research communications
Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O′)thorate(IV)
aIITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India, bPhosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India, and cSchool of Chemistry, Monash University, Melbourne Clayton, Victoria 3800, Australia
*Correspondence e-mail: krishna@chem.iitb.ac.in
Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the of 1. In the structure, the [Th(NO3)6]2− anions display an icosahedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations interact via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important interactions are O⋯H/H⋯O hydrogen-bonding interactions, which represent a 55.2% contribution.
CCDC reference: 2366367
1. Chemical context
The nitrate ion with its small chelate or bite angle has a low steric footprint and is able to stabilize high coordination numbers. Thus 12-coordinate [Th(NO3)6]2− has been isolated and structurally characterized with a variety of counter-cations such as: phen2H+ (phen = 1,10-phenanthroline; Amani & Tayebee, 2013), bpyH22+ (bpy = 4,4′-bipyridine; Rammo et al., 1994) and NH4+ (Spirlet et al., 1992), acetylpyridinium(thiosemicarbazone) (Abram et al., 1999), 2,2′-bipyridinium (Kumar & Tuck, 1984), [5,10,15,20-tetrakis(pyridinium-4-yl)porphyrin] (Mishra et al., 2019), 1-ethyl-3-methyl-1H-imidazol-3-ium (Kelley et al., 2020), among others (see Database survey section). Other interesting complexes are bis(oxonium dicyclohexano-18-crown-6) hexakis(nitrato-O,O′)-thorium(IV) where the counter-cation is H3O+ (Wang et al., 1988) and bis[trinitrato-tetrakis(trimethylphosphine oxide)thorium(IV)] hexanitratothorium(IV) (Alcock et al., 1978) where both the anion and the cation are ThIV complex ions.
Hexanitratothorate [Th(NO3)6]2− and its analogous species are important in the speciation and separation of actinoid complexes in nitric acid (Zhang et al., 2017; Surbella et al., 2018; Takao et al., 2019, 2020; Reilly et al., 2012; Matonic et al., 2002; Crawford et al., 2009; Rebizant et al., 1988).
Reaction of Th(NO3)4·5H2O with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) resulted in the formation of the nitrato complex (LH)2[Th(NO3)6] (1), instead of [Th(NO3)4L2], analogous to complexes of functionalized chelating pyridine-based ligands (Gephart et al., 2009; Xiao et al., 2014). The structure of complex 1 was established by X-ray crystallography, IR and mass spectroscopic data.
2. Structural commentary
Compound 1 crystallized in the monoclinic P21/n as a dianionic complex with two LH+ pyridinium counter-cations, as shown in Fig. 1. The thorium atom is located on an inversion centre and is coordinated by six chelating nitrate ions to assume a distorted icosahedral stereochemistry (Fig. 1c), similar to other reported hexanitratothorate(IV) complexes (Abram et al., 1999; Amani & Tayebee, 2013; Rammo et al., 1994; Spirlet et al., 1992). The Th—O bond lengths [2.5444 (13)–2.5830 (13) Å; Table 1] are similar to those reported, for example, for (H2ATPSC)22+[Th(NO3)6]2−·4MeOH [2.553 (3)–2.580 (3) Å; HATPSC = 2-acetylpyridine thiosemicarbazone; Abram et al., 1999], (phen2H+)22+[Th(NO3)6]2−·2H2O [2.555 (7)–2.572 (6) Å; Amani & Tayebee, 2013], bpyH22+[Th(NO3)6]2−·2H2O [2.567 (17)–2.599 (16) Å; Rammo et al., 1994] and (NH4)22+[Th(NO3)6]2− [2.545 (6)–2.608 (5) Å; Spirlet et al., 1992]. The pyridine nitrogen atom of the ligand is protonated. The pyridine N—C bond lengths in 1 are N4—C8 = 1.351 (2) Å and N4—C4 = 1.340 (3) Å [1.342 (5) Å and 1.340 (5) Å in L; Urankar et al., 2010] and the N4—H4 (pyridinium salt) bond distance is 0.862 (16) Å. In the triazole ring, the N—C distances are N1—C1 = 1.369 (2) Å and N3—C2 = 1.346 (2) Å [1.338 (5) and 1.353 (5) in L].
3. Supramolecular features and Hirshfeld Surface Analysis
In the crystal, N—H⋯N and C—H⋯O hydrogen-bonding interactions are observed (Table 2). The packing also features C—H⋯π(ring) [C3—H3A⋯Cg1( + x, − y, − z) = 3.2029 (1) Å], π(ring)–π(ring) [Cg1⋯Cg2(1 − x, 2 − y, 2 − z) centroid–centroid distance = 3.6130 (11) Å] and O⋯C [N6—O3⋯Cg3( − x, + y, − z) = 3.7492 (18) Å] interactions where Cg1, Cg2 and Cg3 are the centroids of rings C9–C14, N1–N3/C1/C2, and N4/C4–C8, respectively. A C11⋯H3A(− + x, − y, − + z) short contact of 2.69 Å also occurs. Views of the packing of the cations and anions are displayed in Fig. 2a and 2b.
|
In order to visualize the intermolecular interactions in the structure of 1, a Hirshfeld surface (HS) analysis was carried out (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated using CrystalExplorer 17.5 (Turner et al., 2017). A view of the three-dimensional Hirshfeld surface plotted over dnorm with the red, white and blue regions indicating contacts with distances shorter, equal and longer, respectively, than the van der Waals separations (Fig. 3). Interactions between donor and acceptor atoms are seen as red spots on the Hirshfeld surface mapped over dnorm (Fig. 3), corresponding to C2—H2⋯O8, N4—H4⋯N1, C7—H7⋯O5 and C13—H13⋯O4 hydrogen bonds. Fig. 4 shows the overall two-dimensional fingerprint plot and and those delineated into O⋯H/H⋯O (55.2%), H⋯H (11.2%), N⋯H/H⋯N (10.4%), C⋯H/H⋯C (7.5%), C⋯O/O⋯C (6.7%), O⋯O (3.3%), C⋯N/N⋯C (2.2%), C⋯C (1.8%), N⋯N (1.1%) and N⋯O/O⋯N (0.6%) interactions. The large number of O⋯H/H⋯O, N⋯H/H⋯H, C⋯H/H⋯C and H⋯H interactions suggest that hydrogen bonding and van der Waals interactions play a major role in the crystal packing of 1.
4. Database Survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for a 12-coordinate [Th(NO3)6]2− moiety yielded several compounds related to the title compound, viz. CSD refcodes BEQVAU (Abram et al., 1999), FERKOD (Cheng et al., 2005), LEWNIM (Amani & Tayebee, 2013), YUWWAO (Rammo et al., 1994), GOBTAS (Wang et al., 1988), JOKRIN (Mishra et al., 2019), LUDMIJ (Kelley et al., 2020), NMPOTH (Alcock et al., 1978), TEQVIX, TEQVUJ, TEQWEU, TEQWIY, TEQWUK, TEQXIZ, TEQXOF and ZIYCER01 (Jin et al., 2017), UNAKAV (Goodgame et al., 2003) and ZEWBOS (Aparna et al., 1995). A search for lanthanide or actinide compounds with the ligand L did not return any hits.
5. Synthesis and crystallization
The ligand 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) was prepared as reported (Urankar et al., 2010). Th(NO3)4·5H2O was purchased from a local source. Infrared spectra (4000–450 cm−1) of solid samples were recorded on a Bruker Alpha II instrument using the attenuated total reflection (ATR) measurement mode. The was recorded using a Bruker Maxis Impact LC-q-TOF Mass Spectrometer.
A solution of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) (24 mg, 0.10 mmol) in ethanol (10 ml) was layered over a solution of Th(NO3)4·5H2O (57 mg, 0.10 mmol) in THF (10 ml). The reaction solution was slowly evaporated at room temperature to yield pale pink-coloured blocks of 1. Yield = 42 mg, 78%, dec. 541 K. FT–IR (ATR cm−1) 2361 (s), 2352 (s), 2129 (w), 1632 (s), 1511 (vs, νasNO2), 1472 (s), 1449 (s), 1269 (vs, νsNO2), 1195 (s), 1087 (s), 1030 (vs, νNO), 806 (s), 767 (vs), 743 (vs), 708 (s), 694 (s). HRMS (m/z) calculated for C28H24N11O9Th [M –(2HNO3 + NO3−)] 890.2139; found 890.2139. Elemental analysis calculated (%) for C28H26N14O18Th (1078.63): C 31.18, H 2.43, N 18.18; found C 30.86, H 2.40, N 17.98. Owing to the poor solubility of compound 1 in organic solvents (CHCl3, DMSO and THF), NMR characterization could not be carried out.
The IR spectrum of 1 showed absorptions due to the nitrate ligands at 1511, 1269 and 1030 cm−1 (see Fig. S3 in the supporting information). The bands appearing at 1511 and 1269 cm−1 correspond to the asymmetric (νas) and symmetric (νs) NO2 stretching frequencies, respectively, while the band appearing at 1030 cm−1 is assigned to ν(NO). These values correspond with those of chelating nitrate in [Th(NO3)4·tmu] (tmu = trimethylurea) at 1530, 1278 and 1023 cm−1 (Amani & Tayebee, 2013; Nakamoto, 2008b) and are in contrast with those of ionic nitrates (Na and K salts), which appear at 1405–1370 cm−1 with ν(NO) only Raman active at 1068–1049 cm−1 (Nakamoto, 2008a). The high-resolution of 1 showed elimination of two molecules of HNO3 and loss of the NO3− ion, leading to an m/z value of 820.2139 corresponding to [Th(NO3)3(C14H12N4)2]+, the formal ionization product of the [Th(NO3)4L2] target (see Fig. S4).
6. Refinement
Crystal data, data collection and . C-bound hydrogen atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H atom H4 was refined with the distance restraint N—H = 0.89±0.02 Å.
details are given in Table 3
|
Supporting information
CCDC reference: 2366367
https://doi.org/10.1107/S2056989024006352/jw2006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024006352/jw2006Isup3.hkl
Spectroscopic data and structural graphics. DOI: https://doi.org/10.1107/S2056989024006352/jw2006sup5.docx
(C14H13N4)2[Th(NO3)6] | F(000) = 1052 |
Mr = 1078.67 | Dx = 1.933 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.5386 (3) Å | Cell parameters from 9957 reflections |
b = 9.3464 (2) Å | θ = 3.9–28.5° |
c = 15.4213 (4) Å | µ = 4.12 mm−1 |
β = 117.846 (1)° | T = 150 K |
V = 1852.85 (7) Å3 | Block, yellow |
Z = 2 | 0.09 × 0.07 × 0.06 mm |
Bruker APEXII CCD diffractometer | 3944 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.6°, θmin = 2.7° |
Tmin = 0.512, Tmax = 0.746 | h = −19→19 |
27737 measured reflections | k = −12→12 |
4658 independent reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.015 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.035 | w = 1/[σ2(Fo2) + (0.0109P)2 + 1.5954P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4658 reflections | Δρmax = 0.72 e Å−3 |
281 parameters | Δρmin = −0.33 e Å−3 |
1 restraint |
Experimental. A crystal of 1 suitable for X-ray analysis was mounted on a Cryoloop with a drop of Paratone oil and placed in the cold nitrogen stream of the Kryoflex attachment of the Bruker APEX-II CCD diffractometer. The raw data was reduced with SAINT V8.40A (Bruker, 2019). The absorption correction was done with SADABS2016/2 (Bruker, 2016/2). Structural solutions were obtained with SHELXT (Sheldrick, 2015a) and refined using full matrix least-squares against F2 using SHELXL (Sheldrick, 2015b), in conjunction with the Olex2 (Dolomanov et al., 2009) graphical user interface. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Th1 | 0.500000 | 0.500000 | 0.500000 | 0.01543 (3) | |
O3 | 0.53542 (12) | 0.85963 (17) | 0.35224 (11) | 0.0364 (3) | |
O8 | 0.82701 (10) | 0.47216 (19) | 0.64969 (12) | 0.0398 (4) | |
O7 | 0.68122 (10) | 0.54650 (15) | 0.63986 (10) | 0.0233 (3) | |
O4 | 0.50279 (10) | 0.54161 (15) | 0.66518 (10) | 0.0258 (3) | |
O9 | 0.67896 (10) | 0.40835 (15) | 0.52678 (10) | 0.0246 (3) | |
O1 | 0.60450 (10) | 0.68989 (15) | 0.46103 (10) | 0.0252 (3) | |
O2 | 0.43750 (10) | 0.71724 (15) | 0.38557 (10) | 0.0249 (3) | |
O5 | 0.50941 (10) | 0.73336 (15) | 0.59005 (10) | 0.0257 (3) | |
N5 | 0.73268 (11) | 0.47576 (17) | 0.60683 (12) | 0.0224 (3) | |
N3 | 0.62635 (11) | 0.65844 (17) | 1.02726 (11) | 0.0214 (3) | |
N4 | 0.66816 (12) | 0.40969 (17) | 0.93013 (12) | 0.0222 (3) | |
N1 | 0.48011 (12) | 0.69191 (17) | 1.02356 (12) | 0.0223 (3) | |
N2 | 0.56554 (12) | 0.61513 (17) | 1.06624 (12) | 0.0237 (3) | |
C9 | 0.40384 (13) | 0.8878 (2) | 0.89961 (13) | 0.0203 (4) | |
N6 | 0.52628 (12) | 0.75963 (17) | 0.39768 (11) | 0.0225 (3) | |
N7 | 0.50393 (13) | 0.67864 (19) | 0.66342 (12) | 0.0273 (4) | |
C10 | 0.42192 (14) | 0.9932 (2) | 0.84549 (14) | 0.0241 (4) | |
H10 | 0.487167 | 0.996946 | 0.845381 | 0.029* | |
O6 | 0.49717 (17) | 0.7501 (2) | 0.72531 (13) | 0.0549 (5) | |
C2 | 0.58095 (14) | 0.7630 (2) | 0.96064 (13) | 0.0228 (4) | |
H2 | 0.608517 | 0.811145 | 0.923638 | 0.027* | |
C1 | 0.48597 (13) | 0.7850 (2) | 0.95776 (13) | 0.0198 (3) | |
C3 | 0.72825 (14) | 0.5927 (2) | 1.05898 (14) | 0.0267 (4) | |
H3A | 0.741548 | 0.523286 | 1.112040 | 0.032* | |
H3B | 0.782565 | 0.667624 | 1.085923 | 0.032* | |
C11 | 0.34551 (15) | 1.0927 (2) | 0.79172 (14) | 0.0266 (4) | |
H11 | 0.359140 | 1.165092 | 0.756012 | 0.032* | |
C14 | 0.30661 (15) | 0.8835 (2) | 0.89773 (15) | 0.0272 (4) | |
H14 | 0.293076 | 0.812659 | 0.934452 | 0.033* | |
C4 | 0.67031 (14) | 0.3342 (2) | 0.85725 (14) | 0.0252 (4) | |
H4A | 0.620849 | 0.260215 | 0.826229 | 0.030* | |
C8 | 0.73579 (13) | 0.51695 (19) | 0.97626 (13) | 0.0206 (4) | |
C5 | 0.74363 (14) | 0.3631 (2) | 0.82708 (14) | 0.0248 (4) | |
H5 | 0.746028 | 0.308832 | 0.776090 | 0.030* | |
C6 | 0.81363 (15) | 0.4723 (2) | 0.87221 (15) | 0.0258 (4) | |
H6 | 0.864548 | 0.494561 | 0.852061 | 0.031* | |
C7 | 0.80955 (14) | 0.5499 (2) | 0.94722 (15) | 0.0238 (4) | |
H7 | 0.857548 | 0.625368 | 0.978375 | 0.029* | |
C12 | 0.24931 (16) | 1.0868 (2) | 0.78991 (14) | 0.0290 (4) | |
H12 | 0.196841 | 1.154400 | 0.752611 | 0.035* | |
C13 | 0.23014 (16) | 0.9816 (2) | 0.84285 (16) | 0.0317 (5) | |
H13 | 0.164176 | 0.976926 | 0.841424 | 0.038* | |
H4 | 0.6240 (17) | 0.385 (3) | 0.9501 (18) | 0.043 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Th1 | 0.01291 (4) | 0.01679 (5) | 0.01779 (4) | 0.00037 (3) | 0.00818 (3) | −0.00091 (4) |
O3 | 0.0397 (8) | 0.0323 (8) | 0.0397 (8) | −0.0027 (7) | 0.0206 (7) | 0.0131 (7) |
O8 | 0.0141 (6) | 0.0579 (11) | 0.0414 (9) | 0.0031 (6) | 0.0081 (6) | −0.0143 (8) |
O7 | 0.0194 (6) | 0.0259 (6) | 0.0259 (7) | 0.0010 (5) | 0.0117 (5) | −0.0021 (6) |
O4 | 0.0256 (7) | 0.0276 (7) | 0.0273 (7) | −0.0011 (5) | 0.0151 (6) | −0.0020 (6) |
O9 | 0.0204 (6) | 0.0282 (7) | 0.0254 (7) | 0.0001 (5) | 0.0109 (5) | −0.0041 (6) |
O1 | 0.0202 (6) | 0.0271 (7) | 0.0280 (7) | −0.0004 (5) | 0.0110 (5) | 0.0012 (6) |
O2 | 0.0198 (6) | 0.0263 (7) | 0.0290 (7) | 0.0002 (5) | 0.0116 (5) | 0.0006 (6) |
O5 | 0.0254 (7) | 0.0249 (7) | 0.0282 (7) | 0.0002 (5) | 0.0136 (6) | −0.0019 (6) |
N5 | 0.0168 (7) | 0.0258 (9) | 0.0249 (8) | 0.0007 (6) | 0.0100 (6) | −0.0013 (6) |
N3 | 0.0196 (7) | 0.0250 (8) | 0.0217 (7) | −0.0016 (6) | 0.0113 (6) | −0.0010 (6) |
N4 | 0.0189 (7) | 0.0225 (8) | 0.0260 (8) | −0.0010 (6) | 0.0110 (6) | 0.0054 (6) |
N1 | 0.0233 (7) | 0.0200 (8) | 0.0274 (8) | −0.0044 (6) | 0.0150 (7) | −0.0030 (6) |
N2 | 0.0244 (8) | 0.0230 (8) | 0.0272 (8) | −0.0040 (6) | 0.0149 (7) | −0.0021 (7) |
C9 | 0.0209 (8) | 0.0203 (9) | 0.0211 (9) | −0.0029 (7) | 0.0111 (7) | −0.0059 (7) |
N6 | 0.0237 (7) | 0.0220 (8) | 0.0236 (8) | −0.0012 (6) | 0.0126 (6) | −0.0001 (6) |
N7 | 0.0270 (8) | 0.0295 (9) | 0.0271 (8) | −0.0018 (7) | 0.0141 (7) | −0.0073 (7) |
C10 | 0.0224 (8) | 0.0267 (9) | 0.0250 (9) | −0.0037 (8) | 0.0125 (7) | −0.0042 (8) |
O6 | 0.0897 (14) | 0.0446 (10) | 0.0450 (10) | −0.0058 (10) | 0.0439 (10) | −0.0208 (8) |
C2 | 0.0232 (8) | 0.0257 (10) | 0.0229 (9) | −0.0022 (7) | 0.0136 (7) | 0.0002 (7) |
C1 | 0.0213 (8) | 0.0189 (9) | 0.0215 (8) | −0.0052 (7) | 0.0121 (7) | −0.0055 (7) |
C3 | 0.0199 (8) | 0.0347 (11) | 0.0239 (9) | 0.0025 (8) | 0.0090 (7) | 0.0011 (8) |
C11 | 0.0301 (10) | 0.0274 (10) | 0.0221 (9) | −0.0016 (8) | 0.0120 (8) | −0.0006 (8) |
C14 | 0.0260 (9) | 0.0295 (10) | 0.0327 (10) | 0.0007 (8) | 0.0193 (8) | 0.0022 (8) |
C4 | 0.0229 (9) | 0.0201 (9) | 0.0280 (10) | −0.0013 (7) | 0.0082 (8) | 0.0013 (8) |
C8 | 0.0182 (8) | 0.0207 (9) | 0.0212 (8) | 0.0026 (7) | 0.0078 (7) | 0.0045 (7) |
C5 | 0.0272 (9) | 0.0232 (9) | 0.0239 (9) | 0.0051 (7) | 0.0119 (8) | 0.0043 (8) |
C6 | 0.0233 (9) | 0.0271 (10) | 0.0313 (10) | 0.0033 (7) | 0.0162 (8) | 0.0060 (8) |
C7 | 0.0201 (8) | 0.0211 (8) | 0.0309 (10) | −0.0015 (7) | 0.0123 (8) | 0.0018 (8) |
C12 | 0.0291 (10) | 0.0324 (11) | 0.0242 (9) | 0.0065 (8) | 0.0112 (8) | −0.0004 (8) |
C13 | 0.0259 (9) | 0.0383 (12) | 0.0363 (11) | 0.0046 (8) | 0.0190 (8) | 0.0006 (9) |
Th1—O1 | 2.5830 (13) | N4—H4 | 0.862 (16) |
Th1—O2 | 2.5621 (14) | C9—C10 | 1.393 (3) |
Th1—O4i | 2.5582 (13) | C9—C1 | 1.468 (3) |
Th1—O4 | 2.5583 (13) | C9—C14 | 1.401 (2) |
Th1—O5 | 2.5547 (14) | N7—O6 | 1.206 (2) |
Th1—O7i | 2.5444 (13) | C10—H10 | 0.9500 |
Th1—O7 | 2.5444 (13) | C10—C11 | 1.388 (3) |
Th1—O9i | 2.5827 (12) | C2—H2 | 0.9500 |
Th1—O9 | 2.5827 (12) | C2—C1 | 1.376 (2) |
Th1—O1i | 2.5830 (13) | C3—H3A | 0.9900 |
Th1—O2i | 2.5621 (13) | C3—H3B | 0.9900 |
Th1—O5i | 2.5547 (14) | C3—C8 | 1.507 (3) |
O3—N6 | 1.212 (2) | C11—H11 | 0.9500 |
O8—N5 | 1.213 (2) | C11—C12 | 1.387 (3) |
O7—N5 | 1.270 (2) | C14—H14 | 0.9500 |
O4—N7 | 1.281 (2) | C14—C13 | 1.383 (3) |
O9—N5 | 1.277 (2) | C4—H4A | 0.9500 |
O1—N6 | 1.279 (2) | C4—C5 | 1.374 (3) |
O2—N6 | 1.2778 (19) | C8—C7 | 1.376 (2) |
O5—N7 | 1.278 (2) | C5—H5 | 0.9500 |
N1—C1 | 1.369 (2) | C5—C6 | 1.379 (3) |
N1—N2 | 1.314 (2) | C6—H6 | 0.9500 |
N3—N2 | 1.343 (2) | C6—C7 | 1.390 (3) |
N3—C2 | 1.346 (2) | C7—H7 | 0.9500 |
N3—C3 | 1.461 (2) | C12—H12 | 0.9500 |
N4—C4 | 1.340 (3) | C12—C13 | 1.386 (3) |
N4—C8 | 1.351 (2) | C13—H13 | 0.9500 |
O7i—Th1—O7 | 180.00 (6) | O8—N5—Th1 | 177.24 (14) |
O7—Th1—O4i | 113.48 (4) | O8—N5—O7 | 121.59 (16) |
O7—Th1—O4 | 66.52 (4) | O8—N5—O9 | 122.56 (16) |
O7i—Th1—O4i | 66.52 (4) | O7—N5—Th1 | 57.08 (8) |
O7i—Th1—O4 | 113.48 (4) | O7—N5—O9 | 115.85 (14) |
O7i—Th1—O9 | 130.23 (4) | O9—N5—Th1 | 58.86 (8) |
O7—Th1—O9i | 130.23 (4) | N2—N3—C2 | 111.70 (15) |
O7i—Th1—O9i | 49.77 (4) | N2—N3—C3 | 120.00 (15) |
O7—Th1—O9 | 49.77 (4) | C2—N3—C3 | 128.30 (16) |
O7i—Th1—O1i | 65.87 (4) | C4—N4—C8 | 122.43 (16) |
O7—Th1—O1i | 114.13 (4) | C4—N4—H4 | 118.1 (18) |
O7i—Th1—O1 | 114.13 (4) | C8—N4—H4 | 119.4 (18) |
O7—Th1—O1 | 65.87 (4) | N2—N1—C1 | 110.29 (15) |
O7i—Th1—O2 | 69.99 (4) | N1—N2—N3 | 106.08 (15) |
O7—Th1—O2 | 110.01 (4) | C10—C9—C1 | 120.12 (16) |
O7—Th1—O2i | 69.99 (4) | C10—C9—C14 | 118.62 (17) |
O7i—Th1—O2i | 110.01 (4) | C14—C9—C1 | 121.26 (17) |
O7—Th1—O5 | 67.79 (4) | O3—N6—Th1 | 176.58 (13) |
O7—Th1—O5i | 112.20 (4) | O3—N6—O1 | 122.44 (15) |
O7i—Th1—O5i | 67.80 (4) | O3—N6—O2 | 122.05 (16) |
O7i—Th1—O5 | 112.21 (4) | O1—N6—Th1 | 58.30 (8) |
O4i—Th1—O4 | 180.0 | O2—N6—Th1 | 57.35 (9) |
O4i—Th1—O9i | 110.18 (4) | O2—N6—O1 | 115.51 (15) |
O4i—Th1—O9 | 69.82 (4) | O4—N7—Th1 | 57.75 (9) |
O4—Th1—O9i | 69.82 (4) | O5—N7—Th1 | 57.56 (9) |
O4—Th1—O9 | 110.18 (4) | O5—N7—O4 | 115.19 (15) |
O4i—Th1—O1i | 112.94 (4) | O6—N7—Th1 | 174.91 (15) |
O4—Th1—O1 | 112.94 (4) | O6—N7—O4 | 122.04 (18) |
O4i—Th1—O1 | 67.06 (4) | O6—N7—O5 | 122.74 (18) |
O4—Th1—O1i | 67.06 (4) | C9—C10—H10 | 119.7 |
O4—Th1—O2 | 113.63 (4) | C11—C10—C9 | 120.61 (17) |
O4i—Th1—O2i | 113.64 (4) | C11—C10—H10 | 119.7 |
O4—Th1—O2i | 66.36 (4) | N3—C2—H2 | 127.5 |
O4i—Th1—O2 | 66.37 (4) | N3—C2—C1 | 105.06 (16) |
O9—Th1—O9i | 180.0 | C1—C2—H2 | 127.5 |
O9—Th1—O1 | 66.86 (4) | N1—C1—C9 | 123.68 (16) |
O9i—Th1—O1 | 113.14 (4) | N1—C1—C2 | 106.87 (16) |
O9i—Th1—O1i | 66.86 (4) | C2—C1—C9 | 129.44 (17) |
O9—Th1—O1i | 113.14 (4) | N3—C3—H3A | 109.2 |
O1i—Th1—O1 | 180.0 | N3—C3—H3B | 109.2 |
O2—Th1—O9i | 67.69 (4) | N3—C3—C8 | 112.18 (15) |
O2—Th1—O9 | 112.31 (4) | H3A—C3—H3B | 107.9 |
O2i—Th1—O9i | 112.31 (4) | C8—C3—H3A | 109.2 |
O2i—Th1—O9 | 67.69 (4) | C8—C3—H3B | 109.2 |
O2i—Th1—O1i | 49.70 (4) | C10—C11—H11 | 119.9 |
O2i—Th1—O1 | 130.30 (4) | C12—C11—C10 | 120.24 (19) |
O2—Th1—O1 | 49.70 (4) | C12—C11—H11 | 119.9 |
O2—Th1—O1i | 130.30 (4) | C9—C14—H14 | 119.7 |
O2—Th1—O2i | 180.0 | C13—C14—C9 | 120.56 (19) |
O5i—Th1—O4 | 130.01 (4) | C13—C14—H14 | 119.7 |
O5—Th1—O4 | 49.99 (4) | N4—C4—H4A | 119.8 |
O5i—Th1—O4i | 49.99 (4) | N4—C4—C5 | 120.40 (18) |
O5—Th1—O4i | 130.01 (4) | C5—C4—H4A | 119.8 |
O5—Th1—O9i | 66.29 (4) | N4—C8—C3 | 118.14 (16) |
O5i—Th1—O9 | 66.29 (4) | N4—C8—C7 | 118.73 (17) |
O5—Th1—O9 | 113.71 (4) | C7—C8—C3 | 123.11 (17) |
O5i—Th1—O9i | 113.71 (4) | C4—C5—H5 | 120.6 |
O5i—Th1—O1i | 69.63 (4) | C4—C5—C6 | 118.76 (19) |
O5—Th1—O1i | 110.37 (4) | C6—C5—H5 | 120.6 |
O5i—Th1—O1 | 110.37 (4) | C5—C6—H6 | 120.1 |
O5—Th1—O1 | 69.63 (4) | C5—C6—C7 | 119.86 (18) |
O5i—Th1—O2i | 67.02 (4) | C7—C6—H6 | 120.1 |
O5—Th1—O2 | 67.02 (4) | C8—C7—C6 | 119.81 (18) |
O5—Th1—O2i | 112.98 (4) | C8—C7—H7 | 120.1 |
O5i—Th1—O2 | 112.98 (4) | C6—C7—H7 | 120.1 |
O5—Th1—O5i | 180.0 | C11—C12—H12 | 120.2 |
N5—O7—Th1 | 98.16 (10) | C13—C12—C11 | 119.64 (19) |
N7—O4—Th1 | 97.20 (11) | C13—C12—H12 | 120.2 |
N5—O9—Th1 | 96.11 (9) | C14—C13—C12 | 120.31 (18) |
N6—O1—Th1 | 96.79 (10) | C14—C13—H13 | 119.8 |
N6—O2—Th1 | 97.82 (10) | C12—C13—H13 | 119.8 |
N7—O5—Th1 | 97.47 (11) | ||
Th1—O7—N5—O8 | 177.14 (16) | C9—C14—C13—C12 | −0.8 (3) |
Th1—O7—N5—O9 | −3.46 (16) | C10—C9—C1—N1 | 170.29 (17) |
Th1—O4—N7—O5 | −3.92 (16) | C10—C9—C1—C2 | −8.1 (3) |
Th1—O4—N7—O6 | 173.99 (18) | C10—C9—C14—C13 | 0.3 (3) |
Th1—O9—N5—O8 | −177.22 (17) | C10—C11—C12—C13 | 0.6 (3) |
Th1—O9—N5—O7 | 3.39 (16) | C2—N3—N2—N1 | 0.5 (2) |
Th1—O1—N6—O3 | −176.06 (16) | C2—N3—C3—C8 | −62.5 (3) |
Th1—O1—N6—O2 | 4.18 (15) | C1—N1—N2—N3 | −0.4 (2) |
Th1—O2—N6—O3 | 176.02 (15) | C1—C9—C10—C11 | −178.78 (17) |
Th1—O2—N6—O1 | −4.23 (16) | C1—C9—C14—C13 | 179.74 (19) |
Th1—O5—N7—O4 | 3.92 (16) | C3—N3—N2—N1 | −179.63 (16) |
Th1—O5—N7—O6 | −173.96 (18) | C3—N3—C2—C1 | 179.72 (18) |
N3—C2—C1—N1 | 0.2 (2) | C3—C8—C7—C6 | 178.06 (17) |
N3—C2—C1—C9 | 178.82 (18) | C11—C12—C13—C14 | 0.4 (3) |
N3—C3—C8—N4 | −59.3 (2) | C14—C9—C10—C11 | 0.7 (3) |
N3—C3—C8—C7 | 122.20 (19) | C14—C9—C1—N1 | −9.2 (3) |
N4—C4—C5—C6 | −0.9 (3) | C14—C9—C1—C2 | 172.4 (2) |
N4—C8—C7—C6 | −0.5 (3) | C4—N4—C8—C3 | −178.54 (16) |
N2—N3—C2—C1 | −0.4 (2) | C4—N4—C8—C7 | 0.0 (3) |
N2—N3—C3—C8 | 117.63 (18) | C4—C5—C6—C7 | 0.5 (3) |
N2—N1—C1—C9 | −178.62 (16) | C8—N4—C4—C5 | 0.7 (3) |
N2—N1—C1—C2 | 0.1 (2) | C5—C6—C7—C8 | 0.2 (3) |
C9—C10—C11—C12 | −1.1 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1, Cg2 and Cg3 are the centroids of rings C9–C14, N1–N3/C1/C2, and N4/C4–C8, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N1ii | 0.86 (3) | 1.88 (3) | 2.738 (3) | 170 (3) |
C2—H2···O8iii | 0.95 | 2.33 | 3.261 (3) | 168 |
C7—H7···O5iv | 0.95 | 2.46 | 3.379 (3) | 164 |
C13—H13···O4v | 0.95 | 2.46 | 3.377 (3) | 163 |
N4—H4···N2ii | 0.86 | 2.65 (3) | 3.432 (3) | 151 |
C10—H10···O8iii | 0.95 | 2.68 | 3.621 (3) | 173 |
C5—H5···O2i | 0.95 | 2.68 | 3.191 (2) | 114 |
C7—H7···O2iii | 0.95 | 2.67 | 3.279 (3) | 123 |
C7—H7···O9iii | 0.95 | 2.69 | 3.369 (2) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
We are grateful to the Science & Engineering Research Board, New Delhi, for financial support of this work through grant CRG/2019/000040. We also thank the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, for instrumentation facilities. SR gratefully acknowledges the Indian Institute of Technology Bombay-Monash Research Academy for financial support. SS thanks the UGC, New Delhi for JRF/SRF fellowships. We thank Dipanjan Mondal for X-ray crystallography data collection and integration.
References
Abram, U., Bonfada, E. & Schulz Lang, E. (1999). Acta Cryst. C55, 1479–1482. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Alcock, N. W., Esperås, S., Bagnall, K. W. & Hsian-Yun, W. (1978). J. Chem. Soc. Dalton Trans. pp. 638–646. CSD CrossRef Web of Science Google Scholar
Amani, V. & Tayebee, R. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1118–1123. Web of Science CSD CrossRef CAS Google Scholar
Aparna, K., Krishnamurthy, S. S. & Nethaji, M. (1995). J. Chem. Soc. Dalton Trans. pp. 2991–2997. CSD CrossRef Web of Science Google Scholar
Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J. Y., Dong, Y. B., Ma, J. P., Huang, R.-Q. & Smith, M. D. (2005). Inorg. Chem. Commun. 8, 6–8. Web of Science CSD CrossRef CAS Google Scholar
Crawford, M. J., Ellern, A., Karaghiosoff, K. & Mayer, P. (2009). Inorg. Chem. 48, 10877–10879. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gephart, R. T. III, Williams, N. J., Reibenspies, J. H., De Sousa, A. S. & Hancock, R. D. (2009). Inorg. Chem. 48, 8201–8209. Web of Science CSD CrossRef PubMed CAS Google Scholar
Goodgame, D. M., Menzer (née Smith), A. M., Menzer, S., White, A. J. & Williams, D. J. (2003). Inorg. Chim. Acta, 355, 314–321. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jin, G. B., Lin, J., Estes, S. L., Skanthakumar, S. & Soderholm, L. (2017). J. Am. Chem. Soc. 139, 18003–18008. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kelley, S. P., Smetana, V., Emerson, S. D., Mudring, A.-V. & Rogers, R. D. (2020). Chem. Commun. 56, 4232–4235. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, N. & Tuck, D. G. (1984). Can. J. Chem. 62, 1701–1704. CrossRef CAS Web of Science Google Scholar
Matonic, J. H., Neu, M. P., Enriquez, A. E., Paine, R. T. & Scott, B. L. (2002). J. Chem. Soc. Dalton Trans. pp. 2328–2332. Web of Science CSD CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mishra, M. K., Choudhary, H., Cordes, D. B., Kelley, S. P. & Rogers, R. D. (2019). Cryst. Growth Des. 19, 3529–3542. Web of Science CSD CrossRef CAS Google Scholar
Nakamoto, K. (2008a). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed., pp. 149–354. Hoboken: Wiley. Google Scholar
Nakamoto, K. (2008b). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 6th ed., pp. 1–273. Hoboken: Wiley. Google Scholar
Rammo, N. N., Hamid, K. R. & Ibrahim, T. K. (1994). J. Alloys Compd. 210, 319–324. CSD CrossRef CAS Web of Science Google Scholar
Rebizant, J., Apostolidis, C., Spirlet, M. R., Andreetti, G. D. & Kanellakopulos, B. (1988). Acta Cryst. C44, 2098–2101. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Reilly, S. D., Scott, B. L. & Gaunt, A. J. (2012). Inorg. Chem. 51, 9165–9167. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spirlet, M. R., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. (1992). Acta Cryst. C48, 1161–1164. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Surbella, R. G., Ducati, L. C., Autschbach, J., Pellegrini, K. L., McNamara, B. K., Schwantes, J. M. & Cahill, C. L. (2018). Chem. Commun. 54, 12014–12017. Web of Science CSD CrossRef CAS Google Scholar
Takao, K., Kazama, H., Ikeda, Y. & Tsushima, S. (2019). Angew. Chem. Int. Ed. 58, 240–243. Web of Science CSD CrossRef CAS Google Scholar
Takao, K., März, J., Matsuoka, M., Mashita, T., Kazama, H. & Tsushima, S. (2020). RSC Adv. 10, 6082–6087. Web of Science CSD CrossRef CAS PubMed Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. https://hirshfeldsurface.net Google Scholar
Urankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I. & Košmrlj, J. (2010). Inorg. Chem. 49, 4820–4829. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, M., Wang, B., Zheng, P., Wang, W. & Lin, J. (1988). Acta Cryst. C44, 1913–1916. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Xiao, C.-L., Wang, C.-Z., Yuan, L.-Y., Li, B., He, H., Wang, S., Zhao, Y.-L., Chai, Z.-F. & Shi, W.-Q. (2014). Inorg. Chem. 53, 1712–1720. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y., Yang, S., Yuan, X., Zhao, Y. & Tian, G. (2017). Chem. Commun. 53, 6421–6423. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.