research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexa­kis­(nitrato-κ2O,O′)thorate(IV)

crossmark logo

aIITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India, bPhosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India, and cSchool of Chemistry, Monash University, Melbourne Clayton, Victoria 3800, Australia
*Correspondence e-mail: krishna@chem.iitb.ac.in

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela (Received 13 February 2024; accepted 28 June 2024; online 5 July 2024)

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosa­hedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations inter­act via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter­actions are O⋯H/H⋯O hydrogen-bonding inter­actions, which represent a 55.2% contribution.

1. Chemical context

The nitrate ion with its small chelate or bite angle has a low steric footprint and is able to stabilize high coordination numbers. Thus 12-coordinate [Th(NO3)6]2− has been isolated and structurally characterized with a variety of counter-cations such as: phen2H+ (phen = 1,10-phenanthroline; Amani & Tayebee, 2013[Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118-1123.]), bpyH22+ (bpy = 4,4′-bi­pyridine; Rammo et al., 1994[Rammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319-324.]) and NH4+ (Spirlet et al., 1992[Spirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. (1992). Acta Cryst. C48, 1161-1164.]), acetyl­pyridinium(thio­semicarbazone) (Abram et al., 1999[Abram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479-1482.]), 2,2′-bipyridinium (Kumar & Tuck, 1984[Kumar, N. & Tuck, D. G. (1984). Can. J. Chem. 62, 1701-1704.]), [5,10,15,20-tetra­kis­(pyridinium-4-yl)porphyrin] (Mishra et al., 2019[Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529-3542.]), 1-ethyl-3-methyl-1H-imidazol-3-ium (Kelley et al., 2020[Kelley, S. P., Smetana, V., Emerson, S. D., Mudring, A.-V. & Rogers, R. D. (2020). Chem. Commun. 56, 4232-4235.]), among others (see Database survey section). Other inter­esting complexes are bis­(oxonium di­cyclo­hexano-18-crown-6) hexa­kis­(nitrato-O,O′)-thorium(IV) where the counter-cation is H3O+ (Wang et al., 1988[Wang, M., Wang, B., Zheng, P., Wang, W. & Lin, J. (1988). Acta Cryst. C44, 1913-1916.]) and bis­[trinitrato-tetra­kis­(tri­methyl­phosphine oxide)thorium(IV)] hexa­nitratothorium(IV) (Alcock et al., 1978[Alcock, N. W., Esperås, S., Bagnall, K. W. & Hsian-Yun, W. (1978). J. Chem. Soc. Dalton Trans. pp. 638-646.]) where both the anion and the cation are ThIV complex ions.

Hexanitratothorate [Th(NO3)6]2− and its analogous species are important in the speciation and separation of actinoid complexes in nitric acid (Zhang et al., 2017[Zhang, Y., Yang, S., Yuan, X., Zhao, Y. & Tian, G. (2017). Chem. Commun. 53, 6421-6423.]; Surbella et al., 2018[Surbella, R. G., Ducati, L. C., Autschbach, J., Pellegrini, K. L., McNamara, B. K., Schwantes, J. M. & Cahill, C. L. (2018). Chem. Commun. 54, 12014-12017.]; Takao et al., 2019[Takao, K., Kazama, H., Ikeda, Y. & Tsushima, S. (2019). Angew. Chem. Int. Ed. 58, 240-243.], 2020[Takao, K., März, J., Matsuoka, M., Mashita, T., Kazama, H. & Tsushima, S. (2020). RSC Adv. 10, 6082-6087.]; Reilly et al., 2012[Reilly, S. D., Scott, B. L. & Gaunt, A. J. (2012). Inorg. Chem. 51, 9165-9167.]; Matonic et al., 2002[Matonic, J. H., Neu, M. P., Enriquez, A. E., Paine, R. T. & Scott, B. L. (2002). J. Chem. Soc. Dalton Trans. pp. 2328-2332.]; Crawford et al., 2009[Crawford, M. J., Ellern, A., Karaghiosoff, K. & Mayer, P. (2009). Inorg. Chem. 48, 10877-10879.]; Rebizant et al., 1988[Rebizant, J., Apostolidis, C., Spirlet, M. R., Andreetti, G. D. & Kanellakopulos, B. (1988). Acta Cryst. C44, 2098-2101.]).

[Scheme 1]

Reaction of Th(NO3)4·5H2O with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) resulted in the formation of the nitrato complex (LH)2[Th(NO3)6] (1), instead of [Th(NO3)4L2], analogous to complexes of functionalized chelating pyridine-based ligands (Gephart et al., 2009[Gephart, R. T. III, Williams, N. J., Reibenspies, J. H., De Sousa, A. S. & Hancock, R. D. (2009). Inorg. Chem. 48, 8201-8209.]; Xiao et al., 2014[Xiao, C.-L., Wang, C.-Z., Yuan, L.-Y., Li, B., He, H., Wang, S., Zhao, Y.-L., Chai, Z.-F. & Shi, W.-Q. (2014). Inorg. Chem. 53, 1712-1720.]). The structure of complex 1 was established by X-ray crystallography, IR and mass spectroscopic data.

2. Structural commentary

Compound 1 crystallized in the monoclinic P21/n space group as a dianionic complex with two LH+ pyridinium counter-cations, as shown in Fig. 1[link]. The thorium atom is located on an inversion centre and is coordinated by six chelating nitrate ions to assume a distorted icosa­hedral stereochemistry (Fig. 1[link]c), similar to other reported hexa­nitratothorate(IV) complexes (Abram et al., 1999[Abram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479-1482.]; Amani & Tayebee, 2013[Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118-1123.]; Rammo et al., 1994[Rammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319-324.]; Spirlet et al., 1992[Spirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. (1992). Acta Cryst. C48, 1161-1164.]). The Th—O bond lengths [2.5444 (13)–2.5830 (13) Å; Table 1[link]] are similar to those reported, for example, for (H2ATPSC)22+[Th(NO3)6]2−·4MeOH [2.553 (3)–2.580 (3) Å; HATPSC = 2-acet­ylpyridine thio­semicarbazone; Abram et al., 1999[Abram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479-1482.]], (phen2H+)22+[Th(NO3)6]2−·2H2O [2.555 (7)–2.572 (6) Å; Amani & Tayebee, 2013[Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118-1123.]], bpyH22+[Th(NO3)6]2−·2H2O [2.567 (17)–2.599 (16) Å; Rammo et al., 1994[Rammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319-324.]] and (NH4)22+[Th(NO3)6]2− [2.545 (6)–2.608 (5) Å; Spirlet et al., 1992[Spirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. (1992). Acta Cryst. C48, 1161-1164.]]. The pyridine nitro­gen atom of the ligand is protonated. The pyridine N—C bond lengths in 1 are N4—C8 = 1.351 (2) Å and N4—C4 = 1.340 (3) Å [1.342 (5) Å and 1.340 (5) Å in L; Urankar et al., 2010[Urankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I. & Košmrlj, J. (2010). Inorg. Chem. 49, 4820-4829.]] and the N4—H4 (pyridinium salt) bond distance is 0.862 (16) Å. In the triazole ring, the N—C distances are N1—C1 = 1.369 (2) Å and N3—C2 = 1.346 (2) Å [1.338 (5) and 1.353 (5) in L].

Table 1
Selected geometric parameters (Å, °)

Th1—O1 2.5830 (13) N1—N2 1.314 (2)
Th1—O2 2.5621 (14) N3—N2 1.343 (2)
Th1—O4 2.5583 (13) N3—C2 1.346 (2)
Th1—O5 2.5547 (14) N3—C3 1.461 (2)
Th1—O7 2.5444 (13) N4—C4 1.340 (3)
Th1—O9 2.5827 (12) N4—C8 1.351 (2)
N1—C1 1.369 (2) N4—H4 0.862 (16)
       
O7—Th1—O4i 113.48 (4) O9i—Th1—O1i 66.86 (4)
O7—Th1—O4 66.52 (4) O2i—Th1—O9i 112.31 (4)
O7i—Th1—O9 130.23 (4) O2i—Th1—O1i 49.70 (4)
O7—Th1—O9 49.77 (4) O2i—Th1—O1 130.30 (4)
O7i—Th1—O1i 65.87 (4) O2—Th1—O1 49.70 (4)
O7—Th1—O2i 69.99 (4) O5i—Th1—O4 130.01 (4)
O7i—Th1—O5i 67.80 (4) O5—Th1—O4 49.99 (4)
O4i—Th1—O9i 110.18 (4) O5i—Th1—O9 66.29 (4)
O4i—Th1—O1i 112.94 (4) O5i—Th1—O9i 113.71 (4)
O4i—Th1—O2i 113.64 (4) O5i—Th1—O1i 69.63 (4)
O9—Th1—O9i 180.0 O5i—Th1—O2i 67.02 (4)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of 1: (a) Asymmetric unit of 1 showing the atom-labelling scheme, (b) perspective view of complex 1 and (c) coordination polyhedron around the ThIV atom in 1. The hydrogen atoms are omitted for clarity except for the pyridinium hydrogen. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld Surface Analysis

In the crystal, N—H⋯N and C—H⋯O hydrogen-bonding inter­actions are observed (Table 2[link]). The packing also features C—H⋯π(ring) [C3—H3ACg1([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] − z) = 3.2029 (1) Å], π(ring)–π(ring) [Cg1⋯Cg2(1 − x, 2 − y, 2 − z) centroid–centroid distance = 3.6130 (11) Å] and O⋯C [N6—O3⋯Cg3([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) = 3.7492 (18) Å] inter­actions where Cg1, Cg2 and Cg3 are the centroids of rings C9–C14, N1–N3/C1/C2, and N4/C4–C8, respectively. A C11⋯H3A(−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) short contact of 2.69 Å also occurs. Views of the packing of the cations and anions are displayed in Fig. 2[link]a and 2b.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1ii 0.86 (3) 1.88 (3) 2.738 (3) 170 (3)
C2—H2⋯O8iii 0.95 2.33 3.261 (3) 168
C7—H7⋯O5iv 0.95 2.46 3.379 (3) 164
C13—H13⋯O4v 0.95 2.46 3.377 (3) 163
N4—H4⋯N2ii 0.86 2.65 (3) 3.432 (3) 151
C10—H10⋯O8iii 0.95 2.68 3.621 (3) 173
C5—H5⋯O2i 0.95 2.68 3.191 (2) 114
C7—H7⋯O2iii 0.95 2.67 3.279 (3) 123
C7—H7⋯O9iii 0.95 2.69 3.369 (2) 129
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+2]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
(a) The packing of complex 1 showing the [C14H13N4]+ cations in face-centered positions and [Th(NO3)6]2− anions at the corners and in body-centered locations and (b) packing diagram showing inter­molecular C—H⋯O hydrogen-bonding inter­actions (blue dotted lines).

In order to visualize the inter­mol­ecular inter­actions in the structure of 1, a Hirshfeld surface (HS) analysis was carried out (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were generated using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. The University of Western Australia. https://hirshfeldsurface.net]). A view of the three-dimensional Hirshfeld surface plotted over dnorm with the red, white and blue regions indicating contacts with distances shorter, equal and longer, respectively, than the van der Waals separations (Fig. 3[link]). Inter­actions between donor and acceptor atoms are seen as red spots on the Hirshfeld surface mapped over dnorm (Fig. 3[link]), corresponding to C2—H2⋯O8, N4—H4⋯N1, C7—H7⋯O5 and C13—H13⋯O4 hydrogen bonds. Fig. 4[link] shows the overall two-dimensional fingerprint plot and and those delineated into O⋯H/H⋯O (55.2%), H⋯H (11.2%), N⋯H/H⋯N (10.4%), C⋯H/H⋯C (7.5%), C⋯O/O⋯C (6.7%), O⋯O (3.3%), C⋯N/N⋯C (2.2%), C⋯C (1.8%), N⋯N (1.1%) and N⋯O/O⋯N (0.6%) inter­actions. The large number of O⋯H/H⋯O, N⋯H/H⋯H, C⋯H/H⋯C and H⋯H inter­actions suggest that hydrogen bonding and van der Waals inter­actions play a major role in the crystal packing of 1.

[Figure 3]
Figure 3
The three-dimensional Hirshfeld surface of the title compound 1, plotted over dnorm in the range. The hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Hirshfeld surface of 1 mapped over dnorm (left images of each pair) with the corresponding two-dimensional fingerprint plots (right images of each pair). The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database Survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a 12-coordinate [Th(NO3)6]2− moiety yielded several compounds related to the title compound, viz. CSD refcodes BEQVAU (Abram et al., 1999[Abram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479-1482.]), FERKOD (Cheng et al., 2005[Cheng, J. Y., Dong, Y. B., Ma, J. P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun. 8, 6-8.]), LEWNIM (Amani & Tayebee, 2013[Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118-1123.]), YUWWAO (Rammo et al., 1994[Rammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319-324.]), GOBTAS (Wang et al., 1988[Wang, M., Wang, B., Zheng, P., Wang, W. & Lin, J. (1988). Acta Cryst. C44, 1913-1916.]), JOKRIN (Mishra et al., 2019[Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529-3542.]), LUDMIJ (Kelley et al., 2020[Kelley, S. P., Smetana, V., Emerson, S. D., Mudring, A.-V. & Rogers, R. D. (2020). Chem. Commun. 56, 4232-4235.]), NMPOTH (Alcock et al., 1978[Alcock, N. W., Esperås, S., Bagnall, K. W. & Hsian-Yun, W. (1978). J. Chem. Soc. Dalton Trans. pp. 638-646.]), TEQVIX, TEQVUJ, TEQWEU, TEQWIY, TEQWUK, TEQXIZ, TEQXOF and ZIYCER01 (Jin et al., 2017[Jin, G. B., Lin, J., Estes, S. L., Skanthakumar, S. & Soderholm, L. (2017). J. Am. Chem. Soc. 139, 18003-18008.]), UNAKAV (Goodgame et al., 2003[Goodgame, D. M., Menzer (née Smith), A. M., Menzer, S., White, A. J. & Williams, D. J. (2003). Inorg. Chim. Acta, 355, 314-321.]) and ZEWBOS (Aparna et al., 1995[Aparna, K., Krishnamurthy, S. S. & Nethaji, M. (1995). J. Chem. Soc. Dalton Trans. pp. 2991-2997.]). A search for lanthanide or actinide compounds with the ligand L did not return any hits.

5. Synthesis and crystallization

The ligand 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) was prepared as reported (Urankar et al., 2010[Urankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I. & Košmrlj, J. (2010). Inorg. Chem. 49, 4820-4829.]). Th(NO3)4·5H2O was purchased from a local source. Infrared spectra (4000–450 cm−1) of solid samples were recorded on a Bruker Alpha II instrument using the attenuated total reflection (ATR) measurement mode. The mass spectrum was recorded using a Bruker Maxis Impact LC-q-TOF Mass Spectrometer.

A solution of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth­yl]pyridine (L) (24 mg, 0.10 mmol) in ethanol (10 ml) was layered over a solution of Th(NO3)4·5H2O (57 mg, 0.10 mmol) in THF (10 ml). The reaction solution was slowly evaporated at room temperature to yield pale pink-coloured blocks of 1. Yield = 42 mg, 78%, dec. 541 K. FT–IR (ATR cm−1) 2361 (s), 2352 (s), 2129 (w), 1632 (s), 1511 (vs, νasNO2), 1472 (s), 1449 (s), 1269 (vs, νsNO2), 1195 (s), 1087 (s), 1030 (vs, νNO), 806 (s), 767 (vs), 743 (vs), 708 (s), 694 (s). HRMS (m/z) calculated for C28H24N11O9Th [M –(2HNO3 + NO3)] 890.2139; found 890.2139. Elemental analysis calculated (%) for C28H26N14O18Th (1078.63): C 31.18, H 2.43, N 18.18; found C 30.86, H 2.40, N 17.98. Owing to the poor solubility of compound 1 in organic solvents (CHCl3, DMSO and THF), NMR characterization could not be carried out.

The IR spectrum of 1 showed absorptions due to the nitrate ligands at 1511, 1269 and 1030 cm−1 (see Fig. S3 in the supporting information). The bands appearing at 1511 and 1269 cm−1 correspond to the asymmetric (νas) and symmetric (νs) NO2 stretching frequencies, respectively, while the band appearing at 1030 cm−1 is assigned to ν(NO). These values correspond with those of chelating nitrate in [Th(NO3)4·tmu] (tmu = tri­methyl­urea) at 1530, 1278 and 1023 cm−1 (Amani & Tayebee, 2013[Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118-1123.]; Nakamoto, 2008b[Nakamoto, K. (2008b). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 6th ed., pp. 1-273. Hoboken: Wiley.]) and are in contrast with those of ionic nitrates (Na and K salts), which appear at 1405–1370 cm−1 with ν(NO) only Raman active at 1068–1049 cm−1 (Nakamoto, 2008a[Nakamoto, K. (2008a). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed., pp. 149-354. Hoboken: Wiley.]). The high-resolution mass spectrum of 1 showed elimination of two mol­ecules of HNO3 and loss of the NO3 ion, leading to an m/z value of 820.2139 corresponding to [Th(NO3)3(C14H12N4)2]+, the formal ionization product of the [Th(NO3)4L2] target (see Fig. S4).

6. Refinement

Crystal data, data collection and refinement details are given in Table 3[link]. C-bound hydrogen atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H atom H4 was refined with the distance restraint N—H = 0.89±0.02 Å.

Table 3
Experimental details

Crystal data
Chemical formula (C14H13N4)2[Th(NO3)6]
Mr 1078.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 14.5386 (3), 9.3464 (2), 15.4213 (4)
β (°) 117.846 (1)
V3) 1852.85 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.12
Crystal size (mm) 0.09 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.512, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27737, 4658, 3944
Rint 0.023
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.035, 1.05
No. of reflections 4658
No. of parameters 281
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.33
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-[(4-Phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O')thorate(IV) top
Crystal data top
(C14H13N4)2[Th(NO3)6]F(000) = 1052
Mr = 1078.67Dx = 1.933 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.5386 (3) ÅCell parameters from 9957 reflections
b = 9.3464 (2) Åθ = 3.9–28.5°
c = 15.4213 (4) ŵ = 4.12 mm1
β = 117.846 (1)°T = 150 K
V = 1852.85 (7) Å3Block, yellow
Z = 20.09 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3944 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.6°, θmin = 2.7°
Tmin = 0.512, Tmax = 0.746h = 1919
27737 measured reflectionsk = 1212
4658 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0109P)2 + 1.5954P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4658 reflectionsΔρmax = 0.72 e Å3
281 parametersΔρmin = 0.33 e Å3
1 restraint
Special details top

Experimental. A crystal of 1 suitable for X-ray analysis was mounted on a Cryoloop with a drop of Paratone oil and placed in the cold nitrogen stream of the Kryoflex attachment of the Bruker APEX-II CCD diffractometer. The raw data was reduced with SAINT V8.40A (Bruker, 2019). The absorption correction was done with SADABS2016/2 (Bruker, 2016/2). Structural solutions were obtained with SHELXT (Sheldrick, 2015a) and refined using full matrix least-squares against F2 using SHELXL (Sheldrick, 2015b), in conjunction with the Olex2 (Dolomanov et al., 2009) graphical user inter­face.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th10.5000000.5000000.5000000.01543 (3)
O30.53542 (12)0.85963 (17)0.35224 (11)0.0364 (3)
O80.82701 (10)0.47216 (19)0.64969 (12)0.0398 (4)
O70.68122 (10)0.54650 (15)0.63986 (10)0.0233 (3)
O40.50279 (10)0.54161 (15)0.66518 (10)0.0258 (3)
O90.67896 (10)0.40835 (15)0.52678 (10)0.0246 (3)
O10.60450 (10)0.68989 (15)0.46103 (10)0.0252 (3)
O20.43750 (10)0.71724 (15)0.38557 (10)0.0249 (3)
O50.50941 (10)0.73336 (15)0.59005 (10)0.0257 (3)
N50.73268 (11)0.47576 (17)0.60683 (12)0.0224 (3)
N30.62635 (11)0.65844 (17)1.02726 (11)0.0214 (3)
N40.66816 (12)0.40969 (17)0.93013 (12)0.0222 (3)
N10.48011 (12)0.69191 (17)1.02356 (12)0.0223 (3)
N20.56554 (12)0.61513 (17)1.06624 (12)0.0237 (3)
C90.40384 (13)0.8878 (2)0.89961 (13)0.0203 (4)
N60.52628 (12)0.75963 (17)0.39768 (11)0.0225 (3)
N70.50393 (13)0.67864 (19)0.66342 (12)0.0273 (4)
C100.42192 (14)0.9932 (2)0.84549 (14)0.0241 (4)
H100.4871670.9969460.8453810.029*
O60.49717 (17)0.7501 (2)0.72531 (13)0.0549 (5)
C20.58095 (14)0.7630 (2)0.96064 (13)0.0228 (4)
H20.6085170.8111450.9236380.027*
C10.48597 (13)0.7850 (2)0.95776 (13)0.0198 (3)
C30.72825 (14)0.5927 (2)1.05898 (14)0.0267 (4)
H3A0.7415480.5232861.1120400.032*
H3B0.7825650.6676241.0859230.032*
C110.34551 (15)1.0927 (2)0.79172 (14)0.0266 (4)
H110.3591401.1650920.7560120.032*
C140.30661 (15)0.8835 (2)0.89773 (15)0.0272 (4)
H140.2930760.8126590.9344520.033*
C40.67031 (14)0.3342 (2)0.85725 (14)0.0252 (4)
H4A0.6208490.2602150.8262290.030*
C80.73579 (13)0.51695 (19)0.97626 (13)0.0206 (4)
C50.74363 (14)0.3631 (2)0.82708 (14)0.0248 (4)
H50.7460280.3088320.7760900.030*
C60.81363 (15)0.4723 (2)0.87221 (15)0.0258 (4)
H60.8645480.4945610.8520610.031*
C70.80955 (14)0.5499 (2)0.94722 (15)0.0238 (4)
H70.8575480.6253680.9783750.029*
C120.24931 (16)1.0868 (2)0.78991 (14)0.0290 (4)
H120.1968411.1544000.7526110.035*
C130.23014 (16)0.9816 (2)0.84285 (16)0.0317 (5)
H130.1641760.9769260.8414240.038*
H40.6240 (17)0.385 (3)0.9501 (18)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.01291 (4)0.01679 (5)0.01779 (4)0.00037 (3)0.00818 (3)0.00091 (4)
O30.0397 (8)0.0323 (8)0.0397 (8)0.0027 (7)0.0206 (7)0.0131 (7)
O80.0141 (6)0.0579 (11)0.0414 (9)0.0031 (6)0.0081 (6)0.0143 (8)
O70.0194 (6)0.0259 (6)0.0259 (7)0.0010 (5)0.0117 (5)0.0021 (6)
O40.0256 (7)0.0276 (7)0.0273 (7)0.0011 (5)0.0151 (6)0.0020 (6)
O90.0204 (6)0.0282 (7)0.0254 (7)0.0001 (5)0.0109 (5)0.0041 (6)
O10.0202 (6)0.0271 (7)0.0280 (7)0.0004 (5)0.0110 (5)0.0012 (6)
O20.0198 (6)0.0263 (7)0.0290 (7)0.0002 (5)0.0116 (5)0.0006 (6)
O50.0254 (7)0.0249 (7)0.0282 (7)0.0002 (5)0.0136 (6)0.0019 (6)
N50.0168 (7)0.0258 (9)0.0249 (8)0.0007 (6)0.0100 (6)0.0013 (6)
N30.0196 (7)0.0250 (8)0.0217 (7)0.0016 (6)0.0113 (6)0.0010 (6)
N40.0189 (7)0.0225 (8)0.0260 (8)0.0010 (6)0.0110 (6)0.0054 (6)
N10.0233 (7)0.0200 (8)0.0274 (8)0.0044 (6)0.0150 (7)0.0030 (6)
N20.0244 (8)0.0230 (8)0.0272 (8)0.0040 (6)0.0149 (7)0.0021 (7)
C90.0209 (8)0.0203 (9)0.0211 (9)0.0029 (7)0.0111 (7)0.0059 (7)
N60.0237 (7)0.0220 (8)0.0236 (8)0.0012 (6)0.0126 (6)0.0001 (6)
N70.0270 (8)0.0295 (9)0.0271 (8)0.0018 (7)0.0141 (7)0.0073 (7)
C100.0224 (8)0.0267 (9)0.0250 (9)0.0037 (8)0.0125 (7)0.0042 (8)
O60.0897 (14)0.0446 (10)0.0450 (10)0.0058 (10)0.0439 (10)0.0208 (8)
C20.0232 (8)0.0257 (10)0.0229 (9)0.0022 (7)0.0136 (7)0.0002 (7)
C10.0213 (8)0.0189 (9)0.0215 (8)0.0052 (7)0.0121 (7)0.0055 (7)
C30.0199 (8)0.0347 (11)0.0239 (9)0.0025 (8)0.0090 (7)0.0011 (8)
C110.0301 (10)0.0274 (10)0.0221 (9)0.0016 (8)0.0120 (8)0.0006 (8)
C140.0260 (9)0.0295 (10)0.0327 (10)0.0007 (8)0.0193 (8)0.0022 (8)
C40.0229 (9)0.0201 (9)0.0280 (10)0.0013 (7)0.0082 (8)0.0013 (8)
C80.0182 (8)0.0207 (9)0.0212 (8)0.0026 (7)0.0078 (7)0.0045 (7)
C50.0272 (9)0.0232 (9)0.0239 (9)0.0051 (7)0.0119 (8)0.0043 (8)
C60.0233 (9)0.0271 (10)0.0313 (10)0.0033 (7)0.0162 (8)0.0060 (8)
C70.0201 (8)0.0211 (8)0.0309 (10)0.0015 (7)0.0123 (8)0.0018 (8)
C120.0291 (10)0.0324 (11)0.0242 (9)0.0065 (8)0.0112 (8)0.0004 (8)
C130.0259 (9)0.0383 (12)0.0363 (11)0.0046 (8)0.0190 (8)0.0006 (9)
Geometric parameters (Å, º) top
Th1—O12.5830 (13)N4—H40.862 (16)
Th1—O22.5621 (14)C9—C101.393 (3)
Th1—O4i2.5582 (13)C9—C11.468 (3)
Th1—O42.5583 (13)C9—C141.401 (2)
Th1—O52.5547 (14)N7—O61.206 (2)
Th1—O7i2.5444 (13)C10—H100.9500
Th1—O72.5444 (13)C10—C111.388 (3)
Th1—O9i2.5827 (12)C2—H20.9500
Th1—O92.5827 (12)C2—C11.376 (2)
Th1—O1i2.5830 (13)C3—H3A0.9900
Th1—O2i2.5621 (13)C3—H3B0.9900
Th1—O5i2.5547 (14)C3—C81.507 (3)
O3—N61.212 (2)C11—H110.9500
O8—N51.213 (2)C11—C121.387 (3)
O7—N51.270 (2)C14—H140.9500
O4—N71.281 (2)C14—C131.383 (3)
O9—N51.277 (2)C4—H4A0.9500
O1—N61.279 (2)C4—C51.374 (3)
O2—N61.2778 (19)C8—C71.376 (2)
O5—N71.278 (2)C5—H50.9500
N1—C11.369 (2)C5—C61.379 (3)
N1—N21.314 (2)C6—H60.9500
N3—N21.343 (2)C6—C71.390 (3)
N3—C21.346 (2)C7—H70.9500
N3—C31.461 (2)C12—H120.9500
N4—C41.340 (3)C12—C131.386 (3)
N4—C81.351 (2)C13—H130.9500
O7i—Th1—O7180.00 (6)O8—N5—Th1177.24 (14)
O7—Th1—O4i113.48 (4)O8—N5—O7121.59 (16)
O7—Th1—O466.52 (4)O8—N5—O9122.56 (16)
O7i—Th1—O4i66.52 (4)O7—N5—Th157.08 (8)
O7i—Th1—O4113.48 (4)O7—N5—O9115.85 (14)
O7i—Th1—O9130.23 (4)O9—N5—Th158.86 (8)
O7—Th1—O9i130.23 (4)N2—N3—C2111.70 (15)
O7i—Th1—O9i49.77 (4)N2—N3—C3120.00 (15)
O7—Th1—O949.77 (4)C2—N3—C3128.30 (16)
O7i—Th1—O1i65.87 (4)C4—N4—C8122.43 (16)
O7—Th1—O1i114.13 (4)C4—N4—H4118.1 (18)
O7i—Th1—O1114.13 (4)C8—N4—H4119.4 (18)
O7—Th1—O165.87 (4)N2—N1—C1110.29 (15)
O7i—Th1—O269.99 (4)N1—N2—N3106.08 (15)
O7—Th1—O2110.01 (4)C10—C9—C1120.12 (16)
O7—Th1—O2i69.99 (4)C10—C9—C14118.62 (17)
O7i—Th1—O2i110.01 (4)C14—C9—C1121.26 (17)
O7—Th1—O567.79 (4)O3—N6—Th1176.58 (13)
O7—Th1—O5i112.20 (4)O3—N6—O1122.44 (15)
O7i—Th1—O5i67.80 (4)O3—N6—O2122.05 (16)
O7i—Th1—O5112.21 (4)O1—N6—Th158.30 (8)
O4i—Th1—O4180.0O2—N6—Th157.35 (9)
O4i—Th1—O9i110.18 (4)O2—N6—O1115.51 (15)
O4i—Th1—O969.82 (4)O4—N7—Th157.75 (9)
O4—Th1—O9i69.82 (4)O5—N7—Th157.56 (9)
O4—Th1—O9110.18 (4)O5—N7—O4115.19 (15)
O4i—Th1—O1i112.94 (4)O6—N7—Th1174.91 (15)
O4—Th1—O1112.94 (4)O6—N7—O4122.04 (18)
O4i—Th1—O167.06 (4)O6—N7—O5122.74 (18)
O4—Th1—O1i67.06 (4)C9—C10—H10119.7
O4—Th1—O2113.63 (4)C11—C10—C9120.61 (17)
O4i—Th1—O2i113.64 (4)C11—C10—H10119.7
O4—Th1—O2i66.36 (4)N3—C2—H2127.5
O4i—Th1—O266.37 (4)N3—C2—C1105.06 (16)
O9—Th1—O9i180.0C1—C2—H2127.5
O9—Th1—O166.86 (4)N1—C1—C9123.68 (16)
O9i—Th1—O1113.14 (4)N1—C1—C2106.87 (16)
O9i—Th1—O1i66.86 (4)C2—C1—C9129.44 (17)
O9—Th1—O1i113.14 (4)N3—C3—H3A109.2
O1i—Th1—O1180.0N3—C3—H3B109.2
O2—Th1—O9i67.69 (4)N3—C3—C8112.18 (15)
O2—Th1—O9112.31 (4)H3A—C3—H3B107.9
O2i—Th1—O9i112.31 (4)C8—C3—H3A109.2
O2i—Th1—O967.69 (4)C8—C3—H3B109.2
O2i—Th1—O1i49.70 (4)C10—C11—H11119.9
O2i—Th1—O1130.30 (4)C12—C11—C10120.24 (19)
O2—Th1—O149.70 (4)C12—C11—H11119.9
O2—Th1—O1i130.30 (4)C9—C14—H14119.7
O2—Th1—O2i180.0C13—C14—C9120.56 (19)
O5i—Th1—O4130.01 (4)C13—C14—H14119.7
O5—Th1—O449.99 (4)N4—C4—H4A119.8
O5i—Th1—O4i49.99 (4)N4—C4—C5120.40 (18)
O5—Th1—O4i130.01 (4)C5—C4—H4A119.8
O5—Th1—O9i66.29 (4)N4—C8—C3118.14 (16)
O5i—Th1—O966.29 (4)N4—C8—C7118.73 (17)
O5—Th1—O9113.71 (4)C7—C8—C3123.11 (17)
O5i—Th1—O9i113.71 (4)C4—C5—H5120.6
O5i—Th1—O1i69.63 (4)C4—C5—C6118.76 (19)
O5—Th1—O1i110.37 (4)C6—C5—H5120.6
O5i—Th1—O1110.37 (4)C5—C6—H6120.1
O5—Th1—O169.63 (4)C5—C6—C7119.86 (18)
O5i—Th1—O2i67.02 (4)C7—C6—H6120.1
O5—Th1—O267.02 (4)C8—C7—C6119.81 (18)
O5—Th1—O2i112.98 (4)C8—C7—H7120.1
O5i—Th1—O2112.98 (4)C6—C7—H7120.1
O5—Th1—O5i180.0C11—C12—H12120.2
N5—O7—Th198.16 (10)C13—C12—C11119.64 (19)
N7—O4—Th197.20 (11)C13—C12—H12120.2
N5—O9—Th196.11 (9)C14—C13—C12120.31 (18)
N6—O1—Th196.79 (10)C14—C13—H13119.8
N6—O2—Th197.82 (10)C12—C13—H13119.8
N7—O5—Th197.47 (11)
Th1—O7—N5—O8177.14 (16)C9—C14—C13—C120.8 (3)
Th1—O7—N5—O93.46 (16)C10—C9—C1—N1170.29 (17)
Th1—O4—N7—O53.92 (16)C10—C9—C1—C28.1 (3)
Th1—O4—N7—O6173.99 (18)C10—C9—C14—C130.3 (3)
Th1—O9—N5—O8177.22 (17)C10—C11—C12—C130.6 (3)
Th1—O9—N5—O73.39 (16)C2—N3—N2—N10.5 (2)
Th1—O1—N6—O3176.06 (16)C2—N3—C3—C862.5 (3)
Th1—O1—N6—O24.18 (15)C1—N1—N2—N30.4 (2)
Th1—O2—N6—O3176.02 (15)C1—C9—C10—C11178.78 (17)
Th1—O2—N6—O14.23 (16)C1—C9—C14—C13179.74 (19)
Th1—O5—N7—O43.92 (16)C3—N3—N2—N1179.63 (16)
Th1—O5—N7—O6173.96 (18)C3—N3—C2—C1179.72 (18)
N3—C2—C1—N10.2 (2)C3—C8—C7—C6178.06 (17)
N3—C2—C1—C9178.82 (18)C11—C12—C13—C140.4 (3)
N3—C3—C8—N459.3 (2)C14—C9—C10—C110.7 (3)
N3—C3—C8—C7122.20 (19)C14—C9—C1—N19.2 (3)
N4—C4—C5—C60.9 (3)C14—C9—C1—C2172.4 (2)
N4—C8—C7—C60.5 (3)C4—N4—C8—C3178.54 (16)
N2—N3—C2—C10.4 (2)C4—N4—C8—C70.0 (3)
N2—N3—C3—C8117.63 (18)C4—C5—C6—C70.5 (3)
N2—N1—C1—C9178.62 (16)C8—N4—C4—C50.7 (3)
N2—N1—C1—C20.1 (2)C5—C6—C7—C80.2 (3)
C9—C10—C11—C121.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of rings C9–C14, N1–N3/C1/C2, and N4/C4–C8, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4···N1ii0.86 (3)1.88 (3)2.738 (3)170 (3)
C2—H2···O8iii0.952.333.261 (3)168
C7—H7···O5iv0.952.463.379 (3)164
C13—H13···O4v0.952.463.377 (3)163
N4—H4···N2ii0.862.65 (3)3.432 (3)151
C10—H10···O8iii0.952.683.621 (3)173
C5—H5···O2i0.952.683.191 (2)114
C7—H7···O2iii0.952.673.279 (3)123
C7—H7···O9iii0.952.693.369 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to the Science & Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, for instrumentation facilities. SR gratefully acknowledges the Indian Institute of Technology Bombay-Monash Research Academy for financial support. SS thanks the UGC, New Delhi for JRF/SRF fellowships. We thank Dipanjan Mondal for X-ray crystallography data collection and integration.

References

First citationAbram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479–1482.  CrossRef CAS IUCr Journals Google Scholar
First citationAlcock, N. W., Esperås, S., Bagnall, K. W. & Hsian-Yun, W. (1978). J. Chem. Soc. Dalton Trans. pp. 638–646.  CrossRef Google Scholar
First citationAmani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118–1123.  CrossRef CAS Google Scholar
First citationAparna, K., Krishnamurthy, S. S. & Nethaji, M. (1995). J. Chem. Soc. Dalton Trans. pp. 2991–2997.  CrossRef Google Scholar
First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. Y., Dong, Y. B., Ma, J. P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun. 8, 6–8.  CrossRef CAS Google Scholar
First citationCrawford, M. J., Ellern, A., Karaghiosoff, K. & Mayer, P. (2009). Inorg. Chem. 48, 10877–10879.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGephart, R. T. III, Williams, N. J., Reibenspies, J. H., De Sousa, A. S. & Hancock, R. D. (2009). Inorg. Chem. 48, 8201–8209.  CrossRef PubMed CAS Google Scholar
First citationGoodgame, D. M., Menzer (née Smith), A. M., Menzer, S., White, A. J. & Williams, D. J. (2003). Inorg. Chim. Acta, 355, 314–321.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, G. B., Lin, J., Estes, S. L., Skanthakumar, S. & Soderholm, L. (2017). J. Am. Chem. Soc. 139, 18003–18008.  CrossRef CAS PubMed Google Scholar
First citationKelley, S. P., Smetana, V., Emerson, S. D., Mudring, A.-V. & Rogers, R. D. (2020). Chem. Commun. 56, 4232–4235.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, N. & Tuck, D. G. (1984). Can. J. Chem. 62, 1701–1704.  CrossRef CAS Google Scholar
First citationMatonic, J. H., Neu, M. P., Enriquez, A. E., Paine, R. T. & Scott, B. L. (2002). J. Chem. Soc. Dalton Trans. pp. 2328–2332.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529–3542.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakamoto, K. (2008a). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed., pp. 149–354. Hoboken: Wiley.  Google Scholar
First citationNakamoto, K. (2008b). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 6th ed., pp. 1–273. Hoboken: Wiley.  Google Scholar
First citationRammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319–324.  CSD CrossRef CAS Web of Science Google Scholar
First citationRebizant, J., Apostolidis, C., Spirlet, M. R., Andreetti, G. D. & Kanellakopulos, B. (1988). Acta Cryst. C44, 2098–2101.  CrossRef CAS IUCr Journals Google Scholar
First citationReilly, S. D., Scott, B. L. & Gaunt, A. J. (2012). Inorg. Chem. 51, 9165–9167.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. (1992). Acta Cryst. C48, 1161–1164.  CrossRef CAS IUCr Journals Google Scholar
First citationSurbella, R. G., Ducati, L. C., Autschbach, J., Pellegrini, K. L., McNamara, B. K., Schwantes, J. M. & Cahill, C. L. (2018). Chem. Commun. 54, 12014–12017.  CrossRef CAS Google Scholar
First citationTakao, K., Kazama, H., Ikeda, Y. & Tsushima, S. (2019). Angew. Chem. Int. Ed. 58, 240–243.  CrossRef CAS Google Scholar
First citationTakao, K., März, J., Matsuoka, M., Mashita, T., Kazama, H. & Tsushima, S. (2020). RSC Adv. 10, 6082–6087.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. The University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUrankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I. & Košmrlj, J. (2010). Inorg. Chem. 49, 4820–4829.  CrossRef CAS PubMed Google Scholar
First citationWang, M., Wang, B., Zheng, P., Wang, W. & Lin, J. (1988). Acta Cryst. C44, 1913–1916.  CrossRef CAS IUCr Journals Google Scholar
First citationXiao, C.-L., Wang, C.-Z., Yuan, L.-Y., Li, B., He, H., Wang, S., Zhao, Y.-L., Chai, Z.-F. & Shi, W.-Q. (2014). Inorg. Chem. 53, 1712–1720.  CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Yang, S., Yuan, X., Zhao, Y. & Tian, G. (2017). Chem. Commun. 53, 6421–6423.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds