research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[methanoldioxidouranium(VI)]-μ-2-[5-(2-oxidophen­yl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O′]

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by G. Ferrence, Illinois State University, USA (Received 10 June 2024; accepted 4 July 2024; online 12 July 2024)

In the title complex, [U(C10H7N3O3)O2(CH3OH)]n, the UVI cation has a typical penta­gonal–bipyramidal environment with the equatorial plane defined by one N and two O atoms of one doubly deprotonated 2-[5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl]acetic acid ligand, a carboxyl­ate O atom of the symmetry-related ligand and the O atom of the methanol mol­ecule [U—N/Oeq 2.256 (4)–2.504 (5) Å]. The axial positions are occupied by two oxide O atoms. The equatorial atoms are almost coplanar, with the largest deviation from the mean plane being 0.121 Å for one of the O atoms. The benzene and triazole rings of the tetra­dentate chelating–bridging ligand are twisted by approximately 21.6 (2)° with respect to each other. The carboxyl­ate group of the ligand bridges two uranyl cations, forming a neutral zigzag chain reinforced by a strong O—H⋯O hydrogen bond. In the crystal, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by C/N—H⋯N/O hydrogen bonding and ππ inter­actions. Further weak C—H⋯O contacts consolidate the three-dimensional supra­molecular architecture. In the solid state, the compound shows a broad medium intensity LMCT transition centred around 463 nm, which is responsible for its red colour.

1. Chemical context

Uranium is the main component of the fuel used in nuclear power reactors for the electricity production. Knowledge of its chemical properties, behaviour, and inter­actions is crucial for the safe and efficient mining extraction process, waste disposal and recycling procedures (Alwaeli & Mannheim, 2022[Alwaeli, M. & Mannheim, V. (2022). Energies, 15, 4275.]). Uranium can exist in multiple oxidation states from +3 to +6, depending on its chemical environment and conditions, with the tetra­valent metal being the predominant form in the natural state in many uranium-bearing minerals and ores. In nuclear fuel cycles and certain industrial processes, uranium can also be found in the +6 oxidation state as uranyl ion UO22+ or various uranium(VI) compounds. For the research field in chemistry related to the uranium waste management, it remains an important goal to develop hydro­phobic polydentate ligand systems capable of selectively binding actinide ions and transferring them into the organic phase or depositing them on the surface (Ye et al., 2021[Ye, G., Roques, J., Solari, P. L., Den Auwer, C., Jeanson, A., Brandel, J., Charbonnière, L. J., Wu, W. & Simoni, É. (2021). Inorg. Chem. 60, 2149-2159.]; Thuéry & Harrowfield, 2024[Thuéry, P. & Harrowfield, J. (2024). Coord. Chem. Rev. 510, 215821.]).

As our contribution to the field, we have developed convenient synthetic methods to substituted 1,2,4-triazole ligands as potential chelators for uranyl ions (Vashchenko et al., 2020[Vashchenko, O., Khomenko, D., Doroschuk, R., Raspertova, I. & Lampeka, R. (2020). Fr. Ukr. J. Chem. 8, 1-6.]). The synthesized organic substances have also proved to be useful as analytical reagents for fluorescence determination of UO22+ (Vashchenko et al., 2016a[Vashchenko, O. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Trachevsky, V. V. & Lampeka, R. D. (2016a). Theor. Exp. Chem. 52, 38-43.]). 1,2,4-Triazoles bearing free carboxyl­ate ends were considered promising owing to their simultaneous activities as both chelating and bridging ligands that can adopt various coord­ination modes (Vashchenko et al., 2017[Vashchenko, O. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V. & Lampeka, R. D. (2017). Dopov. Nac. Akad. Nauk. Ukr. pp. 56-62.]). In this study, the crystal structure of [UO2L(CH3OH)]n, (I)[link], where H2L is 5-(2-hy­droxy­phen­yl)-1H-1,2,4-triazol-3-yl acetic acid, is reported. The title compound was previously published as UO2L(CH3OH)2 and studied with IR and NMR spectroscopy but not structurally characterized (Khomenko et al., 2014[Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2014). Ukr. Khim. Zh. 80, 83-86.]). The present structure determination clarified its composition and polymeric arrangement.

[Scheme 1]

2. Structural commentary

The repeat motif of (I)[link] consists of a uranyl unit [O=U=O]2+, an L2– ligand with both carb­oxy­lic acid and phenol groups deprotonated, and a methanol mol­ecule (Fig. 1[link]). The UVI cation is in a typical penta­gonal–bipyramidal coordination. The uranyl atoms O1 and O2 found at an average distance of 1.761 (5) A from the metal centre form an almost linear O=U=O angle [179.0 (2)°]. The uranyl ion coordinates four O and one N atoms from the two ligands and methanol mol­ecule that occupy the equatorial vertices of the bipyramid with U–N/Oeq bond lengths in the range 2.256 (4)–2.504 (5) Å and angles at the metal atom varying from 68.00 (15) to 154.47 (16) (Table 1[link]). The geometry of the UVI polyhedron is comparable to that in related structures (Raspertova et al., 2012[Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61-m63.]; Vashchenko et al., 2016b[Vashchenko, O., Raspertova, I., Dyakonenko, V., Shishkina, S., Khomenko, D., Doroschuk, R. & Lampeka, R. (2016b). Acta Cryst. E72, 111-113.]). The equatorial atoms are almost coplanar with the largest deviation from the mean plane being 0.121 Å (O6). The benzene and triazole rings of the tetra­dentate ligand are twisted by approximately 21.6 (2)° with respect to each other.

Table 1
Selected geometric parameters (Å, °)

U1—O1 1.764 (5) U1—O5 2.382 (5)
U1—O2 1.757 (5) U1—O6 2.474 (5)
U1—O3 2.256 (4) U1—N1 2.504 (5)
U1—O4i 2.415 (4)    
       
O1—U1—O3 93.63 (19) O3—U1—O4i 84.70 (15)
O1—U1—O4i 89.78 (19) O3—U1—O5 137.78 (15)
O1—U1—O5 88.01 (19) O3—U1—O6 152.73 (16)
O1—U1—O6 93.32 (19) O3—U1—N1 69.78 (16)
O1—U1—N1 92.6 (2) O4i—U1—O6 68.98 (15)
O2—U1—O1 179.0 (2) O4i—U1—N1 154.47 (16)
O2—U1—O3 87.38 (18) O5—U1—O4i 137.52 (15)
O2—U1—O4i 90.19 (18) O5—U1—O6 68.81 (14)
O2—U1—O5 91.33 (18) O5—U1—N1 68.00 (15)
O2—U1—O6 85.72 (19) O6—U1—N1 136.12 (15)
O2—U1—N1 87.88 (19)    
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the atom labelling and displacement ellipsoids at the 50% probability level. The symmetry-equivalent O4 atom is included to complete the coordination sphere of the UVI cation. [Symmetry code: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.]

The C—O bond distances for the carboxyl­ate group [1.253 (7), 1.260 (8) Å] confirm its anionic form. The acetate O4 and O5 atoms act as the bidentate bridging end of the ligand, linking adjacent penta­gonal bipyramids into a neutral zigzag chain running along the a-axis direction (Fig. 2[link]). No sharing of equatorial edges or vertices occurs. A strong inter­molecular hydrogen bond, O6—H6⋯O3ii, reinforces the 1D zigzag conformation, generating an R11(8) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 2[link], Table 2[link]; symmetry code as given in Table 2[link]). The closest U⋯U separation within the chain is about 5.69 Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3ii 0.85 (1) 1.82 (3) 2.634 (6) 160 (7)
N3—H3⋯O4iii 0.88 2.45 3.291 (7) 159
N3—H3⋯O6iv 0.88 2.38 2.966 (7) 124
C10—H10A⋯O2v 0.99 2.34 3.300 (8) 163
C11—H11A⋯N2vi 0.98 2.66 3.266 (10) 120
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Fragment of the polymeric chain in (I)[link] formed through the ligand carboxylate group bridging of the {UNO6} penta­gonal bipyramids and O6—H6⋯O3ii hydrogen bond (blue dashed lines). [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1.]

3. Supra­molecular features

In the solid state, adjacent chains are linked into two-dimensional sheets parallel to the ac plane by hydrogen bonding and ππ inter­actions (Fig. 3[link]). The bifurcated N3—H⋯O and C—H⋯N2 hydrogen bonds involve nitro­gen atoms of the 1,2,4-triazole ring as both the donor and acceptor of protons (Table 2[link]). The face-to-face aromatic stacking between 1,2,4-triazole and benzene rings from neighbouring chains segments is rather strong, as evidenced by a centroid-to-centroid distance of 3.539 (4) Å, with the tilt angle and ring slippage being 7.1 (4)° and 0.5 Å, respectively. The metal atoms within the sheet are not coplanar, deviating from the mean plane by approximately 0.316 Å on both sides. The sheets inter­act through week C—H⋯O contacts, forming a 3D supra­molecular architecture with distances between the consecutive mean planes corresponding to half the value of the unit-cell parameter b (Fig. 4[link]).

[Figure 3]
Figure 3
A single plane of (I)[link], viewed along the b axis and showing zigzag chains inter­linked by hydrogen bonds and ππ stacking. Orange polyhedra denote U atoms, red spheres O atoms, dark blue spheres N atoms, light blue spheres H atoms; C atoms are grey.
[Figure 4]
Figure 4
Fragment of the crystal packing of (I)[link] viewed down the c axis and showing the sheet-like structure supported by C10—H10A⋯O2v hydrogen bond. [Symmetry code: (v) −x + [{3\over 2}], y − [{1\over 2}], z.]

4. Database survey

The crystal structures of neither the ligand itself nor its metal complexes are found in the Cambridge Structure Database (CSD, Version 5.45, update of Mar 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search of the CSD for structures containing a uranyl ion and the 1,2,4-triazole moiety resulted in twelve hits. Three of them represent metal–organic frameworks (MOFs) with an unsubstituted 1,2,4-triazole ligand and demonstrate remarkable structural features. Ortho­rhom­bic (UVIO2)2[UVIO4(trz)2](OH)2, where trz = 1,2,4-triazole (QEKDAN; Weng et al., 2012[Weng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). Inorg. Chem. 51, 7185-7191.]), is regarded as containing both a typical uranyl cation and a UVI atom with a coordination polyhedron inter­mediate between a tetra­oxido core and UO22+ ion. The neutral 1,2,4-triazole is coordinated to the UVI atom through its N4 atom. The isomorphous ULONOB (Smetana et al., 2021[Smetana, V., Kelley, S. P., Pei, H., Mudring, A. V. & Rogers, R. D. (2021). Cryst. Growth Des. 21, 1727-1733.]), which differs from QEKDAN by one hydrogen atom only, was formulated as the mixed-valent uranium complex UVO(UVIO2)2(OH)5(trz–H)2 with the deprotonated 1,2,4-triazole ligand being bound to the UV centre. In ortho­rhom­bic [Hmim][(UO2)2(trz–H)5]·3mim (mim = 1-methyl­imidazole; NULBAA; Smetana et al., 2020[Smetana, V., Kelley, S. P., Mudring, A. V. & Rogers, R. D. (2020). Sci. Adv. 6, eaay7685.]), the uranyl UO22+ cations are bridged by five [trz–H] anions to five other uranyl ions, forming a nearly planar polymeric anionic layer.

While the number of crystal structures of uranyl acetate complexes in the CSD amounts to 125 hits, those with ligands incorporating an acetate functionality in the 1,2,4-triazole ring are limited to three examples. These are Ag+/UO22+ MOFs based on 1,2,4-triazol-4-yl-acetic acid derivatives (FUHGAT; Senchyk et al., 2020[Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Inorg. Chem. Commun. 113, 107813.]; SIRYAX and SIRYEB; Senchyk et al., 2022[Senchyk, G. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Karbowiak, M. & Domasevitch, K. V. (2022). CrystEngComm, 24, 2241-2250.]). The compounds have uranium(VI) in a penta­gonal–bipyramidal {UO7} arrangement similar to (I)[link], and are distinguished by the acetato group coordination mode, which provides exclusively monodentate coordination to uranyl ions. Further examples of uranyl complexes with the ligands combining 1,2,4-triazole moiety and carboxyl­ate groups include pure uranyl, and heterometallic Zn2+/UO22+ and Cd2+/UO22+ coordination polymers based on the 4-(4′-carb­oxy­phen­yl)-1,2,4-triazole ligand (XIKFOP, XIKFEF and XIKFIJ, respectively; Zhao et al., 2018[Zhao, R., Mei, L., Hu, K. Q., Wang, L. & Chai, Z. F. (2018). J. Coord. Chem. 71, 3021-3033.]).

Three last hits of the twelve structures are mol­ecular uranyl complexes where, depending on the organic substituents positions in the 1,2,4-triazole moiety, triazole-N1 (MIDXEC; Daro et al., 2001[Daro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). Inorg. Chim. Acta, 326, 47-52.]) or N4 coordination (WAWROD; Raspertova et al., 2012[Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61-m63.]; XUYKOT; Vashchenko et al., 2016b[Vashchenko, O., Raspertova, I., Dyakonenko, V., Shishkina, S., Khomenko, D., Doroschuk, R. & Lampeka, R. (2016b). Acta Cryst. E72, 111-113.]) is realized.

5. Synthesis and crystallization

The title compound was synthesized according to the previously published method (Khomenko et al., 2014[Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2014). Ukr. Khim. Zh. 80, 83-86.]). X-ray quality light-red crystals were obtained by slow crystallization from the reaction mixture. Phase purity was confirmed by comparing the observed and calculated powder X-ray diffraction patterns (Fig. 5[link]). The PXRD pattern was acquired on a Shimadzu XRD-6000 diffractometer using Cu Kα radiation (5–50° range, 0.05° step). The main features of the IR and 1H NMR spectra of (I)[link] were in satisfactory agreement with those reported before.

[Figure 5]
Figure 5
Powder XRD patterns of (I)[link].

The UV-Vis absorption spectrum was measured in a diffuse reflectance mode on a Shimadzu UV-2600i spectrophotometer using a powdered microcrystalline sample of (I)[link] at ambient temperature (Fig. 6[link]). The broad unstructured absorption band of medium intensity in the visible region observed at 463 nm can be assigned to O2p → U5f LMCT transitions between the filled O-atom orbitals of the coordinated L2– ligand and the empty orbitals of the UVI ion (Azam et al., 2016[Azam, M., Velmurugan, G., Wabaidur, S. M., Trzesowska-Kruszynska, A., Kruszynski, R., Al-Resayes, S. I., Al-Othman, Z. A. & Venuvanalingam, P. (2016). Sci. Rep. 6, 32898.]). The band gradually slopes into the green–blue region of the spectrum, being responsible for the red colour of (I)[link]. The shoulder visible around 387 nm is likely due to the charge transfer within U=O double bonds (Sladkov et al., 2018[Sladkov, V., He, M., Jewula, P., Penouilh, M. J., Brandès, S., Stern, C., Chambron, J. C. & Meyer, M. (2018). J. Radioanal. Nucl. Chem. 318, 259-266.]). The strong and narrow band at 307 nm is attributed to the ππ* transition within the aromatic ligand. The electronic structure of (I)[link] is significantly different from that of typical uranyl compounds that show an intense LMCT transition with a well-defined vibrational fine structure centred around 420 nm (Natrajan, 2012[Natrajan, L. S. (2012). Coord. Chem. Rev. 256, 1583-1603.]).

[Figure 6]
Figure 6
The solid-state UV-Vis absorption spectrum of (I)[link] at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Anisotropic displacement parameters were employed for the non-hydrogen atoms. The residual electron density in the vicinities of atoms O4, O5 and C10 suggested some disorder in this part of the ligand, but a suitable model for refining the disorder was not found. The H atom bound to O was found in a difference-Fourier map and refined with the bond distance fixed at 0.85 (1) Å and Uiso(H) = 1.5UeqO. The remaining H atoms were placed in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.95/0.99 Å, N—H = 0.88 Å, Uiso(H) = 1.2UeqC/N for CH, CH2 and NH, respectively; C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3]. The idealized methyl group was refined as a rotating group.

Table 3
Experimental details

Crystal data
Chemical formula [U(C10H7N3O3)O2(CH4O)]
Mr 519.26
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 200
a, b, c (Å) 10.9966 (6), 13.7147 (10), 17.9345 (9)
V3) 2704.8 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 12.03
Crystal size (mm) 0.15 × 0.1 × 0.1
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.503, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6980, 2380, 1904
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.056, 1.05
No. of reflections 2380
No. of parameters 194
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.08, −0.82
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

catena-Poly[[methanoldioxidouranium(VI)]-µ-2-[5-(2-oxidophenyl)-1H-1,2,4-triazol-3-yl]acetato-κ2O:O'] top
Crystal data top
[U(C10H7N3O3)O2(CH4O)]Dx = 2.550 Mg m3
Mr = 519.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2366 reflections
a = 10.9966 (6) Åθ = 2.6–30.7°
b = 13.7147 (10) ŵ = 12.03 mm1
c = 17.9345 (9) ÅT = 200 K
V = 2704.8 (3) Å3Prism, clear light red
Z = 80.15 × 0.1 × 0.1 mm
F(000) = 1904
Data collection top
Xcalibur, Eos
diffractometer
2380 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.0797 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 137
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1614
Tmin = 0.503, Tmax = 1.000l = 1121
6980 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0147P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2380 reflectionsΔρmax = 1.08 e Å3
194 parametersΔρmin = 0.82 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.69391 (2)0.27580 (2)0.53512 (2)0.01841 (9)
O10.6706 (4)0.1612 (4)0.4927 (2)0.0292 (13)
O20.7194 (4)0.3902 (4)0.5763 (2)0.0237 (12)
O30.5175 (4)0.2700 (4)0.5992 (2)0.0249 (12)
O41.0734 (4)0.1482 (4)0.5613 (2)0.0274 (13)
O50.9007 (4)0.2302 (4)0.5537 (2)0.0258 (12)
O60.8241 (4)0.3355 (4)0.4323 (3)0.0235 (12)
H60.875 (5)0.290 (4)0.425 (4)0.035*
N10.7276 (5)0.2011 (4)0.6608 (3)0.0212 (15)
N20.8163 (5)0.1263 (5)0.7566 (3)0.0300 (15)
N30.7195 (5)0.1797 (5)0.7804 (3)0.0278 (15)
H30.6945860.1831000.8269340.033*
C10.4940 (6)0.3117 (5)0.6654 (4)0.0226 (17)
C20.3944 (6)0.3736 (5)0.6727 (4)0.0285 (19)
H20.3439350.3864120.6308160.034*
C30.3686 (7)0.4162 (6)0.7405 (5)0.036 (2)
H3A0.2997270.4576360.7447800.043*
C40.4401 (6)0.4000 (6)0.8018 (4)0.035 (2)
H40.4218400.4307710.8479160.043*
C50.5383 (7)0.3390 (6)0.7957 (4)0.0295 (19)
H50.5881490.3273900.8380370.035*
C60.5658 (6)0.2939 (5)0.7285 (3)0.0211 (17)
C70.6674 (6)0.2263 (5)0.7233 (4)0.0233 (17)
C80.8180 (6)0.1388 (5)0.6849 (4)0.0205 (16)
C90.9648 (6)0.1620 (5)0.5797 (4)0.0211 (17)
C100.9090 (6)0.0939 (5)0.6347 (4)0.0284 (19)
H10A0.8694980.0399720.6070910.034*
H10B0.9745740.0652230.6654660.034*
C110.8620 (7)0.4352 (6)0.4303 (4)0.042 (2)
H11A0.9027530.4485210.3828070.063*
H11B0.9184320.4477450.4715180.063*
H11C0.7907960.4776810.4352740.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01371 (14)0.02400 (17)0.01753 (13)0.00033 (12)0.00102 (12)0.00098 (14)
O10.030 (3)0.028 (3)0.030 (3)0.000 (2)0.003 (2)0.002 (3)
O20.015 (3)0.030 (3)0.025 (3)0.003 (2)0.001 (2)0.002 (2)
O30.019 (2)0.038 (3)0.018 (2)0.001 (2)0.002 (2)0.004 (3)
O40.014 (3)0.038 (4)0.031 (3)0.007 (2)0.011 (2)0.011 (3)
O50.020 (3)0.035 (3)0.022 (2)0.003 (2)0.006 (2)0.018 (3)
O60.018 (3)0.026 (3)0.027 (2)0.003 (2)0.003 (2)0.002 (3)
N10.011 (3)0.027 (4)0.026 (3)0.006 (2)0.002 (3)0.002 (3)
N20.029 (4)0.032 (4)0.028 (3)0.004 (3)0.001 (3)0.006 (3)
N30.027 (4)0.039 (4)0.017 (3)0.003 (3)0.001 (3)0.006 (3)
C10.018 (4)0.020 (5)0.029 (4)0.006 (3)0.004 (3)0.003 (4)
C20.022 (4)0.025 (5)0.039 (4)0.002 (3)0.002 (4)0.001 (4)
C30.024 (4)0.025 (5)0.059 (6)0.002 (4)0.016 (4)0.004 (5)
C40.030 (5)0.034 (5)0.042 (5)0.013 (4)0.019 (4)0.005 (5)
C50.032 (5)0.033 (5)0.024 (4)0.012 (4)0.002 (4)0.000 (4)
C60.019 (4)0.024 (5)0.020 (3)0.006 (3)0.007 (3)0.003 (3)
C70.018 (4)0.029 (5)0.023 (4)0.008 (3)0.002 (3)0.007 (4)
C80.016 (4)0.023 (4)0.023 (4)0.006 (3)0.002 (3)0.005 (4)
C90.024 (4)0.019 (5)0.020 (4)0.004 (3)0.001 (3)0.000 (4)
C100.015 (4)0.025 (5)0.044 (5)0.004 (3)0.000 (4)0.009 (4)
C110.051 (5)0.038 (6)0.037 (5)0.012 (5)0.006 (4)0.001 (5)
Geometric parameters (Å, º) top
U1—O11.764 (5)C1—C21.392 (9)
U1—O21.757 (5)C1—C61.401 (9)
U1—O32.256 (4)C2—H20.9500
U1—O4i2.415 (4)C2—C31.379 (10)
U1—O52.382 (5)C3—H3A0.9500
U1—O62.474 (5)C3—C41.369 (10)
U1—N12.504 (5)C4—H40.9500
O3—C11.343 (8)C4—C51.371 (10)
O4—C91.253 (7)C5—H50.9500
O5—C91.260 (8)C5—C61.389 (9)
O6—H60.849 (10)C6—C71.454 (9)
O6—C111.430 (8)C8—C101.481 (9)
N1—C71.347 (8)C9—C101.490 (9)
N1—C81.380 (8)C10—H10A0.9900
N2—N31.361 (8)C10—H10B0.9900
N2—C81.298 (8)C11—H11A0.9800
N3—H30.8800C11—H11B0.9800
N3—C71.335 (8)C11—H11C0.9800
O1—U1—O393.63 (19)C1—C2—H2119.9
O1—U1—O4i89.78 (19)C3—C2—C1120.2 (7)
O1—U1—O588.01 (19)C3—C2—H2119.9
O1—U1—O693.32 (19)C2—C3—H3A119.3
O1—U1—N192.6 (2)C4—C3—C2121.4 (7)
O2—U1—O1179.0 (2)C4—C3—H3A119.3
O2—U1—O387.38 (18)C3—C4—H4120.4
O2—U1—O4i90.19 (18)C3—C4—C5119.2 (8)
O2—U1—O591.33 (18)C5—C4—H4120.4
O2—U1—O685.72 (19)C4—C5—H5119.6
O2—U1—N187.88 (19)C4—C5—C6120.9 (7)
O3—U1—O4i84.70 (15)C6—C5—H5119.6
O3—U1—O5137.78 (15)C1—C6—C7119.5 (6)
O3—U1—O6152.73 (16)C5—C6—C1120.0 (6)
O3—U1—N169.78 (16)C5—C6—C7120.4 (6)
O4i—U1—O668.98 (15)N1—C7—C6126.4 (6)
O4i—U1—N1154.47 (16)N3—C7—N1107.7 (6)
O5—U1—O4i137.52 (15)N3—C7—C6125.8 (6)
O5—U1—O668.81 (14)N1—C8—C10123.7 (6)
O5—U1—N168.00 (15)N2—C8—N1112.4 (6)
O6—U1—N1136.12 (15)N2—C8—C10123.9 (7)
C1—O3—U1126.9 (4)O4—C9—O5123.2 (6)
C9—O4—U1ii130.3 (4)O4—C9—C10118.1 (6)
C9—O5—U1141.3 (4)O5—C9—C10118.7 (6)
U1—O6—H6105 (5)C8—C10—C9114.8 (6)
C11—O6—U1120.3 (4)C8—C10—H10A108.6
C11—O6—H6120 (5)C8—C10—H10B108.6
C7—N1—U1124.9 (4)C9—C10—H10A108.6
C7—N1—C8104.7 (6)C9—C10—H10B108.6
C8—N1—U1129.9 (4)H10A—C10—H10B107.5
C8—N2—N3104.5 (6)O6—C11—H11A109.5
N2—N3—H3124.7O6—C11—H11B109.5
C7—N3—N2110.7 (6)O6—C11—H11C109.5
C7—N3—H3124.7H11A—C11—H11B109.5
O3—C1—C2119.6 (7)H11A—C11—H11C109.5
O3—C1—C6122.1 (6)H11B—C11—H11C109.5
C2—C1—C6118.3 (7)
U1—O3—C1—C2125.8 (6)N3—N2—C8—N11.8 (8)
U1—O3—C1—C655.2 (9)N3—N2—C8—C10180.0 (6)
U1ii—O4—C9—O58.3 (10)C1—C2—C3—C40.7 (11)
U1ii—O4—C9—C10171.3 (4)C1—C6—C7—N123.3 (11)
U1—O5—C9—O4158.0 (5)C1—C6—C7—N3158.3 (7)
U1—O5—C9—C1021.7 (11)C2—C1—C6—C51.3 (10)
U1—N1—C7—N3172.7 (4)C2—C1—C6—C7177.4 (6)
U1—N1—C7—C65.9 (10)C2—C3—C4—C51.0 (11)
U1—N1—C8—N2170.6 (4)C3—C4—C5—C60.1 (11)
U1—N1—C8—C107.6 (10)C4—C5—C6—C11.1 (11)
O3—C1—C2—C3179.4 (6)C4—C5—C6—C7177.6 (7)
O3—C1—C6—C5179.7 (6)C5—C6—C7—N1158.0 (7)
O3—C1—C6—C71.6 (10)C5—C6—C7—N320.4 (11)
O4—C9—C10—C8146.7 (6)C6—C1—C2—C30.5 (11)
O5—C9—C10—C833.6 (9)C7—N1—C8—N20.6 (8)
N1—C8—C10—C945.3 (9)C7—N1—C8—C10178.8 (6)
N2—N3—C7—N12.0 (8)C8—N1—C7—N30.9 (8)
N2—N3—C7—C6176.6 (6)C8—N1—C7—C6177.8 (7)
N2—C8—C10—C9132.7 (7)C8—N2—N3—C72.3 (8)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3ii0.85 (1)1.82 (3)2.634 (6)160 (7)
N3—H3···O4iii0.882.453.291 (7)159
N3—H3···O6iv0.882.382.966 (7)124
C10—H10A···O2v0.992.343.300 (8)163
C11—H11A···N2vi0.982.663.266 (10)120
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y, z+3/2; (iv) x, y+1/2, z+1/2; (v) x+3/2, y1/2, z; (vi) x, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037–06). This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CCCDI - UEFISCDI, project No. PN-III-P2–2.1-PED-2021–3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).

References

First citationAlwaeli, M. & Mannheim, V. (2022). Energies, 15, 4275.  CrossRef Google Scholar
First citationAzam, M., Velmurugan, G., Wabaidur, S. M., Trzesowska-Kruszynska, A., Kruszynski, R., Al-Resayes, S. I., Al-Othman, Z. A. & Venuvanalingam, P. (2016). Sci. Rep. 6, 32898.  CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDaro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). Inorg. Chim. Acta, 326, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2014). Ukr. Khim. Zh. 80, 83–86.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNatrajan, L. S. (2012). Coord. Chem. Rev. 256, 1583–1603.  Web of Science CrossRef CAS Google Scholar
First citationRaspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). Acta Cryst. C68, m61–m63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Inorg. Chem. Commun. 113, 107813.  CrossRef Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Karbowiak, M. & Domasevitch, K. V. (2022). CrystEngComm, 24, 2241–2250.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSladkov, V., He, M., Jewula, P., Penouilh, M. J., Brandès, S., Stern, C., Chambron, J. C. & Meyer, M. (2018). J. Radioanal. Nucl. Chem. 318, 259–266.  CrossRef CAS Google Scholar
First citationSmetana, V., Kelley, S. P., Mudring, A. V. & Rogers, R. D. (2020). Sci. Adv. 6, eaay7685.  CrossRef PubMed Google Scholar
First citationSmetana, V., Kelley, S. P., Pei, H., Mudring, A. V. & Rogers, R. D. (2021). Cryst. Growth Des. 21, 1727–1733.  CrossRef CAS Google Scholar
First citationThuéry, P. & Harrowfield, J. (2024). Coord. Chem. Rev. 510, 215821.  Google Scholar
First citationVashchenko, O., Khomenko, D., Doroschuk, R., Raspertova, I. & Lampeka, R. (2020). Fr. Ukr. J. Chem. 8, 1–6.  CrossRef CAS Google Scholar
First citationVashchenko, O., Raspertova, I., Dyakonenko, V., Shishkina, S., Khomenko, D., Doroschuk, R. & Lampeka, R. (2016b). Acta Cryst. E72, 111–113.  CrossRef IUCr Journals Google Scholar
First citationVashchenko, O. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V. & Lampeka, R. D. (2017). Dopov. Nac. Akad. Nauk. Ukr. pp. 56–62.  CrossRef Google Scholar
First citationVashchenko, O. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Trachevsky, V. V. & Lampeka, R. D. (2016a). Theor. Exp. Chem. 52, 38–43.  CrossRef CAS Google Scholar
First citationWeng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). Inorg. Chem. 51, 7185–7191.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYe, G., Roques, J., Solari, P. L., Den Auwer, C., Jeanson, A., Brandel, J., Charbonnière, L. J., Wu, W. & Simoni, É. (2021). Inorg. Chem. 60, 2149–2159.  CrossRef CAS PubMed Google Scholar
First citationZhao, R., Mei, L., Hu, K. Q., Wang, L. & Chai, Z. F. (2018). J. Coord. Chem. 71, 3021–3033.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds