224 (16)0.0020 (13)0.0015 (15)0.0015 (14)
C8A0.0191 (16)0.0245 (16)0.0232 (17)0.0024 (13)0.0003 (14)0.0018 (14)
C9A0.0273 (18)0.0280 (17)0.0273 (18)0.0046 (14)0.0036 (15)0.0008 (15)
C10A0.0260 (18)0.0303 (18)0.0272 (17)0.0050 (14)0.0028 (16)0.0027 (16)
C11A0.037 (2)0.0276 (18)0.035 (2)0.0073 (15)0.0019 (17)0.0008 (16)
C12A0.0220 (17)0.0272 (17)0.0319 (19)0.0016 (13)0.0004 (16)0.0004 (16)
C13A0.0183 (16)0.0262 (16)0.0271 (17)0.0031 (13)0.0042 (15)0.0011 (14)
C14A0.0266 (19)0.0256 (17)0.0307 (19)0.0042 (14)0.0007 (15)0.0047 (15)
C15A0.031 (2)0.0330 (19)0.0287 (19)0.0090 (15)0.0031 (16)0.0031 (16)
C16A0.031 (2)0.0272 (18)0.035 (2)0.0047 (14)0.0006 (16)0.0051 (16)
C17A0.0265 (18)0.0242 (17)0.044 (2)0.0008 (14)0.0003 (17)0.0014 (17)
C18A0.063 (3)0.032 (2)0.048 (2)0.0002 (19)0.010 (2)0.0080 (19)
C19A0.039 (4)0.022 (3)0.040 (3)0.005 (2)0.007 (3)0.000 (2)
C19B0.055 (9)0.066 (9)0.063 (6)0.024 (7)0.015 (6)0.026 (6)
C20A0.073 (3)0.041 (2)0.044 (2)0.007 (2)0.005 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—H10.87 (2)C1A—C2A1.523 (5)
O1—C11.270 (4)C2A—C3A1.544 (5)
O2—H20.87 (2)C2A—C4A1.546 (4)
O2—C11.274 (4)C2A—C8A1.552 (4)
C1—C21.529 (4)C3A—H3AA0.9800
C2—C31.551 (5)C3A—H3AB0.9800
C2—C41.538 (5)C3A—H3AC0.9800
C2—C81.557 (5)C4A—H4AA0.9900
C3—H3A0.9800C4A—H4AB0.9900
C3—H3B0.9800C4A—C5A1.524 (5)
C3—H3C0.9800C5A—H5AA0.9900
C4—H4A0.9900C5A—H5AB0.9900
C4—H4B0.9900C5A—C6A1.525 (5)
C4—C51.516 (5)C6A—H6AA0.9900
C5—H5A0.9900C6A—H6AB0.9900
C5—H5B0.9900C6A—C7A1.542 (4)
C5—C61.526 (5)C7A—C8A1.553 (4)
C6—H6A0.9900C7A—C9A1.548 (4)
C6—H6B0.9900C7A—C13A1.536 (4)
C6—C71.547 (5)C8A—H8A1.0000
C7—C81.551 (5)C8A—C10A1.536 (4)
C7—C91.541 (5)C9A—H9AA0.9800
C7—C131.543 (5)C9A—H9AB0.9800
C8—H81.0000C9A—H9AC0.9800
C8—C101.536 (5)C10A—H10A0.9900
C9—H9A0.9800C10A—H10B0.9900
C9—H9B0.9800C10A—C11A1.528 (5)
C9—H9C0.9800C11A—H11A0.9900
C10—H10C0.9900C11A—H11B0.9900
C10—H10D0.9900C11A—C12A1.507 (5)
C10—C111.517 (5)C12A—C13A1.398 (5)
C11—H11C0.9900C12A—C17A1.405 (5)
C11—H11D0.9900C13A—C14A1.400 (5)
C11—C121.504 (6)C14A—H14A0.9500
C12—C131.403 (6)C14A—C15A1.389 (5)
C12—C171.405 (5)C15A—H15A0.9500
C13—C141.391 (5)C15A—C16A1.387 (5)
C14—H140.9500C16A—C17A1.385 (5)
C14—C151.405 (6)C16A—C18A1.527 (5)
C15—H150.9500C17A—H17A0.9500
C15—C161.380 (6)C18A—H18A0.9900
C16—C171.376 (6)C18A—H18B0.9900
C16—C181.534 (6)C18A—H18C0.9900
C17—H170.9500C18A—H18D0.9900
C18—H18E0.9900C18A—C19A1.448 (6)
C18—H18F0.9900C18A—C19B1.432 (8)
C18—C191.439 (7)C19A—H19A0.9500
C19—H190.9500C19A—C20A1.316 (6)
C19—C201.289 (7)C19B—H19B0.9500
C20—H20E0.9500C19B—C20A1.304 (8)
C20—H20F0.9500C20A—H20A0.9500
O1A—H1A0.872 (19)C20A—H20B0.9500
O1A—C1A1.286 (4)C20A—H20C0.9500
O2A—C1A1.259 (4)C20A—H20D0.9500
C1—O1—H1118 (5)C1A—C2A—C8A113.6 (3)
C1—O2—H2106 (5)C3A—C2A—C4A106.7 (3)
O1—C1—O2122.5 (3)C3A—C2A—C8A110.3 (3)
O1—C1—C2119.0 (3)C4A—C2A—C8A108.7 (3)
O2—C1—C2118.3 (3)C2A—C3A—H3AA109.5
C1—C2—C3104.7 (3)C2A—C3A—H3AB109.5
C1—C2—C4111.3 (3)C2A—C3A—H3AC109.5
C1—C2—C8114.6 (3)H3AA—C3A—H3AB109.5
C3—C2—C8109.9 (3)H3AA—C3A—H3AC109.5
C4—C2—C3107.8 (3)H3AB—C3A—H3AC109.5
C4—C2—C8108.4 (3)C2A—C4A—H4AA108.7
C2—C3—H3A109.5C2A—C4A—H4AB108.7
C2—C3—H3B109.5H4AA—C4A—H4AB107.6
C2—C3—H3C109.5C5A—C4A—C2A114.2 (3)
H3A—C3—H3B109.5C5A—C4A—H4AA108.7
H3A—C3—H3C109.5C5A—C4A—H4AB108.7
H3B—C3—H3C109.5C4A—C5A—H5AA109.3
C2—C4—H4A108.8C4A—C5A—H5AB109.3
C2—C4—H4B108.8C4A—C5A—C6A111.5 (3)
H4A—C4—H4B107.7H5AA—C5A—H5AB108.0
C5—C4—C2113.8 (3)C6A—C5A—H5AA109.3
C5—C4—H4A108.8C6A—C5A—H5AB109.3
C5—C4—H4B108.8C5A—C6A—H6AA109.1
C4—C5—H5A109.2C5A—C6A—H6AB109.1
C4—C5—H5B109.2C5A—C6A—C7A112.6 (3)
C4—C5—C6111.9 (3)H6AA—C6A—H6AB107.8
H5A—C5—H5B107.9C7A—C6A—H6AA109.1
C6—C5—H5A109.2C7A—C6A—H6AB109.1
C6—C5—H5B109.2C6A—C7A—C8A107.8 (3)
C5—C6—H6A109.0C6A—C7A—C9A108.5 (3)
C5—C6—H6B109.0C9A—C7A—C8A112.5 (3)
C5—C6—C7112.9 (3)C13A—C7A—C6A111.2 (3)
H6A—C6—H6B107.8C13A—C7A—C8A110.3 (3)
C7—C6—H6A109.0C13A—C7A—C9A106.6 (3)
C7—C6—H6B109.0C2A—C8A—C7A114.2 (3)
C6—C7—C8107.7 (3)C2A—C8A—H8A104.7
C9—C7—C6109.4 (3)C7A—C8A—H8A104.7
C9—C7—C8112.6 (3)C10A—C8A—C2A116.2 (3)
C9—C7—C13106.5 (3)C10A—C8A—C7A110.9 (3)
C13—C7—C6111.0 (3)C10A—C8A—H8A104.7
C13—C7—C8109.7 (3)C7A—C9A—H9AA109.5
C2—C8—H8104.5C7A—C9A—H9AB109.5
C7—C8—C2114.6 (3)C7A—C9A—H9AC109.5
C7—C8—H8104.5H9AA—C9A—H9AB109.5
C10—C8—C2116.7 (3)H9AA—C9A—H9AC109.5
C10—C8—C7110.6 (3)H9AB—C9A—H9AC109.5
C10—C8—H8104.5C8A—C10A—H10A109.9
C7—C9—H9A109.5C8A—C10A—H10B109.9
C7—C9—H9B109.5H10A—C10A—H10B108.3
C7—C9—H9C109.5C11A—C10A—C8A108.9 (3)
H9A—C9—H9B109.5C11A—C10A—H10A109.9
H9A—C9—H9C109.5C11A—C10A—H10B109.9
H9B—C9—H9C109.5C10A—C11A—H11A109.2
C8—C10—H10C109.9C10A—C11A—H11B109.2
C8—C10—H10D109.9H11A—C11A—H11B107.9
H10C—C10—H10D108.3C12A—C11A—C10A112.1 (3)
C11—C10—C8108.7 (3)C12A—C11A—H11A109.2
C11—C10—H10C109.9C12A—C11A—H11B109.2
C11—C10—H10D109.9C13A—C12A—C11A122.4 (3)
C10—C11—H11C109.1C13A—C12A—C17A119.2 (3)
C10—C11—H11D109.1C17A—C12A—C11A118.4 (3)
H11C—C11—H11D107.9C12A—C13A—C7A122.4 (3)
C12—C11—C10112.3 (3)C12A—C13A—C14A117.8 (3)
C12—C11—H11C109.1C14A—C13A—C7A119.6 (3)
C12—C11—H11D109.1C13A—C14A—H14A119.0
C13—C12—C11122.0 (3)C15A—C14A—C13A122.1 (3)
C13—C12—C17119.7 (4)C15A—C14A—H14A119.0
C17—C12—C11118.3 (4)C14A—C15A—H15A119.7
C12—C13—C7122.4 (3)C16A—C15A—C14A120.5 (3)
C14—C13—C7120.0 (4)C16A—C15A—H15A119.7
C14—C13—C12117.5 (3)C15A—C16A—C18A122.4 (3)
C13—C14—H14119.2C17A—C16A—C15A117.7 (3)
C13—C14—C15121.5 (4)C17A—C16A—C18A119.9 (3)
C15—C14—H14119.2C12A—C17A—H17A118.7
C14—C15—H15119.5C16A—C17A—C12A122.7 (3)
C16—C15—C14120.9 (4)C16A—C17A—H17A118.7
C16—C15—H15119.5C16A—C18A—H18A108.0
C15—C16—C18121.8 (4)C16A—C18A—H18B108.0
C17—C16—C15117.8 (4)C16A—C18A—H18C108.2
C17—C16—C18120.4 (4)C16A—C18A—H18D108.2
C12—C17—H17118.7H18A—C18A—H18B107.3
C16—C17—C12122.5 (4)H18C—C18A—H18D107.3
C16—C17—H17118.7C19A—C18A—C16A117.1 (4)
C16—C18—H18E108.6C19A—C18A—H18A108.0
C16—C18—H18F108.6C19A—C18A—H18B108.0
H18E—C18—H18F107.6C19B—C18A—C16A116.5 (7)
C19—C18—C16114.6 (4)C19B—C18A—H18C108.2
C19—C18—H18E108.6C19B—C18A—H18D108.2
C19—C18—H18F108.6C18A—C19A—H19A116.4
C18—C19—H19116.5C20A—C19A—C18A127.3 (5)
C20—C19—C18127.1 (6)C20A—C19A—H19A116.4
C20—C19—H19116.5C18A—C19B—H19B115.2
C19—C20—H20E120.0C20A—C19B—C18A129.7 (7)
C19—C20—H20F120.0C20A—C19B—H19B115.2
H20E—C20—H20F120.0C19A—C20A—H20A120.0
C1A—O1A—H1A114 (3)C19A—C20A—H20B120.0
O1A—C1A—C2A117.7 (3)C19B—C20A—H20C120.0
O2A—C1A—O1A122.7 (3)C19B—C20A—H20D120.0
O2A—C1A—C2A119.6 (3)H20A—C20A—H20B120.0
C1A—C2A—C3A104.9 (3)H20C—C20A—H20D120.0
C1A—C2A—C4A112.4 (3)
O1—C1—C2—C371.8 (4)O1A—C1A—C2A—C8A132.5 (3)
O1—C1—C2—C4172.0 (3)O2A—C1A—C2A—C3A69.5 (4)
O1—C1—C2—C848.6 (4)O2A—C1A—C2A—C4A175.0 (3)
O2—C1—C2—C3104.1 (3)O2A—C1A—C2A—C8A50.9 (4)
O2—C1—C2—C412.1 (4)C1A—C2A—C4A—C5A75.7 (4)
O2—C1—C2—C8135.5 (3)C1A—C2A—C8A—C7A72.0 (4)
C1—C2—C4—C574.3 (3)C1A—C2A—C8A—C10A59.2 (4)
C1—C2—C8—C770.0 (4)C2A—C4A—C5A—C6A53.0 (4)
C1—C2—C8—C1061.5 (4)C2A—C8A—C10A—C11A161.1 (3)
C2—C4—C5—C654.1 (4)C3A—C2A—C4A—C5A169.8 (3)
C2—C8—C10—C11159.1 (3)C3A—C2A—C8A—C7A170.6 (3)
C3—C2—C4—C5171.5 (3)C3A—C2A—C8A—C10A58.2 (4)
C3—C2—C8—C7172.5 (3)C4A—C2A—C8A—C7A54.0 (4)
C3—C2—C8—C1056.0 (4)C4A—C2A—C8A—C10A174.8 (3)
C4—C2—C8—C754.9 (3)C4A—C5A—C6A—C7A55.8 (4)
C4—C2—C8—C10173.6 (3)C5A—C6A—C7A—C8A56.6 (3)
C4—C5—C6—C755.1 (4)C5A—C6A—C7A—C9A65.4 (3)
C5—C6—C7—C854.6 (4)C5A—C6A—C7A—C13A177.6 (3)
C5—C6—C7—C968.1 (4)C6A—C7A—C8A—C2A57.0 (3)
C5—C6—C7—C13174.7 (3)C6A—C7A—C8A—C10A169.3 (2)
C6—C7—C8—C255.9 (3)C6A—C7A—C13A—C12A136.7 (3)
C6—C7—C8—C10169.7 (3)C6A—C7A—C13A—C14A48.3 (4)
C6—C7—C13—C12136.5 (4)C7A—C8A—C10A—C11A66.2 (4)
C6—C7—C13—C1446.9 (4)C7A—C13A—C14A—C15A175.3 (3)
C7—C8—C10—C1167.5 (4)C8A—C2A—C4A—C5A51.0 (4)
C7—C13—C14—C15177.4 (3)C8A—C7A—C13A—C12A17.2 (4)
C8—C2—C4—C552.6 (4)C8A—C7A—C13A—C14A167.8 (3)
C8—C7—C13—C1217.6 (4)C8A—C10A—C11A—C12A50.6 (4)
C8—C7—C13—C14165.9 (3)C9A—C7A—C8A—C2A62.6 (4)
C8—C10—C11—C1251.0 (4)C9A—C7A—C8A—C10A71.1 (3)
C9—C7—C8—C264.7 (4)C9A—C7A—C13A—C12A105.1 (3)
C9—C7—C8—C1069.7 (4)C9A—C7A—C13A—C14A69.8 (4)
C9—C7—C13—C12104.5 (4)C10A—C11A—C12A—C13A21.0 (5)
C9—C7—C13—C1472.0 (4)C10A—C11A—C12A—C17A159.0 (3)
C10—C11—C12—C1320.5 (5)C11A—C12A—C13A—C7A4.0 (5)
C10—C11—C12—C17160.0 (3)C11A—C12A—C13A—C14A179.1 (3)
C11—C12—C13—C73.5 (5)C11A—C12A—C17A—C16A178.5 (3)
C11—C12—C13—C14179.9 (3)C12A—C13A—C14A—C15A0.1 (5)
C11—C12—C17—C16179.0 (4)C13A—C7A—C8A—C2A178.5 (3)
C12—C13—C14—C150.7 (5)C13A—C7A—C8A—C10A47.7 (3)
C13—C7—C8—C2176.8 (3)C13A—C12A—C17A—C16A1.4 (5)
C13—C7—C8—C1048.7 (3)C13A—C14A—C15A—C16A0.0 (5)
C13—C12—C17—C160.6 (6)C14A—C15A—C16A—C17A0.5 (5)
C13—C14—C15—C160.1 (6)C14A—C15A—C16A—C18A178.8 (4)
C14—C15—C16—C170.8 (6)C15A—C16A—C17A—C12A1.2 (5)
C14—C15—C16—C18176.9 (4)C15A—C16A—C18A—C19A20.0 (6)
C15—C16—C17—C121.1 (6)C15A—C16A—C18A—C19B32.9 (7)
C15—C16—C18—C1984.1 (6)C16A—C18A—C19A—C20A119.2 (5)
C16—C18—C19—C20129.7 (6)C16A—C18A—C19B—C20A121.4 (13)
C17—C12—C13—C7177.0 (3)C17A—C12A—C13A—C7A175.9 (3)
C17—C12—C13—C140.3 (5)C17A—C12A—C13A—C14A0.8 (5)
C17—C16—C18—C1998.3 (6)C17A—C16A—C18A—C19A160.7 (4)
C18—C16—C17—C12176.6 (4)C17A—C16A—C18A—C19B146.4 (6)
O1A—C1A—C2A—C3A107.0 (3)C18A—C16A—C17A—C12A178.1 (3)
O1A—C1A—C2A—C4A8.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg6 are the centroids of the C12A–C17A and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.87 (2)1.88 (3)2.720 (5)161 (8)
O2—H2···O2i0.87 (2)1.82 (3)2.656 (5)162 (7)
O1A—H1A···O2Ai0.87 (2)1.78 (2)2.652 (3)174 (4)
C10A—H10B···O2A0.992.512.917 (4)104
C10—H10D···O10.992.582.969 (4)104
C4—H4B···Cg3ii0.993.003.978 (4)170
C4A—H4AB···Cg6iii0.992.903.863 (4)165
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge the Department of Chemical Sciences for providing the infrastructure to conduct the experiments and the National Research Foundation (NRF) for their financial support.

Funding information

Funding for this research was provided by: National Research Fund (South Africa) (grant No. 1167490).

References

First citationAdelekan, A. M., Prozesky, E. A., Hussein, A. A., Ureña, L. D., van Rooyen, P. H., Liles, D. C., Meyer, J. M. & Rodríguez, B. (2008). J. Nat. Prod. 71, 1919–1922.  CSD CrossRef PubMed CAS Google Scholar
First citationAhmad, F., Parveen, M., Alam, M., Azaz, S., Malla, A. M., Alam, M. J., Lee, D. U. & Ahmad, S. (2016). J. Mol. Struct. 1116, 317–332.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and XPREP. Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationButler, M. S. (2004). J. Nat. Prod. 67, 2141–2153.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGreen, N. J., Willis, A. C. & Sherburn, M. S. (2016). Angew. Chem. Int. Ed. 55, 9244–9248.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanson, J. R. (2009). Nat. Prod. Rep. 26, 1156–1171.  CrossRef PubMed CAS Google Scholar
First citationHitchcock, P. B., Avent, A. G., Martsinovich, N., Troshin, P. A. & Taylor, R. (2005). Org. Lett. 7, 1975–1978.  CSD CrossRef PubMed CAS Google Scholar
First citationJagtap, M., Ashok, B. K., Chavan, S. S., Chandola, H. M. & Ravi­shankar, B. (2011). Indian J. Nat. Prod. Res. 2, 335–344.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerritt, A. T. & Ley, S. V. (1992). Nat. Prod. Rep. 9, 243–287.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNoumbissie, E. B., Kapnang, H., Fomum, Z. T., Martin, M. T. & Bodo, B. (1992). J. Nat. Prod. 55, 137–139.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimard, F., Legault, J., Lavoie, S. & Pichette, A. (2014). Phytochemistry, 100, 141–149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, H. D., Huang, S. X. & Han, Q. B. (2006). Nat. Prod. Rep. 23, 673–698.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTonga, J. L., Kamdem, M. H. K., Pagna, J. I. M., Fonkui, T. Y., Tata, C. M., Fotsing, M. C. D., Nkengfack, E. A., Mmutlane, E. M. & Ndinteh, D. T. (2022). Arab. J. Chem. 15, 104150, 1–7.  Google Scholar
First citationUlubelen, A., Öksüz, S., Kolak, U., Tan, U., Bozok-Johansson, C., Çelik, C., Kohlbau, H. J. & Voelter, W. (1999). Phytochemistry, 52, 1455–1459.  CrossRef CAS Google Scholar
First citationYe, Y., Kim, S. T., Jeong, J., Baik, M. H. & Buchwald, S. L. (2019). J. Am. Chem. Soc. 141, 3901–3909.  CSD CrossRef CAS PubMed Google Scholar
First citationZhu, L. & Chen, L. (2019). Cell. & Mol. Biol. Lett. 24, 1–11.  Google Scholar
First citationZhu, Z., Lin, L., Xiao, J. & Shi, Z. (2022). Angew. Chem. Int. Ed. 61, e202113209.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds